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Abstract. In the paper, we propose a camera-based assistive system for visually 
impaired or blind persons to read text from signage and objects that are held in 
the hand. The system is able to read text from complex backgrounds and then 
communicate this information aurally. To localize text regions in images with 
complex backgrounds, we design a novel text localization algorithm by learning 
gradient features of stroke orientations and distributions of edge pixels in an 
Adaboost model. Text characters in the localized regions are recognized by off-
the-shelf optical character recognition (OCR) software and transformed into 
speech outputs. The performance of the proposed system is evaluated on 
ICDAR 2003 Robust Reading Dataset. Experimental results demonstrate that 
our algorithm outperforms previous algorithms on some measures. Our 
prototype system was further evaluated on a dataset collected by 10 blind 
persons, with the system effectively reading text from complex backgrounds. 
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1   Introduction 

According to the statistics in 2002 [14], more than 161 million persons suffer visual 
impairment, in which there are 37 million blind persons.  It is a challenging task for 
blind persons to find their way in unfamiliar environments, for example, 
independently finding the room they are looking for. Many aid systems have been 
developed to help blind persons avoid obstacles in all kinds of environments [3]. 
Some indoor positioning systems modeled global layout of a specific zone and used 
radio wave analysis to locate the persons wearing signal transceivers [13]. Some 
systems employed Quick Response (QR) codes to guide blind persons to destinations. 
However, most of these systems require pre-installed devices or pre-marked QR 
codes. Also, the blind user needs to consider compatibility of different systems. 
Therefore, the above systems cannot provide blind users these services in 
environments without pre-installed devices or markers. However, most blind persons 
can find nearby walls and doors, where text signage is always placed to indicate the 



room number and function. Thus blind persons will be well navigated if a system can 
tell them what the nearby text signage says. Blind persons will also encounter trouble 
in distinguishing objects when shopping. They can receive limited hints of an object 
from its shape and material by touch and smell, but miss descriptive labels printed on 
the object. Some reading-assistive systems, such as voice pen, might be employed in 
this situation. They integrate OCR software to offer the function of scanning and 
recognition of text for helping blind persons read print documents and books. 
However, these systems are generally designed for scanned document images with 
simple background and well-organized characters rather than packing box with 
multiple decorative patterns. The OCR software cannot directly handle the scene 
images with complex backgrounds. Thus these assistive text reading systems usually 
require manual localization of text regions in a fixed and planar object surface, such 
as a screen and book.  

To more conveniently assist blind persons in reading text from nearby signage or 
objects held in the hand, we design a camera-based assistive text reading system to 
extract significant text information from objects with complex backgrounds and 
multiple text patterns. The tasks of our system are indoor object detection to find out 
nearby wall, door, elevator or signage, and text extraction to read the involved text 
information from complex backgrounds. This paper focuses only on the step of text 
extraction, including 1) text localization to obtain image regions containing text, and 
2) text recognition to transform image-based information into text codes [20]. Fig. 1 
illustrates two examples of our proposed assistive text reading system. In order to 
perform text recognition by off-the-shelf OCR software, text regions must be detected 
and binarized. However, the problem of automatic localization of text regions from 
camera captured images with complex backgrounds has not been solved. For our 
application, text in camera captured images is most likely surrounded by various 
background outliers, and text characters usually appear in multiple scales, fonts, 
colors, and orientations. In this paper, we propose a novel algorithm of text 
localization based on gradient features of stroke orientations and distributions of edge 
pixels. 
 

 

Fig. 1. Two examples of text localization and recognition from camera captured images. Top: a 
milk box; Bottom: a male bathroom. From left to right: camera-captured images, localized text 
regions (marked in cyan), text regions, and text codes recognized by OCR. 

