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Abstract. The recent advances in algorithmic photo-editing and the
vulnerability of hospitals to cyberattacks raises the concern about the
tampering of medical images. This paper introduces a new large scale
dataset of tampered Computed Tomography (CT) scans generated by
different methods, LuNoTim-CT dataset, which can serve as the most
comprehensive testbed for comparative studies of data security in health-
care. We further propose a deep learning-based framework, Connec-
tionNet, to automatically detect if a medical image is tampered. The
proposed ConnectionNet is able to handle small tampered regions and
achieves promising results and can be used as the baseline for studies of
medical image tampering detection.
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1 Introduction

As a non-invasive process, medical imaging plays essential roles in diagnosis
and treatment of diseases by creating visual representations of the interior of
a body or the function of some organs or tissues such as the commonly used
Magnetic Resonance Imaging (MRI) and CT imaging. While machine learning
and artificial intelligence technologies are developed for many online applications
of medical imaging analysis [11, 22], data security (i.e. vulnerability) becomes a
main concern [13]. Patients’ medical images can be accessed and manipulated
by attackers for multitude of reasons, including financial gain through holding
the real data ransom or through insurance fraud [15].

Image tampering can take on many forms. The simplest methods just perform
copy-move tampering, resampling, sharpening, blurring, and compression. More
intricate methods use classical inpainting algorithms such as Navier-Stokes in-
painting, image melding, or patchmatch [3, 5, 7]. More recent deep learning-based
methods use Generative Adversarial Networks (GANs) to generate or change the
content of images with high visual realism [12, 17]. All these methods can be ap-
plied to medical images [10, 15, 20]. Unlike natural scene images which contains
rich texture and color information in high resolutions, most medical images are
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gray scale with relatively low resolutions which makes the detection of tampered
images more challenging for human beings as well as for algorithms.

Some approaches have been proposed to detect non-medical tampered im-
ages. Bayar and Stamm proposed a convolutional neural network (CNN) based
method to suppress the image content and emphasize the relationship of a pixel
with its neighbor [4]. Rao and Ni developed a CNN-based approach to guide
the network to detect copy-move tampering by initializing the first layer to only
contain high-pass filters [19]. Recently, a few GAN tampering detection methods
were reported. Marra et al. tested ideas from different areas of tampering detec-
tion [14]. Cozzolino et al. developed an encoder-decoder network with a latent
space that, during training, manually separated the untampered images from
the tampered images [6]. Wang et al. trained a ResNet-50 to predict whether an
image is forged or not [21].

For medical imaging, recently Mirsky et al. proposed a deep generative net-
work, CT-GAN, to generate tampered images by producing and inserting vi-
sually realistic patches into medical CT images [15]. These images have been
reviewed by radiologists in both an open and blind trial respectively and demon-
strated misdiagnosis [15]. Although there are some studies exploring medical
image tampering detection such as embedding extra information (watermark)
into images before transmission [2, 8, 16] as well as non-intrusive techniques to
detect image forgery [10, 18, 20], currently there is no existing method to detect
the more advanced and realistic tampered medical images generated by deep
learning methods.

This paper attempts to detect realistic tampered medical images in lung
cancer CT scans (see examples in Fig. 1.) To the best of our knowledge, this
is the first work to study how to prevent deep learning based medical image
tampering. The contributions of this paper are summarized in the following
three aspects: (1) We generate a large-scale dataset consisting of 7, 202 total
tampered CT scans with 356, 217 slices by different tampering methods including
copy-move forgery, classical inpainting, and deep inpainting. This dataset will
serve as the most comprehensive testbed for comparative studies of data security
in healthcare and directly benefit the research of the medical image analysis
community. We will release the dataset and annotations of the forged regions
through our research website; (2) We propose a novel framework, ConnectionNet,
to detect tampered images by effectively propagating fine-grained features to
the decision function; (3) Experimental results demonstrate that our proposed
ConnectionNet is effective at detecting tampered images generated by different
methods.

