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ABSTRACT 
This chapter addresses the problem of action detection from cluttered videos. In recent years, many 

feature extraction schemes have been designed to describe various aspects of actions. However, due to the 

difficulty of action detection, e.g., the cluttered background and potential occlusions, a single type of 

features cannot effectively solve the action detection problems in cluttered videos. In this chapter, we 

propose a new type of features, Hierarchically Filtered Motion (HFM), and further investigate the fusion 

of HFM with Spatiotemporal Interest Point (STIP) features for action detection from cluttered videos. In 

order to effectively and efficiently detect actions, we propose a new approach which combines Gaussian 

Mixture Models (GMMs) with Branch-and-Bound search to locate interested actions in cluttered videos. 

The proposed new HFM features and action detection method have been evaluated on the classical KTH 

dataset and the challenging MSR Action Dataset II which consists of crowded videos with moving people 

or vehicles in background. Experiment results demonstrate that the proposed method significantly 

outperforms existing techniques especially for action detection in crowded videos. 

 

INTRODUCTION 

 

In the past few years, computer vision researchers have witnessed a surge of interest in human action 

analysis through videos. Human action recognition, which classifies a video to a predefined action 

category, was first studied under well controlled laboratory scenarios, e.g., with clean background and no 

occlusions (Schuldt et al., 2004). Later research work shows that action recognition is important for 

analyzing and organizing online videos (Liu et al., 2009). Moreover, action recognition plays a crucial 

role in building surveillance system (Hu et al., 2009) and studying customer behaviors. With the 

increasing of web video clips (e.g., videos on Youtube) and the surveillance systems, it has become very 

important to effectively analyze video actions. 
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An effective analysis of video actions requires action detection, which can not only answer “which action 

happens in a video”, but also “when and where the action happens in the video sequence”. In other 

words, action detection will detect action category, locations, and time in video sequences than simply 

classifying a video clip to one of the existing action labels. When a video contains multiple actions, 

simple action classification will not work. In practice, surveillance videos often contain multiple types of 

actions, where only action detection can provide meaningful results.  

 

 
 

Figure 1. Comparing the differences between action classification and detection. (a) For a classification 

task we need only estimate the category label for a given video. (b) For an action detection task we need 

not only estimate the category of an action but also the location of the action instance. The bounding box 

illustrates a desirable detection. It can be seen that action detection task is crucial when there is cluttered 

background and multiple persons in the scene. 

 

 

Action detection is a challenging task. As shown in Figure 1, the background is often cluttered, and the 

crowds might occlude each other in complex scenes. It is difficult to distinguish interested actions from 

other video contents. The appearance of interested actions might have similar appearance of the 

background. Furthermore, the motion field of an action might be occluded by other moving objects in the 

scene. Due to the difficulty of locating human actions, most existing datasets of human actions (Blank et 

al., 2005, Schuldt et al., 2004) only involve action classification task without detecting locations of 

actions, where human actions are usually recorded with clean backgrounds, and each video clip mostly 

involves a single person who repeatedly performs one category of actions within a whole video clip. 

 

In this chapter, we address the action detection problem by proposing a new type of features, 

Hierarchically Filtered Motion (HFM), and further investigate the fusion of HFM with other 

Spatiotemporal Interest Point (STIP) features (Dollar et al., 2005, Laptev and Lindeberg, 2003, Cao et al. 

2010, Tian et al., 2011) for action detection from cluttered videos. An action is often associated with 

multiple visual measurements, which can be either appearance features (e.g., color, edge histogram) or 

motion features (e.g., optical flow, motion history). Different features describe different aspects of the 

visual characteristics and demand different metrics. How to handle heterogeneous features for action 

detection becomes an important problem. 

 

The difficulty of combining multiple features lies in the heterogeneous nature of different features. 

Different STIP features are based on different detectors, and the number of detected features varies 

significantly. It is still an open question how to effectively combine such features. A naive approach is to 

quantize STIP features and build histogram based on quantization indices. However, much information 

will be lost in the quantization process, and a histogram representation overlooks the differences in the 

number of detected features. Therefore, simply combining histograms will produce poor detection results. 
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Our work employs a probabilistic representation of the different features so that we can quantitatively 

evaluate the contribution from each of these features. We estimate the likelihood of each feature vector 

belonging to a given action of interests, which can be viewed as normalized contribution from different 

features. The optimal bounding box corresponds to the maximum likelihood and is found by a branch-

bound search. In our approach, we model each feature vector with Gaussian Mixture Models (GMMs). 

GMMs with large number of components are known to have the ability to model any given probability 

distribution function. Based on GMMs, we can estimate the likelihood of each feature vector belongings 

to a given action of interests. The likelihood can be viewed as a normalized contribution from different 

features, and the optimal bounding box corresponds to the maximum likelihood. The bounding box is 

found by a branch-bound search (Yuan et al., 2009), which is shown to be efficient and effective to locate 

the action of interest. 