 



1.1   Previous Work in Text Localization 

Many algorithms were presented to localize text regions in scene images. We divide 
them into two categories. The first category are rule-based algorithms that applied 
pixel level image processing to extract text information by predefined text features 
such as character size, aspect ratio, edge density, character structure, and color 
uniformity of text string, etc.  Phan et al. [12] modeled edge pixel density by 
Laplacian operator and maximum gradient difference to calculate text regions. 
Shivakumara et al. [17] used gradient difference map and global binarization to obtain 
text regions. Epshtein et al. [4] used the consistency of text stroke width and defined 
stroke width transform to localize text characters. Nikolaou et al. [10] applied color 
reduction to extract text in uniform colors. This type of algorithms tried to define a 
universal feature descriptor of text.  In [2], color based text segmentation is performed 
through a Gaussian mixture model for calculating confidence value of text regions. 
The second category are learning-based algorithms that apply explicit machine 
learning models on feature maps of training samples to extract robust text features and 
build text classifiers. Chen et al. [1] presented 5 types of block patterns on intensity 
based and gradient based feature maps to train classifiers in Adaboost learning model. 
Kim et al. [6] considered text as specific texture and analyzed the textural features of 
characters by support vector machine (SVM) model. Kumar et al. [7] used the 
responses from Globally Matched Wavelet (GMW) filters of text as features and 
applied SVM and Fisher classifier for image window classification. Ma et al. [9] 
performed classification of text edges by using HOG and LBP as local features on the 
SVM model. Shi et al. [16] used gradient and curvature features to model the gray 
scale curve for handwritten numeral recognition under a Bayes discriminate function. 
In this paper, we propose a text localization algorithm by defining novel feature maps 
based on stroke orientations and edge distributions. 

2   System and Algorithm Overview 

Our prototype system is equipped with a wearable camera attached to a cap or pair of 
sunglasses, an audio output device such as Bluetooth or earphones, and a mini-
microphone for user speech input. This simple hardware structure ensures the 
portability of the system. A wearable computer/PDA provides the platform for 
information processing.  

Fig. 2 depicts the main components of the prototype system. Blind users wearing 
cameras capture signage and objects they are facing. The camera captured images are 
then processed by our novel proposed text localization algorithm to detect text 
regions. In this text localization method, the basic processing cells are rectangle 
image patches with fixed aspect ratio, where features of text are extracted from both 
stroke orientations and edge distributions. In the training process, a feature matrix 
from the training set is formed as the input of an Adaboost machine learning 
algorithm to build a text region classifier. In the testing process, an adjacent character 
grouping algorithm is first applied on camera captured natural scene images to 
preliminarily localize the candidate image patches [19]. The classifier learned from 



Adaboost algorithm is employed to classify the text or non-text patches, where 
neighboring text patches are merged into text regions. Then off-the-shelf OCR 
software is employed to perform text recognition in the localized text regions. The 
recognized words are transformed into speech for blind users. 
 

 
Fig. 2. Flowchart of our system. 

The main contributions of this paper include: (1) a novel algorithm of automatic 
text localization to extract text regions from complex background and multiple text 
patterns; (2) a camera-based assistive prototype system to aid blind persons reading 
text from signage in unfamiliar environments and other objects; and (3) a dataset of 
objects and signage captured by blind persons for assistive text reading system 
evaluations. 

3   Automatic Text Localization 

We design a learning based algorithm of automatic text localization. In order to 
handle complex backgrounds, we propose two novel feature maps to extracts text 
features based on stroke orientation and edge distribution respectively. Here stroke is 
defined as a uniform region with bounded width and extensive length. These feature 
maps are combined to build an Adaboost-based text classifier. 

3.1   Text Stroke Orientation 

Text characters consist of strokes in different orientations as the basic structure. Here, 
we propose a new type of features, stroke orientations, to describe the local structure 
of text characters. From the pixel-level analysis, stroke orientation is perpendicular to 
the gradient orientations at pixels of stroke boundaries, as shown in Fig. 3. To model 
the text structure by stroke orientations, we propose a new operator to map gradient 
feature of strokes to each pixel. It extends local structure of stroke boundary into its 
neighborhood by gradient orientations. It provides a feature map to analyze global 
structures of text characters. 