2 Tampered Medical Image Dataset Generation

Medical image tampering detection is a burgeoning field. However, researchers
create and conduct experiments on their own private datasets [10, 20]. The CT-
GAN tampered dataset is generated by a GAN for testing and evaluation of
tampered images [15], but it is small and only contains 41 CT scans and 821 CT



Medical Image Tampering Detection: a New Dataset and Baseline 3

Fig. 1. Examples of our collected LuNoTim-CT dataset which contains tampered lung
cancer CT slices generated by three methods: Copy-move, classical inpainting, and deep
inpainting. The green patches are original while the red red patches are tampered. (a)
copying outer lung tissue and moving it into the inner lung; (b) copying inner lung
tissue and moving it to another location in the inner lung; (c) removing a nodule by
navier-stokes inpainting; (d) removing a nodule by patchmatch inpainting; (e) adding
a nodule by deep inpainting; and (f) removing a nodule by deep inpainting. Note that
each tampered slice is only changed in one or more small regions.

slices. To train deep learning-based tampered image detection methods, large-
scale datasets are needed for networks to capture the real distribution of the
data. Therefore, we have generated a large-scale dataset, LuNoTim-CT (Lung
Nodule Tampered Images), consisting of 7, 225 scans with 356, 217 CT slices
(see details in Table 1) which can serve as the most comprehensive testbed for
comparative studies of data security in healthcare. The LuNoTim-CT dataset
will be released through our research website1.

Our LuNoTim-CT dataset is generated based on the LIDC-IDRI dataset [1],
which contains 1, 020 lung CT scans with 883 of them having lung nodules.
The CTs in our dataset are tampered by three different tampering methods
including copy-move, classical inpainting, and deep inpainting by removing and
adding nodules from/to the original CT scans in the original LIDC-IDRI dataset.
For each tampered slice, only one tampering method is used at once while the
same CT scan can be tampered by different tampering methods at different
time. The scans that are excluded from the dataset are the ones where the
random process repeatedly led to unrealistic tamperings, either due to what
the random process decided or the output of the algorithms used. On average

1 http://media-lab.ccny.cuny.edu/wordpress/datecode.
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about 50 slices are tampered per CT scan. There are no restrictions to how
many regions are tampered in one slice, however, tampered regions should not
overlap if there is more than one region. In particular, the copy-move tampering
method is employed to add tampered regions. The classical inpainting tampering
method is used to remove nodules in CT slices. The deep inpainting tampering
method is employed to do both adding and removing. It is worth noting that
only the slices with nodules present in the base LIDC-IDRI dataset can have
nodules removed, thus limiting the total number of slices with removals in our
database. For adding, there is no such limitation. Some examples of tampered
images generated by different methods in our dataset can be found in Fig. 1.

Fig. 2. The statistics of nodule size, number, and location in the LIDC-IDRI dataset
which are used as guidance to generate our tampered medical image LuNoTim-CT
dataset. Left: Nodule size (unit: pixels); Middle: Number of nodules per scan; Right:
Nodule location with distance in pixels.

Tampering location and size selection. To generate realistic fake nodules
in lung CT scans, we first calculate the statistics of the nodule size, location,
and the number of successive slices a nodule appears in the LIDC-IDRI dataset
as shown in Figure 2. There are on average 2 nodules per CT scan and each
nodule may appear on six slices. In addition, we observe that more nodules are
located closer to the boundary of the inner lung regions. Then guided by the
distributions of size and location, a diverse set of forged nodules are generated
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in three ways: a) removing the existing nodules; b) randomly adding nodules;
and c) randomly moving normal tissue to different areas of the CT slice.

Copy-Move Tampering (CMT). The copy-move tampering method copies
an area of an image and moves it to another area. In our LuNoTim-CT dataset,
two strategies of copy-move forgeries are performed: 1) moving an outer non-
nodule lung area to an inner lung region [see Fig. 1(a)]. As these tampered
regions are sufficiently different, it is possible to be observed by human eyes.
2) moving an inner non-nodule lung area to a different position of the inner
lung [see Fig. 1(b)]. Since the textures of inner lung regions are self-similar,
this type of tampering would be much harder to observe. In both strategies the
boundary between the copied patch and its neighborhood is not changed which
may presents edge artifacts. The average size of a patch that was copied and
moved is between 17× 17 pixels. Note that these patches helps disassociate the
occurrence of tampering from those of lung nodules. The copy-move method
contributes 3, 823 scans (124, 367 tampered slices) where non-nodule areas are
changed.