 

BACKGROUND 

Many approaches have been proposed on action recognition (Jhuang et al., 2007, Laptev et al., 2008, Liu 

et al., 2009, Messing et al., 2009, Reynolds et al., 2000, Yuan et al., 2009). Compared with the task of 

action classification, action detection is more challenging. There are only a few literatures devoted to the 

task of action detection (Du and Yuan, 2011, Cao et al., 2009, Cao et al., 2010, Hu et al., 2009, Ke et 

al., 2007, Yao and Zhu, 2009, Yuan and Pang, 2008). Laptev et al. (Laptev et al., 2008, Marszałek et al., 

2009) used local spatiotemporal invariant points (STIPs) (Laptev and Lindeberg 2003), space-time 

pyramids, local spatiotemporal descriptors (HOG/HOF) (Dalal and Triggs, 2005, Pang et al., 2010), and 

multichannel non-linear SVMs for realistic actions in movies. Yuan et al. (Yuan et al., 2009) employed 

the same features (STIPs) and descriptors (HOG/HOF) and proposed a discriminative subvolume search 

for efficient action detection by using a Nearest Neighbor based classifier. Ke et al. (Ke et al., 2007) 

proposed a method to detect event in crowded videos by combining spatiotemporal shapes with a flow 

descriptor. Sun et al. (Sun et al., 2009) modeled the spatiotemporal information for action recognition in 

realistic datasets at 3 levels: point-level, intra-trajectory level, and inter-trajectory level.  The trajectories 

are extracted based on matching the SIFT salient points over consecutive frames. Similarly, Messing et al. 

(Messing et al., 2009) proposed a system for action recognition by using the velocity histories of tracked 

keypoints which are extracted by Kanade-Lucas-Tomasi (KLT) feature trackers, and used a generative 

mixture model to learn and classify actions. They also augmented other features such as position, 

appearance, color, etc. to improve the recognition accuracy. Junejo et al. (Junejo et al., 2011) attempted to 

recognize human actions under different views using temporal self-similarities. Yin and Meng (Yin and 

Meng, 2010) proposed a method to learn the shapes of space-time feature neighborhoods for each action 

category. Surveys of video event understanding and human motion analysis can be found in paper (Ji and 

Liu, 2010).  

 

Despite promising results are achieved by the state-of-the-art work, more robust methods are needed to 

handle cluttered background motions due to the following difficulties: 1) there is no mechanism to 

distinguish action motions and background motions in existing local STIP detectors and descriptors, and 

2) the trajectories of keypoints cannot be reliably tracked in crowded videos. A majority of recent work 

on STIPs takes quantized STIPs as input and builds histograms based on quantization indices. The 

quantized STIPs are also called video codewords. The histograms can be fed into discriminative SVM 

classifiers (Schuldt et al., 2004) or generative topic models (Niebles et al., 2006). The collection of 

quantized codewords is also named as a codebook. The use of the codebook and histogram is preferred 

because it can condense different number of STIPs into a fixed length feature vector. However, quantized 

codeword representation is not a good fit for cross-dataset scenarios due to the large variations of STIPs 

in different environments. Given two videos captured with different viewing points and light conditions, 

the corresponding distributions of STIPs are likely quite different. If we build a new codebook on a new 
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dataset, the word histogram representation will be totally different, so the old model cannot be directly 

applied the new dataset. In summary, quantized codeword representation overlooks the differences of 

STIP distributions in different environments and may fail to correctly transfer the knowledge from source 

dataset to target dataset. 

 

Motivated by the recent success of SIFT and HOG in image domain, many researchers have designed 

various counterparts to describe the spatial salient patches in video domain. Laptev and Lindeberg 

(Laptev and Lindeberg, 2003) generalized Harris detector to spatiotemporal space. They aim to detect 

image patches with significant local variations in both space and time and compute their scale invariant 

spatiotemporal descriptors. This approach is later improved by (Laptev et al., 2008) which gives up scale 

selection but uses a multi-scale approach and extract features at multiple levels of spatiotemporal scales. 

The improved method yields reduced computational complexity, denser sampling, and suffers less from 

scale selection artifacts. Another important video feature is designed by Dollar et al. (Dollar et al., 2005), 

which detects the salient patches by finding the maximum of temporal Gabor filter responses. This 

method aims to detect regions with spatially distinguishing characteristics undergoing a complex motion. 

In contrast, patches undergoing pure translational motion, or patches without spatially distinguishing 

features will in general not induce a response. After the salient patches are detected, the histogram of 3D 

cuboid is introduced to describe the patch feature.  