Given an image patch �, Sobel operators in horizontal and vertical derivatives are 
used to calculate 2 gradient maps ��and ��respectively. The synthesized gradient 

map is calculated as � � ���� � ���	
��. Canny edge detector is applied on � to 
calculate its binary edge map �. For a pixel 
�, a circular range is set as ��
�� ��
���
� 
�� � ���, where ��� � is set as Euclidean distance. In this range we find out 
the edge pixel 
� with the minimum Euclidean distance from 
�. Then the pixel 
� is 
labeled with gradient orientation at the pixel 
� from gradient maps by (1), where 
� � �
�
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�#!$� and % normalizes stroke orientation into the range 
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value ,, because -�
�� is set as 0 if and only if no edge pixel is found out within the 
range of pixel 
�. 
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A stroke orientation map 7�.� is output by assigning each pixel the gradient 

orientation at its nearest edge pixel, as shown in Fig. 4(a). The pixel values in stroke 
orientation map are then quantized into an N bin histogram in the domain 
��? '( � )? '( * (see Fig. 4(b)). In feature extraction, strokes with identical or similar 
orientations are employed to describe structure of text from one perspective. In the N 
bin histogram, we group the pixels at every d consecutive bins together to generate a 
multi-layer stroke orientation map, where strokes in different orientations are separated 
into different layers. Without considering the cyclic shifts of the bins, there are totally 
@ + 6 � A layers. In our evaluation, 6 is set to be 3 and  @ is set to be 16 respectively. 
Thus each sample generates 14 layers of stroke orientation maps, where text structure 
is described as gradient features of stroke orientations. We can extract structural 
features of text from stroke orientation maps.  
 
 

 
Fig. 3. An example of text strokes and relationship between stroke orientations and gradient 
orientations at pixels of stroke boundaries. Blue arrows denote the stroke orientations at the 
sections and red arrows denote the gradient orientations at pixels of stroke boundaries. 

 



 
Fig. 4. (a) An example of stroke orientation label. The pixels denoted by blue points are assigned 
the gradient orientations (red arrows) at their nearest edge pixels, denoted by the red points. (b) 
A 210 ×54 text patch and its 16-bin histogram of quantized stroke orientations. 

3.2   Distributions of Edge Pixels 

In an edge map, text character appears in the form of stroke boundaries. Distribution 
of edge pixels in stroke boundaries also describes the characteristic structure of text. 
The most commonly used feature is edge density of text region. But edge density 
measure does not give any spatial information of edge pixels. It is generally used for 
distinguishing text regions from relatively clean background regions. To model text 
structure by spatial distribution of edge pixels, we propose an operator to map each 
pixel of an image patch into the number of edge pixels in its cross neighborhood. At 
first, edge detection is performed to obtain an edge map, and the number of edge 
pixels in each row y and each column x is calculated as N_R (y) and N_C (x). Then 
each pixel is labeled with the product value of the number of edge pixels in its located 
row and that in its located column. Based on this transform, the feature map of edge 
distribution is calculated by assigning each pixel weighed sum of the neighborhood 
centered at it, as (2). In the feature map of edge distribution, pixel value reflects edge 
density of its located region. 

B�C� D� �EFG H @I�DG� H @J�CG�
G

 (2) 

 

where �CG� DG� is neighboring pixel of �C� D� and FG denotes the weight value. 

3.3   Adaboost Learning of Features of Text 

Based on the feature maps of gradient, stroke orientation and edge distribution, a 
classifier of text is trained from Adaboost learning model. Image patches with fixed 
size (height 48 pixels, width 96 pixels) are collected from images of ICDAR 2011 
robust reading competition [21] to generate a training set for learning features of text. 
We generate positive training samples by scaling or slicing the ground truth text 
regions, according to the ratio of width F to height K. If the ratio is F K( L ,�M, the 



region is discarded. If the ratio F K(  falls in [,�M�'�)�, the ground truth region is scaled 
to a window of width-to-height ratio 'N A. If the ratio is F K( O '�), we slice this 
ground truth region into overlapped training samples with width-to-height ratio 2:1. 
Then they are scaled into width 96 and height 48 pixels. The negative training samples 
are generated by extracting the image regions containing edge boundaries of non-text 
objects. These regions also have width-to-height ratio 2:1, and then we scale them into 
width 96 and height 48. In this training set, there are total 15301 positive samples and 
each contains several text characters with compatible accommodation of image patch, 
and 35933 negative samples without containing any text information for learning 
features of background outliers.  Some training examples are shown in Fig. 5. 
 