Classical Inpainting Tampering (CIT). Inpainting algorithms are a class
of algorithms that fill in missing patches of an image. Two classical inpainting
algorithms are employed to generate tampered CT slices by removing lung nod-
ules: Navier-Stokes inpainting and PatchMatch guided inpainting. Navier-Stokes
inpainting is a physics based algorithm that uses ideas of flow from fluid dynam-
ics to propagate the gradient of image intensity smoothly into the inpainted area
[5] [see Fig. 1(c)]. PatchMatch inpainting uses a random algorithm to efficiently
find patches of images that are similar [3]. Patches with nodules are substituted
with similar patches without nodules [see Fig. 1(d)]. The average size of tam-
pered regions is 31× 31. The two classical inpainting methods generated 1, 753
CT scans with 29, 132 tampered slices where nodules are removed.

Deep Inpainting Tampering (DIT). Deep inpainting uses deep neural
networks to determine how a missing patch of an image should be filled. Compare
to copy-move and classical inpainting methods, deep inpainting generates more
realistic tampered regions which are harder to detect. In our paper, CT-GAN
, a method verified to cause misdiagnosis by radiologists, is employed to add
and remove nodules [15]. CT-GAN combines GAN with additive white gaussian
noise to blend the generated patch which is further blended by combining the
GAN generated cuboid with the original cuboid [15]. The average patch size for
these blending procedures is 50 × 50. Deep inpainting method contributes 758
scans where nodules (77, 898 slices) are removed and 891 scans (124, 495 slices)
where nodules are added.

In order to verify that the generated dataset is similar to the original dataset
that it is based on, Principal Component Analysis (PCA) is applied to image
patches from both the generated LuNoTim-CT dataset and the original LIDC-
IDRI dataset. PCA aims to find the orthogonal vectors of the training data that
explains the most amount of variance between samples [9]. The PCA model was
trained using patches from both datasets with the goal of reducing a patch to
data along two orthogonal vectors. Then samples from different parts of the
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Table 1. Amount of CT scans and slices generated by different methods in our
LuNoTim-CT dataset. “CMT”: Copy-Move Tampering; “CIT”: Classical Inpainting
Tampering; and “DIT”: Deep Inpainting Tampering.

Tampering Method
Adding Removing

# CT scans # CT slices # CT scans # CT slices

CMT 3, 823 124, 692 - -

CIT - - 1, 753 29, 132

DIT 891 124, 495 758 77, 898

Total 4, 714 249, 187 2, 511 107, 030

LuNoTim-CT and the LIDC-IDRI datasets that were withheld during training
were inputted to the PCA model to visualize where in the reduced, two dimen-
sional space they would appear. The results shown in Figure 3 show that there
is a high degree of overlap between the untampered and the tampered datasets.
The CT-GAN added portion of the dataset overlaps the most with the untam-
pered dataset, whereas the narrowest overlap comes from the Patchmatch and
Navier-Stokes portion of the dataset.

Fig. 3. The overlap of the untampered slices and the tampered slices is demonstrated
in two dimensions reduced by applying PCA. The highest degree of overlap is observed
for tampered CTs with added patches, whereas the narrowest overlap in the removal
part of the dataset.
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3 Framework for Medical Tampering Detection

3.1 Architectures

A natural choice for the network F (x|θ) would be a classification network. The
vanilla VGG network makes predictions based on high-level features (fixed di-
mension vectors) which are extracted by hierarchical convolution layers. The
max-pooling layer and global average pooling layer helps the network to capture
high-level global features, but leaves low-level features ignored. However, detect-
ing tampering artifacts requires the network to identify tiny regions (size) from
a full size image. To augment the capability of capturing fine-grained features,
as shown in Figure 4, we propose ConnectionNet to forward the fine-grained
features from shallow layers to the fully-connected layers to aid in prediction.