 

Many action classification systems (Dollar et al., 2005, Jhuang et al., 2007, Laptev and Lindeberg, 2003, 

Niebles et al., 2006, Wong et al., 2007, Wu et al., 2007) are built using Laptev’s or Dollar’s features. 

These two features focus short-term motion information instead of long term motion, and motion field of 

a salient patch sometime is contaminated by the background motions. However, most of existing systems 

only classify video clips to predefined action categories, and does not consider the location task. 

 

To overcome the limitations of existing salient patch descriptors, a hierarchically filtered motion field 

method has been proposed recently for action recognition (Tian et al., 2011). This work applies global 

spatial motion smoothing filter to eliminate isolated unreliable or noisy motions. To characterize long-

term motion features, Motion History Image (MHI) is employed as basic representations of interest 

points. This new feature is named as Hierarchically Filtered Motion (HFM) and works well in crowded 

scenes. We believe the HFM describes complementary aspects of video actions and this work will 

combine HFM with the existing features of (Dollar et al., 2005, Laptev et al., 2008) for action detection 

tasks. 

 

The existing work of action detection (Du et al., 2011, Cao et al., 2009, Cao et al., 2010, Hu et al., 2009, 

Ke et al., 2007, Yao et al., 2009, Yuan et al., 2008) only use single type of features. Although multiple 

feature fusion was proved to be effective in action classification (Cao et al., 2009, Liu et al., 2008), it is 

still an untouched problem to combine multiple features for action detection.  

 

The difficulty of applying multiple features for action detection is two-fold: First, existing fusion methods 

(Cao et al., 2009, Liu et al., 2008] assume that each sample has the same number of features. However, in 

action detection, different features correspond to different detectors, and the numbers of detected salient 

patches are usually different subject to different features. Second, detecting actions in videos involves a 

searching process in x-y-t dimensions, which is very computationally expensive. Many existing feature 

fusion methods (Cao et al., 2009) are usually too slow for this task. This chapter employs Gaussian 

Mixture Models (GMMs) to model heterogeneous features, and the probability of a given feature vector is 

estimated effectively based on the GMM model. To locate the action of interests, we employ a branch-

and-bound method to find the optimal subvolumes which correspond to the largest GMM scores. Note 

that although this chapter only combines three types of features from (Dollar et al., 2005, Laptev et al., 

2008, Tian et al., 2011), our method is a general framework and can be used to fuse more features 

(Boiman et al., 2005, Rodriguez et al., 2008, Zhu et al., 2009). 
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FUSION OF MULTIPLE SPATIOTEMPORAL INTEREST POINT FEATURES  

In this section, we describe the features we used for action detection from cluttered videos by fusion of 

multiple spatiotemporal interest point features including: Hierarchically Filtered Motion (HFM) (Tian et 

al., 2011), and other Spatiotemporal Interest Point (STIP) features (Dollar et al., 2005, Laptev and 

Lindeberg, 2003). 

 

1. Hierarchically Filtered Motion Features 

 

Hierarchically Filtered Motion (HFM) features employ Motion History Image (MHI) (Bobick et al., 

2001, Davis, 2001] as basic representations of motion due to its robustness and efficiency. First, we detect 

interest points as 2D Harris corners with recent motion, e.g. locations with high intensities in MHI which 

is based on frame differencing. Using MHI allows us to avoid unreliable keypoint tracking in crowded 

videos. The pixels in MHI with brighter intensities which represent the moving objects with more recent 

motion are formed as a template. We combine this motion template and the extracted 2D Harris corners 

for interest point detection. Only those corners with the most recent motion are selected as interest points. 

We observe that an isolated motion direction of a pixel compared to its neighbor pixels is often a 

distracting motion or a noise. To remove the isolated distracting motions, we first apply a global spatial 

motion smoothing filter to the gradients of MHI. At each interest point, a local motion field filter is 

applied by computing a structure proximity between any pixel in the local region and the interest point. 

Thus the motion at a pixel is enhanced or weakened based on its structure proximity with the interest 

point. The spatial and temporal features are then described by Histograms of Oriented Gradient (HOG) in 

the intensity image and MHI respectively.  

 

Motion History Image (MHI): MHI is a real-time motion template that temporally layers consecutive 

image differences into a static image template (Bobick and Davis, 2001, Davis, 2001).  Pixel intensity is a 

function of the motion history at that location, where brighter values correspond to more recent motion. 

The directional motion information can be measured directly from the intensity gradients in the MHI. 

Compare to optical flow, gradients in the MHI are more efficient to compute. It is also more robust due to 

the fact that the motion information in MHI is mainly along the contours of the moving objects. Thus, 

unwanted motion in the interior regions of object contours is ignored.  