 
Fig. 5. Examples of training samples with width-to-height ratio 2:1. The first two rows present 
positive samples and the remaining two rows present negative samples. 

To train the classifier, we extract 3 gradient maps, 14 stroke orientation maps, and 
1 edge distribution map for each training sample. We apply 6 block patterns [1] on 
these feature maps of training samples. As shown in Fig. 6, these block patterns are 
involved in the gradient distributions of text in horizontal and vertical directions. We 
normalize the block pattern into the same size (height 48 pixels, width 96 pixels) as 
training samples and derive a feature response P of a training sample by calculating the 
absolute difference between the sum of pixel values in white regions and the sum of 
pixel values in black regions. For the block patterns with more than 2 sub-regions (see 
Fig. 6(a-d)), the other metric of feature response is the absolute difference between the 
mean of pixel values in white regions and the mean of pixel values in black regions. 
Thus we obtain � � �� + '� � A, feature values through the 6 block patterns and 2 
metrics from each feature map. The “integral image” algorithm is used in these 
calculations [18]. From the 18 feature maps (3 gradient maps, 14 stroke orientation 
maps, and 1 edge distribution map), a training sample can generate a feature vector of 
180 dimensions as (3). Then we compute feature vectors for all the )A'�Q samples in 
training set. By using the feature vector RS  of the i-th sample as the i-th column, a 
feature matrix T is obtained by (4). 

 



RS � UP
S � P�S� V � P
W�S XY (3) 

 
T � ZR
� R�� V � R[�� V � R\
�]^* (4) 

 
The AM,� _ )A'�Q feature matrix is used for learning a text classifier in cascade 

Adaboost model. A row of the feature matrix records feature responses of a certain 
block pattern and a certain feature map on all training samples. In the process of 
Adaboost learning, weak classifier is defined as `a� bc� de. The three parameters denote 
the a-th row of feature matrix �A � a � AM,�, a threshold of the a-th row bc, and 
polarity of the threshold d � �+A�A�.  In each row a, linearly spaced threshold values 
are sampled in the domain of its feature values by (5).  
 

bc � fbgb � Pch SG � A
@Y �Pc

h i= + Pch SG�jk (5) 

 
where @Y represents the number of thresholds, Pch SG and Pch i= represent the minimum 
and maximum feature value of the a-th row, and j is an integer ranging from 1 to @Y. 
We set @Y � �,, in the learning process. Thus there are in total AM, _ ' _ �,, �
A,M,,, weak classifiers. When a weak classifier `a� d� bce is applied on a sample with 
corresponding feature vector R � ZP
� V � Pc � V � P
W�*l, if dPc O dbc, it is classified as 
positive samples, otherwise it is classified as negative samples. 
 

 
 

Fig. 6. Block patterns based on [1]. Features are obtained by the absolute value of sum (or mean) 
of pixel values in white regions minus sum (or mean) of pixel values in black regions. 

Cascade Adaboost classifiers proved to be an effective machine learning algorithm 
in real-time face detection [18]. The training process is divided into several stages. In 
each stage, based on the feature matrix of all positive samples and the negative samples 
that are incorrectly classified in previous stages, Adaboost model [5] performs an 
iterative selection of weak classifiers. The selected weak classifiers are integrated into 
a strong classifier by weighted combination. The iteration of a stage stops when 99.5% 
of positive samples are correctly classified while 50% of negative samples are 
correctly classified by the current strong classifier. The strong classifiers from all 
stages are cascaded into the final classifier. When a testing image patch is input into 
the final classifier, it is classified as text patches if all the cascaded strong classifiers 
determine it is a positive sample, otherwise it is classified as a non-text patch. 