Fig. 4. The proposed framework of ConnectionNet for tampered medical image de-
tection. The backbone of the network is VGG-11. Sn indicates a skip connection that
forwards the nth convolutional layer to a 1 × 1 convolution layer that is then sent to
an average pooling layer. These fine-grained features from these skip connections are
then appended to the output of the network’s average pooling layer.

3.2 Model Parameterization

Let D = {(X1, y1), (X2, y2), ..., (Xn, yn)} denotes training data of size N , and the
i-th datapoint (Xi, yi) indicate an image from the dataset and its corresponding
label represent whether it is tampered or not. The ConnectionNet, F (x|θ), takes
an input image x and predicts if it is tampered by optimizing the parameters of
the network θ using D. Cross-entropy loss is employed to optimize the network.
Given a medical image xi, the cross entropy loss is formulated as:

loss(xi|θ) := −
∑
i

(yi log(F (xi|θ)) + (1− yi) log(1− F (xi|θ))). (1)

Given a set of N training pairs D = {xi}Ni=0, the overall training loss function
is defined as:

loss(D) = min
θ

1

N

N∑
i=1

loss(xi|θ). (2)
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4 Experiments and Results

4.1 Experimental Setup

The dataset was split in a 64%-16%-20% scheme for training, validation, and
testing, respectively. In our experiments, Stochastic Gradient Descent (SGD)
optimizer is used with an initial learning rate of 0.001, a momentum of 0.9, and
weight decay of 0.0005. It is trained over 30 epochs using a batch size of 6, evenly
sampling from the tampered and untampered dataset. To thoroughly evaluate
the performance, we evaluated the models using different criteria including pre-
cision, accuracy, recall, and Area Under the Curve (AUC).

4.2 Ablation Study of Backbone Networks

Table 2. Using VGG as a backbone network results in better performance in all metrics
except AUC other than the ResNet backbone, therefore, it is adopted as the backbone
of our framework.

Backbone Input Accuracy Precision Recall F1 Score AUC

Baseline Networks
VGG 512× 512 Image 0.83 0.88 0.73 0.80 0.59

ResNet-18 512× 512 Image 0.67 0.72 0.57 0.63 0.75
ResNet-50 512× 512 Image 0.798 0.87 0.66 0.75 0.51

As shown in Table 2, for full resolution images (512×512), ResNet50 outper-
forms ResNet18 by more than 10% on the DIT portion of the dataset. The VGG
network achieves better performance than ResNet in all metrics including clas-
sification accuracy, precision, recall, and F1 score. In the ImageNet dataset, the
performance of VGG is 68.9% while the performance of ResNet is 76% which
is almost 7% higher than the VGG network. This observation indicates that
ResNet is more powerful on natural images, however, for medical image tamper-
ing detection, VGG significantly outperforms ResNet.

Different from natural image tampering, only one or more small regions are
tampered (usually about 50 × 50 pixels) in each image in our tampered medi-
cal image LuNoTim-CT dataset. To capture global features, the current main-
stream neural networks employ a max-pooling layer or stride convolution to
extract high-level invariant features. With these networks, the information of
the tampered region is overwhelmed in the global features. So we tested another
straightforward method by training and testing networks with patches cropped
from the images. As shown in Table 2, the patch-based method has a relatively
high accuracy from being able to identify untampered images, but has very low
precision and recall compared to the full resolution method. Thus, a patch-based
approach is not optimal in this situation.
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4.3 Results of Our Framework

Table 3. The ConnectionNet model achieves a much higher AUC, precision, and recall,
depending on the amount and location of skip connections, all while maintaining a
similar accuracy to VGG.

Backbone Input Accuracy Precision Recall F1 Score AUC

VGG 512× 512 Image 0.83 0.88 0.73 0.80 0.59
VGG-S1 512× 512 Image 0.79 0.84 0.72 0.77 0.87
VGG-S2 512× 512 Image 0.82 0.81 0.83 0.82 0.91

VGG-S1S2 512× 512 Image 0.81 0.82 0.80 0.81 0.90
VGG-S2S3S4 512× 512 Image 0.84 0.96 0.72 0.82 0.91

As shown in Table 3 by forwarding the features from the second-convolution
layer to the fully connected layer, the recall of the VGG-S2 network significantly
improved by 7%. The VGG-S2S3S4 network greatly improves on the precision
(+8%) and AUC (+0.32) of the vanilla VGG network while also slightly increas-
ing the overall accuracy (+1%) and F1 score (+2%).