 

To generate a MHI, we use a simple replacement and decay operator as in paper (Bobick and Davis, 

2001). At location (x, y) and time t, the intensity of             is calculated: 

 

             
               

                                
    (1) 

where          is a binary image of differences between frames and τ is the maximum duration of 

motion. We set τ as 20 in our system based on experiments. The MHI image is then scaled to a grayscale 

image with maximum intensity 255 for pixels with the most recent motion. 

In order to handle cluttered background, we propose a hierarchically filtered motion field technique based 

on Motion Gradient Image (MGI). The MGI is the intensity gradients of MHI which directly yield motion 

orientations.  Note that the magnitudes of MHI gradients are not meaningful. Although it is impossible to 

distinguish the action motions from the background motions without using high-level information, we 

still can reduce noisy motions and enhance the action motions based on the following observations: 1) an 

isolated motion direction of a pixel compared to its neighbor pixels is often a distracting motion or a 
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noisy motion, and 2) at each interest point, the motion regions which are closer to the interest point 

contribute more to the object which the interest point belongs to. 

 

Hierarchically Filtered Motion Features: To remove the isolated distracting motions, hierarchically 

filtered motion features includes two levels of processing: a global spatial motion smoothing filter to the 

gradients of MHI and a local motion field filter by computing a structure proximity between any pixel in 

the local region and the interest point. In our approach, we first apply a motion smoothing step at the MGI 

to remove the isolated motion directions by morphological operations to obtain a global filtered motion 

field – smoothed gradients of MHI. To be prepared for local filtered motion field processing, we 

decompose the smoothed gradients of MHI as a number of layers with different motion directions. In our 

implementation, we use an 8-bin-layer representation of a binary image of the smoothed gradients of 

MHI. At each interest point, a local filtered motion field is applied by computing a structure proximity 

between the pixels in the local region and the interest point on each bin-layer of the smoothed gradients of 

MHI. Here the local region is the window for calculating HOG-MHI. A connect component operation is 

performed to obtain motion blobs. The motion blobs with shorter distances to the interest point in the 

local region are more likely to represent the motion of the object which the interest point belongs to. Thus 

the motions at these blobs should be enhanced.  On the other hand, the blobs with longer distances to the 

interest point most likely belong to other objects. Thus the motions at those blobs should be weakened. 

Let    denote the interest point. Let   denote a blob. Denote          to be the minimum distance 

between    and all the points in  , that is, 

 

           
   

        

Denote       to be the size of the window. Then the maximum distance between    and any points in 

the window is    
    

   .  For any pixel    , we define its structure proximity to interest point    

as 

       
        

   
    

 
                   (2) 

Note that      is a value between 0 and 1. If a pixel does not belong to any blobs, we define its structure 

proximity to be 0. The structure proximity values are used to normalize motion histograms in HOG-MHI 

calculation. More details can be found in paper (Tian et al., 2011). 

 

2. Fusion of Multiple Spatiotemporal Interest Points Features 

Sparse selection of STIPs has been successfully used for action recognition (Cao et al., 2010, Dollar et 

al., 2005, Laptev and Lindeberg, 2003, Laptev et al., 2008, Mattivi and Shao, 2009, Niebles et al., 2006, 

Schuldt et al., 2004, Yuan et al., 2009). Laptev et al. developed a nice mathematic framework to find 

pixels with significant variations in both spatial and temporal directions (Laptev and Lindeberg, 2003). 

However, the interest points detected by their approach are in practice too sparse to characterize well the 

motion features. Dollar et al. proposed to detect the interest points by extracting the maximum response 

of Gabor filter (Dollar et al., 2005).  The limitation of the approach in (Dollar et al., 2005) is that the 

filtering parameters are sensitive in complex scenes and the detected interest points are heavily affected 

by the cluttered background and foreground occlusions.  

 

Laptev’s STIP Features: Laptev and Lindeberg (Laptev and Lindeberg, 2003) generalized Harris 

detector to spatiotemporal space. They aim to detect image patches with significant local variations in 

both spatial and temporal directions, and compute the scale-invariant spatiotemporal descriptors. This 
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approach is later improved by (Laptev et al., 2008) which gives up scale selection but uses a multi-scale 

approach and extract features at multiple levels of spatiotemporal scales. The improved method yields 

reduced computational complexity denser sampling, and suffers less from scale selection artifacts.  

 

Dollar’s STIP Features: Another important type of video features is designed by Dollar et al. (Dollar et 

al., 2005), which detects the salient patches by finding the maximum of temporal Gabor filter responses. 

This method aims to detect regions with spatially distinguishing characteristics undergoing a complex 

motion. In contrast, patches undergoing pure translational motion, or patches without spatially 

distinguishing features will in general not induce a response. After the salient patches are detected, the 

histogram of 3D cuboid is introduced to describe the patch feature. 