3.4   Text Region Localization 

Text localization is then performed on the camera captured image. Cascade Adaboost 
classifier cannot handle the whole image, so heuristic layout analysis is performed to 
extract candidate image patches prepared for text classification. Text information in the 
image usually appears in the form of text strings containing no less than three character 
members. Therefore adjacent character grouping [19] is used to calculate the image 
patches that possibly contain fragments of text strings. These fragments consist of three 
or more neighboring edge boundaries which have approximately equal heights and stay 
in horizontal alignment, as shown in Fig. 7. But not all the satisfied neighboring edge 
boundaries are text string fragments. Thus the classifier is applied to the image patches 
to determine whether they contain text or not. Finally, overlapped text patches are 
merged into a text region, which is the minimum rectangle area circumscribing the text 
patches. The text string fragments inside those patches are assembled into informative 
words. 
 

 
Fig.  7. (a) Character ‘e’ have adjacent siblings ‘p’ on the left and ‘n’ on the right. (b) Adjacent 
characters are grouped together to obtain two fragments of text strings. (c) Candidate image 
patches after scaling and slicing, prepared for classification. 

4   Text Recognition and Audio Output 

Text recognition is performed by off-the-shelf OCR to output the informative words 
from the localized text regions. A text region labels the minimum rectangular area for 
the accommodation of characters inside it, so the border of the text region contacts the 
edge boundary of the text character. However, experiments show that OCR generates 
better performance if text regions are assigned proper margin areas and binarized to 
segment text characters from background. Thus each localized text region is enlarged 
by enhancing the height and width by 10 pixels respectively, and then we use Otsu’ 
method [11] to perform binarization of text regions, where margin areas are always 
considered as background. 

We evaluate two OCR engines, Tesseract and Nuance OmniPage, on the localized 
text regions. OmniPage shows better performance in most cases, but it is commercial 
software without open source codes. Tesseract is an open-source OCR engine that can 
be more conveniently integrated into our system. 



The recognized text codes are recorded in script files. Then we use Microsoft 
Speech SDK to load these files and display the audio output of text information. Blind 
users can adjust speech rate, volume and tone according to their requirements. 

5   Experiments 

5.1   Datasets 

Two datasets are used in our experiments. First, the ICDAR 2003 Robust Reading 
Dataset is used to evaluate the proposed localization algorithm separately. It contains 
509 natural scene images in total. Most images contain indoor or outdoor text signage. 
The image resolutions range from 640×480 to 1600×1200. Since layout analysis 
based on adjacent character grouping can only handle text strings with three or more 
character members, we omit the images containing only ground truth text regions of 
less than 3 text characters. Thus 488 images are selected from this dataset as testing 
images to evaluate our localization algorithm.  

To evaluate the whole system and develop a user friendly interface, we recruit 10 
blind persons to build a dataset of reading text on hand-held objects. They wear a 
camera attached to a pair of sunglasses and capture the image of the objects in his/her 
hand, as shown in Fig. 8. The resolution of captured image is 960×720. There are 14 
testing objects for each person, including grocery boxes, medicine bottles, books, etc. 
They are required to rotate each object several times to ensure that surfaces with text 
captions are captured. These objects are exposed to background outliers and 
illumination changes. We extract 116 captured images and label 312 text regions of 
main titles manually. 
 

 
Fig. 8.  Blind persons are capturing images of the object in their hands. 

5.2   Results and Discussions 

A localization algorithm is performed on the scene images of Robust Reading Dataset 
to calculate image regions containing text information. Fig. 9 and Fig. 10(a) depict 
some results of localized text regions, marked by cyan rectangle boxes. To analyze 



the accuracy of the localized text regions, we compare them with ground truth text 
regions by the measures precision, recall and f-measure. For a pair of text regions, 
match sore is estimated by the ratio between the intersection area and the united mean 
area of the two regions. Each localized (ground truth) text region generates maximum 
match score from its best matched ground truth (localized) text region. Precision is 
the ratio between the total match score and the total number of localized regions. It 
estimates the false positive localized regions. Recall is the ratio between the total 
match score and the total number of ground truth regions. It estimates the missing text 
regions. f-measure combines precision and recall by harmonic sum. The evaluation 
results are calculated from average measures on all testing images, which are 
precision 0.69, recall 0.56, and f-measure 0.60. The results are comparable to previous 
algorithms as shown in Table I. Average processing time on original image resolution 
is 10.36s. To improve the computation speed, we downsample the testing images into 
lower resolutions while ensuring that the degradation does not significantly influence 
the performance. Both the width and the height of downsampled testing image do not 
exceed 920. Then we repeat the evaluation and obtain precision 0.68, recall 0.54, f-
measure 0.58, and average process time 1.54s. 
 