 

In this chapter, we investigate the combination multiple STIPs (Laptev et al., 2008) for the videos with 

cluttered background. We observe that there are not enough interest points in action regions for some 

video sequences (Figure 2(b)). In some sequences with large lighting changes, many STIPs are extracted 

on the background as shown in Figure 2(d). To overcome the above limitation, our interest point detection 

is based on detecting corners in images (2D Harris Corner Detection (Harris and Stephens 1988) and 

combining the temporal information which are obtained from MHI. Harris Corner detection is stable to 

different scales and insensitive to lighting changes. Here, we use MHI as motion mask to remove the 

corners in the static background. Only the corners with more recent motion (intensity in MHI > threshold) 

are selected as interest points. 

 

 
Figure 2: Examples of interest point detection by our method and STIP detection of Laptev et al. (Laptev 

and Lindeberg 2003, Laptev et al., 2008) in a video with cluttered background and lighting changes. (a) 

Interest points are detected on moving people by our method; (b) no STIPs are detected by (Laptev and 

Lindeberg 2003, Laptev et al., 2008);  (c) our interest point detection is insensitive to lighting changes; 

and (d) false STIPs are detected on background regions (Laptev and Lindeberg 2003, Laptev et al., 

2008). 

3. HOG-based Feature Descriptor and Representation for Action Detection  

HOG and HOF Feature Descriptor for Latpev’s STIP Features: Histograms of Oriented Gradients 

(HOG) feature descriptors have been widely used in human detection (Dalal and Triggs, 2005, Laptev et 

al., 2008, Marszałek et al., 2009, Pang et al., 2010, Yuan et al., 2009). Laptev et al. (Laptev et al., 2008) 

employ HOG and Histograms of Optical Flow (HOF) descriptors for 3D video patches in the 

neighborhood of detected STIPs. However, these features are based on single frame or neighboring 

frames, but overlooks the motion descriptions over a longer time. For each interest point, the local 

appearance and motion are characterized by grids of HOG and HOF respectively in the neighborhood 

with a window size. For each grid, 8 directions are employed for both HOG and HOF.  

HOG and HOG-MHI Feature Descriptor for HFM Features: In our system, like (Laptev et al., 2008), 

the local appearance features are characterized by grids of Histograms of Oriented Gradient (HOG) in the 

neighborhood with a window size (wx, wy) at each interest point in the intensity image. However, unlike 
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(Laptev et al., 2008), the motion features are represented by the HOG descriptors in the MHI (HOG-

MHI). The window is further subdivided into a (nx, ny)   grid of patches. Normalized histograms of all the 

patches are concatenated into HOG (for appearance features in the intensity image) and HOG-MHI (for 

motion features in the MHI) descriptor vectors as the input of the classifier for action recognition. In our 

approach, the calculations of HOG and HOG-MHI are different. We compute HOG without considering 

the directions to make it more robust to appearance changes. However, for HOG-MHI computation, the 

performance of action recognition decreases without considering directions since directions are important 

to describe motion features. In our experiments, we set nx, ny = 3 and use 6 bins for HOG in the intensity 

image and 8 bins for HOG-MHI in the MHI image). For each interest point, the HOG (with dimension of 

54) and HOG-MHI features (with dimension of 72) are concatenated into one feature vector for action 

classification.  

To handle scale variations, a multi-scale process at each interest point can be applied by using different 

patch sizes or by using same patch size on different scale images. However, the multi-scale process will 

heavily increase the size of the feature vector for training and testing. For example, the size of the feature 

vector will be tripled for three scales. Thus, instead of performing a multi-scale process at each interest 

point, we use randomly selected window sizes between wmin (minimum window size) and wmax 

(maximum window size). The size of each window is calculated by wx = knx and wy = kny where k is 

randomly chosen to make sure the values of wx, wy are in between      and     . In our experiments, 

we set wmin = 24, wmax = 48. Our experiments demonstrate that using randomly selected window sizes 

handles scale variations very well and achieves better results than using fixed set of scales.  

ACTION DETECTION BY COMBINEING GAUSSIAN MIXTURE MODELS WITH 

BRANCH-AND-BOUND SEARCH 

Given a video sequence V, we employ different STIP detectors to detect a collection of local feature 

vectors    
  , where     denotes the location of the feature, and m denotes the feature type with 

     . We employ the Gaussian Mixture Models (GMMs) to model the probability that    belongs 

to the given action. Suppose a GMM contains K components, the probability can be written as: 

 

    
                     

                 (3) 

 

where      denotes the normal distribution, and       and       denote the mean and variance of the 

kth normal component for feature m. The set of all parameters of GMM model is denoted as   
            , where                       . 

 

The advantages of GMM are that it is based on a well-understood statistical model, and it is easy to 

combine multiple features using GMMs. With GMM, we can estimate the probability that each feature 

vector    belongs to the background or the action of interest. Suppose there are C categories of actions 

with parameter of           . Each category corresponds to GMMs with M features      
  

  
      

 . 

 

The parameters of GMM can be estimated using maximum likelihood estimation. For example, for the c 

category, we first collect the subvolumes    containing the action c, and then estimate GMMs parameters 

by maximizing the likelihood. A straightforward way is to independently train the model for each 

category and each feature. However, as shown by Reynolds (Reynolds et al., 2000), it is more effective to 

obtain   
    

      
  coherently by the use of a universal background model.  Following (Reynolds et 

al., 2000), we first train a background model   
  which is independent to all the vectors      using the m 

feature. Then we adapt   
      

  from   
  by EM algorithm in the following way. 
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We first estimate posterior probability of each   
  subject to the background model   

  by 

 

  
    

    
        

     
        

      

         
     

        
       

 (4) 

 

Then we can update    
      by 

 

   
      

 

  
   

    
    

      
    (5) 

 

Although we can update     based on   
    

  , in practice we force    
         

     and    
      

    
     , which is computationally robust. 

 

The advantages of employing background model are two-fold: First, adapting GMM parameters from 

background model is more computational efficient and robust. Second, updating based on background 

model leads to a good alignment of different action models over different components, which makes the 

recognition more accurate. 

 

After obtaining the GMM parameters and a video clip V, we can estimate the action category by 

 

          
 

          
    

 
   

   
 
    (6) 

 

Next we discuss the action detection task.  We use a 3D subvolume to represent a region in the 3D video 

space that contains an action instance. A 3D subvoume Q = [x0, x1, y0, y1, t0, t1] is parameterized as a 

3D cube with six degrees of freedom in (x,y,t) space. Spatial and temporal localization of an action in a 

video sequence is rendered as searching for the optimal subvolume. The spatial locations of the 

subvolume identify where the action happens, while the temporal locations of the subvolume denote when 

the action happens. Given a video sequence, the optimal spatiotemporal subvolume Q* yields the 

maximum GMM scores: 

 

          
   

               
   

          
    

 
      (7) 

 

By assigning each patch a score     
            

    
  , Equation (7) can be solved by branch-and-

bound algorithm (Lampert et al., 2008, Yao and Zhu, 2009]. Branch-and-bound approach was first 

developed for integer programming problems. In recently years, it has been shown be to an efficient 

technique for object detection in images and action detection in videos (Lampert et al., 2008, Yao and 

Zhu, 2009, Yuan et al., 2009). Lampert et al. (Blaschko and Lampert, 2008, Lampert et al., 2008) showed 

that branch-and-bound can be used for object detection in 2D image base on a smart formulation. Yuan 

(Yuan et al., 2009) developed an efficient algorithm which generalizes branch-and-bound algorithm to 3D 

space of videos. In this chapter, we perform max-subvolume search using the 3D branch-and-bound 

algorithm in (Yuan et al., 2009), which is an extension of the 2D branch-and-bound technique (Lampert 

et al., 2008). The detailed technical description of the 3D branch-and-bound algorithm is omitted due to 

limited space. 

EXPERIMENTAL RESULTS OF ACTION DETECTION 
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1. Datasets  

Our action detection scheme is evaluated by two datasets: KTH dataset (Schuldt et al., 2004) and MSR 

Action Dataset II (MSRdataset, 2010).  

 

KTH Dataset: The KTH dataset (Schuldt et al., 2004) was used as a standard benchmark for action 

recognition. It was recorded in four controlled environments with clean background (indoors, outdoors, 

outdoors with scale variation, outdoors with different clothes.) The dataset contains about 600 video 

sequences of 25 subjects performing six categories of actions: boxing, hand clapping, hand waving, 

jogging, walking, and running. The video resolution is 160x120.  

 

MSR Action Dataset II: MSR Action Dataset II is collected in Microsoft Research Redmond which was 

named MSR Action Dataset II, with cluttered background and multiple people move around. We do not 

use the CMU action dataset (Ke et al., 2007) since there is only a single sequence for training in it. Hu 

(Hu et al., 2009) used videos from retailing surveillance, however, the dataset is confidential due to the 

privacy issue. Wang (Wang et al., 2009) collected a dataset of social game events, but their problem is 

about classification but not detection. MSR Action Dataset II includes 54 video sequences, each of which 

contains several different actions, e.g., hand waving, clapping, and boxing. These videos are taken with 

the background of parties, outdoor traffic, and walking people. Actors are asked to walk into the scene, 

perform one of the three kinds of action, and then walk out of the scenes with these backgrounds. Figure 1 

shows the differences between KTH dataset (Figure 1(a)) and MSR Action Dataset II (Figure 1(b)). Note 

that in MSR Action Dataset II dataset there are many people in the scene and we need to locate the 

persons with actions of interest from the scene. 