 
Fig. 9. Some example results of text localization on the robust reading dataset, and the 
localized text regions are marked in cyan. 

To evaluate the proposed features of text based on stroke orientations and edge 
distributions, we can make a comparison with Alex Chen’s algorithm [1, 8] because it 
applies similar block patterns and a similar learning model, but with different feature 
maps, which are generated from intensities, gradients and joint histograms of intensity 



and gradient. The evaluation results of Chen’s algorithm on the same dataset is 
precision 0.60, recall 0.60, and f-measure 0.58 (Table 1). This demonstrates that our 
proposed feature maps of stroke orientation and edge distribution give better 
performance on precision and f-measure. 
 

Table 1. The performance comparison between our algorithm and the algorithms presented in 
[8] on Robust Reading Dataset. 

Method Precision Recall f time/s 
Ours 0.69 0.56 0.60 10.36 

Ours(downsample) 0.68 0.54 0.58 1.54 
HinnerkBecker 0.62 0.67 0.62 14.4 

AlexChen 0.60 0.60 0.58 0.35 
Ashida 0.55 0.46 0.50 8.7 

HWDavid 0.44 0.46 0.45 0.3 
 
 

 
Fig. 10. The top two rows present some results of text localization on the blind-captured 
dataset, where localized text regions are marked in cyan. The bottom rows show two groups of 
enlarged text regions, binarized text regions and word recognition results from top to down. 



Further, our system is evaluated on the blind-captured dataset of object text. We 
define that a ground truth region is hit if its three-quarter is covered by localized 
regions. Experiments show that 225 of the 312 ground truth text regions are hit by our 
localization algorithm. By using the same evaluation measures as above experiments, 
we obtain precision 0.52, recall 0.62, and f-measure 0.52 on this dataset. The 
precision is much lower than that on Robust Reading Dataset. We infer that the 
images in blind-captured dataset of object text have lower resolutions and more 
compact distributions of text information. Then OCR is applied on the localized 
regions for character and word recognition rather than the whole images. Fig. 10 
shows some examples of text localization and word recognition in the system. 
Recognition algorithm might not correctly and completely output the words inside 
localized regions. Additional spelling correction is required to output accurate text 
information. It takes 1.87 seconds on average in reading text from the normalized 
blind-captured images with resolution 640×480. In real applications, text extraction 
and device input/output can be processed in parallel, that is, speech output of 
recognized text while localization of text regions in the next image. 

6   Conclusion 

In this paper, we have developed a novel text localization algorithm and an assistive 
text reading prototype system for blind persons. Our system can extract text 
information from nearby text signage or object captions under complex backgrounds. 
Text localization and recognition are significant components of our system. To localize 
text, models of stroke orientation and edge distribution are proposed for extracting 
features of text. The corresponding feature maps estimate the global structural feature 
of text at every pixel. Block patterns are defined to project the proposed feature maps 
of an image patch into a feature vector. An Adaboost learning model is employed to 
train classifiers of text based on the feature vectors of training samples. To localize text 
in camera captured images, adjacent character grouping is performed to calculate 
candidates of text patches prepared for text classification. The Adaboost-based text 
classifier is applied to obtain the text regions. Off-the-shelf OCR is used to perform 
word recognition in the localized text regions and transform into audio output for blind 
users.  

Our future work will focus on extending our localization algorithm to process text 
strings with less than 3 characters and to design more robust block patterns for text 
feature extraction. We will also extend our system to extract non-horizontal text 
strings. Furthermore, we will address the significant human interface issues associated 
with reading region selection by blind users. 
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