2. Action Detection Results on MSR Action Dataset II 

To evaluate the detection results of our model, we manually labeled the MSR Action Dataset II with 

bounding subvolumes and action types. By denoting the subvolumes ground truth as  
  

     
 
    

 
 

    
 
  , and the detected subvolumes as         

     
      

   ,, we use      
 
  to denote whether a 

groundtruth subvolume   
 

 is detected, and      
    to denote whether a detected subvolume makes 

sense or not.      
 
  and       

   are judged by checking whether the overlapping is above a threshold. 

We set the threshold as 1/4 in our experiment. 
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where | · | denotes for the area of the subvolume, and       are parameters to judge the overlapping ratio. 

In this chapter, both    and     are set as 1/4. 

 

Based on HG and TD, precision and recall are defined as: 
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Where n is the number of groundtruth and m is the number of detected bounding boxes.  

 

Given a collection of detected subvolumes, we can compute the precision-recall values. By using different 

thresholds of the region scores         , we apply the branch-and-bound algorithm multiple times and 

obtain the precision-recall curves for three actions in MSR Action Dataset II. 

 

In MSR-II dataset, we use half of the videos for training and the remaining half videos for testing. We 

compare the detection results of each of the three features (Dollar et al., 2005, Laptev et al., 2008, Tian et 

al., 2011), and find that Hierarchically Filter Motion features outperform both Laptev's features (Laptev et 

al., 2008) and Dollar’s features (Dollar et al., 2005). We observe that both HFM and Laptev features can 

obtain reasonable detection results, while Dollar's features (Dollar et al., 2005) lead to results at a very 

low detection rate. The reason for the failure of Dollar's features might be that the Gabor filter based 

features are heavily affected by the cluttered background, since most of the detected patches fall in the 

background instead of action of interests. Since Dollar's features fail to detect some actions, we only 

compare results of two single feature detections and the multiple feature detection using our model. 

Figure 3 shows the precision-recall curves of action detection by using Hierarchically Filtered Motion 

features and Laptev STIP features respectively, and the fusions of multiple types of STIPs features. It can 

be seen that hierarchically filtered motion feature works better than Laptev's in handclapping and boxing, 

but comparable in handwaving. However, combining these two types of features, our multiple feature-

based action detection schema works significantly better than using any single features in all the three 

actions. It is also interesting to see that if we incorporate the inappropriate features such as Dollar's 

features, the corresponding detection rate will decrease. The results confirm that combining multiple 

relevant features will significantly improve the detection, while combining irrelevant feature might 

decrease the results. 

 

Figure 4 demonstrates some example results where the Hierarchically Filtered Motion features 

successfully detect the action of interests while Laptev’s STIP features fail. For each example, the top 

picture illustrates the detection results of using Hierarchically Filtered Motion features, while the bottom 

shows the results of using Laptev’s STIP features. The three colors denote different kinds of actions: red 

for clapping, green for waving, and blue for boxing. The proposed Hierarchically Filtered Motion features 

are more robust than other STIP features for action recognition in crowded videos. The reasons are 

summarized as the following: 1) the 2D Harris corner detection is less sensitive to lighting changes than 

STIP features; 2) MHI filtered interest points can better characterize the motion features than STIP (too 

sparse); 3) The directional motion information is measured directly from the intensity gradients in the 

MHI. It is also more robust because the motion information in MHI is mainly along the contours of the 

moving objects. Thus, unwanted motion in the interior regions of object contours is ignored; and 4) the 

Hierarchically Filtered Motion computes a structure proximity between any pixel in the local region and 

the interest point and can reduce distracting motions caused by the background moving objects near an 

interest point. 

 

Figure 5 shows the action detection results using our multiple feature model. Even the background is 

cluttered and there are multiple persons in both close and distant view, our detector works well and can 
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locate the action of interest very accurately. Moreover, our detector is robust subject to short-term 

occlusions. Figure 6 shows the detection results with heavy occlusions. 

 

 

Figure 3. Precision-Recall curves for MSR Action Dataset II for action detection by using HFM features 

and Laptev STIP features respectively, and the fusions of multiple types of STIPs features. The best 

results for all the 3 actions are achieved by combining HFM features and Laptev STIP features. The 

detection accuracy decreases by incorporating Dollar's features. 
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Figure 4. Examples where HFM features successfully detect the action of interests while Laptev’s STIP 

features fail. For each pair of examples, the picture in the top row illustrates the detection results of using 

HFM features, while the picture in the bottom row shows the result of using Laptev’s STIP features. The 

three colors denote different kinds of actions: red for clapping, green for waving, and blue for boxing. 
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Figure 5. Detection examples of MSR Action Dataset II. The bounding boxes denote the detected location 

using Branch-and-Bound search. The color of the bounding box denotes the action category: red for hand 

clapping, green for hand waving, and blue for boxing. 
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Figure 6. Our detector successfully detects the action even with heavy occlusion. 

 

3. Action Detection Results on KTH Dataset 

To compare our method with previous work, we test our algorithm on the public KTH dataset (Schuldt et 

al., 2004).  In KTH dataset, each video sequence exhibits one individual action from beginning to end, 

locating the actions of interest is trivial. In each video of the KTH dataset, we need not estimate Q since 

there is only one actor repeating the same action without background motions involved, and all the STIPs 

in the video are associated with the action. However, the classification task on KTH dataset can still show 

how our multiple feature fusion method outperforms single feature based methods. To make the results 

comparable, we apply exactly the same experimental setting of KTH dataset as in (Schuldt et al., 2004). 

Among the 25 persons, we use 16 persons (1528 sequences) for training and the other 9 persons (863 

sequences) for testing. Our method estimates the label of each video clip by Equation (8). Table 1 

summarizes the action classification results from different types of features on KTH dataset. The results 

demonstrate that our feature fusion method outperforms the single feature classification results. 
 

 

Method Accuracy 

Schuldt et al., 2004 71.71% 

Dollar et al., 2005 80.7% 

Yin et al., 2010 82% 

Niebles et al., 2006 83.92% 

Kaaniche et al., 2010 90.57% 

JHuang et al., 2007 91.6 

Laptev et al., 2008 91.8% 

Mikolajczyk et al., 2008 93.2% 

Yuan et al., 2009 93.3% 

Kovashka et al., 2010 94.53% 

Our method 94.5% 
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Table 1.Comparison with the state-of-the art results on the KTH action dataset (6 actions with clean 

background) 

 

4. Computation Cost for HFM Feature Extraction  

 
The proposed HFM feature extraction is very efficient. The computational costs for the following steps 

are evaluated on MSR Action Dataset II: 1) interest point detection including 2D Harris Corner Detection, 

MHI calculation, and removing the corners in the static background using MHI as the motion mask; 2) 

hierarchical motion filter feature extraction including processing of both global and local motion filters 

and calculation of HOG and MHI-HOG; and 3) the total computation time of step 1 and 2. The average 

number of detected interest points is about 30 per image for each tested sequence. The details of the 

efficiency of the proposed Hierarchically Filtered Motion feature extraction are listed in Table 2. For the 

sequence with resolution of 160x120, the speed of interest point detection (step 1) is 216 frames per 

second. The speed for Hierarchically Filtered Motion feature extraction (step 2) is 98 frames per second. 

The speech of the whole core algorithm (step 1 + step 2) is 68 frames per second (without loading video, 

displaying features and saving the extracted features to a file). The above speeds decrease to 90, 45, and 

30 frames per second for sequence in resolution of 320x240. Note that to keep the same amount of Harris 

corners in both resolutions, we double the minimum distance between corners in 2D Harris corner 

detection for 320x240 images. 

 

 

Image resolution (MSR dataset) 

Efficiency (frames/second) 

IP detection Hierarchical motion filter 

feature extraction 

Total 

160x120 216 98 68 

320x240 90 45 30 

 

Table 2. Computation cost for Hierarchically Filtered Motion feature extraction on MSR Action 

Dataset II with crowded background. 

 

CONCLUSION 

 

In this chapter, we have presented a new feature, Hierarchically Filtered Motion (HFM), for action 

detection in crowded videos without tracking objects or key points. The HFM features can reduce 

distracting motions caused by the background moving objects near an interest point.  The proposed HFM 

is more robust than other STIP features for action recognition in crowded videos. We further build a novel 

framework which combines GMM-based representation of HFM with other STIPs and branch-and-bound 

based detection. We have performed action detection experiments on MSR Action Dataset II for videos 

with cluttered and moving background and KTH dataset. Experiment results have demonstrated that our 

approach outperforms existing techniques and can effectively detect actions even with cluttered 

background and partial occlusions.  
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KEY TERMS & DEFINITIONS 

 
Human Action Recognition: classify a video to a predefined action category 

 

Human Action Detection: not only answer “which action happens in a video”, but also “when and 

where the action happens in the video sequence. 

 

Spatiotemporal Interest Point: features of local structures in space-time where the image values have 

significant local variations in both space and time. 

 

Hierarchically Filtered Motion: spatiotemporal motion features with global and local filters.  

 

Motion History Image: a real-time motion template that temporally layers consecutive image differences 

into a static image template. 

 

Histograms of Oriented Gradient: feature descriptors that count occurrences of gradient orientation in 

localized portions of an image. 

 

Branch-and-Bound Algorithm: a general algorithm for finding optimal solutions of various 

optimization problems, especially in discrete and combinatorial optimization. 

 