4.4 Generalizability of the ConnectionNet

Table 4. All networks trained on the DIT portion of the dataset and tested on the
CMT, CIT, and DIT datasets generalize pretty well by keeping the same level accu-
racy, precision, and recall while increasing in the AUC metric. Varying ConnectionNet
networks outperform VGG in the different metrics used.

Backbone Input Accuracy Precision Recall F1 Score AUC

VGG 512× 512 Image 0.83 0.90 0.75 0.82 0.90
ResNet-18 512× 512 Image 0.70 0.74 0.62 0.68 0.78
ResNet-50 512× 512 Image 0.81 0.90 0.71 0.79 0.89
VGG-S1 512× 512 Image 0.82 0.85 0.79 0.82 0.90
VGG-S2 512× 512 Image 0.81 0.79 0.83 0.81 0.90

VGG-S1S2 512× 512 Image 0.83 0.83 0.82 0.83 0.91
VGG-S2S3S4 512× 512 Image 0.85 0.96 0.72 0.82 0.91

We further evaluate the generalizability of the proposed ConnectionNet on
tampered medical images generated by different methods. ConnectionNet is
trained only on the DIT portion of the dataset and tested on the three types
of tampered images including DIT, CMT, and CIT. As shown in Table 4, our
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Table 5. Granular accuracy/recall results of each network on each section of the
dataset.

Backbone Untampered Scans CT-GAN A CMT CT-GAN R PatchMatch Navier-Stokes R Overall

VGG 0.83/0.75 0.78/0.64 0.83/0.76 0.90/0.89 0.89/0.86 0.87/0.82 0.83/0.75
VGG-S1S2 0.88/0.72 0.75/0.65 0.78/0.69 0.89/0.85 0.85/0.80 0.91/0.88 0.84/0.72

VGG-S2S3S4 0.85/0.73 0.79/0.62 0.83/0.70 0.92/0.88 0.90/0.84 0.92/0.86 0.85/0.73

proposed method performs consistently well and improves on vanilla VGG by
2% in terms of accuracy on a testing set that consists of three different tamper-
ing methods. Compared to vanilla VGG, the recall of our VGG-S1S2 and the
precision of our VGG-S2S3S4 is significantly higher than other networks. The
consistency of the VGG-S1S2 and VGG-S2S3S4 across the different datasets
shows that the proposed framework has strong generalization ability across dif-
ferent types of tampering. Table 5 shows the results of the proposed framework
and baselines across each section of the dataset. We observe that the lowest ac-
curacy and recall occur when tumors are added to CT scans as opposed to when
tumors are removed from CT scans. This suggests that it is more difficult to spot
when elements are added to a CT scan than when they are removed. As shown in
Figure 3, the portion of the dataset where elements are added has a high degree
of overlap (less distinguishable) with the untampered portion of the dataset.
On the other hand, the removed portion of the dataset has a narrower range of
overlap with the untampered portion of the dataset (more distinguishable).

5 Conclusion

This paper tackles the important medical data security problem of how to detect
realistic tampered medical images generated by advanced deep learning meth-
ods. We have generated a large scale dataset of tampered chest CT scans and
proposed the ConnectionNet framework for detecting tampered CT slices. Our
ConnectionNet framework achieves better accuracy and a higher AUC score than
the vanilla VGG network. This demonstrates that propagating fine-grained fea-
tures to the decision function is an effective way to learn the small scale features
that helps to detect the removed patches. Our future work includes extending
the dataset to more different types of images in addition to CT scans, conduct-
ing independent evaluations by radiologists, and further improve the accuracy
of unauthorized alteration detection in medical images.
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6. Cozzolino, D., Thies, J., Rössler, A., Riess, C., Nießner, M., Verdoliva, L.: Foren-
sictransfer: Weakly-supervised domain adaptation for forgery detection. arXiv
preprint arXiv:1812.02510 (2018)

7. Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.: Image Melding:
Combining inconsistent images using patch-based synthesis. ACM Transactions on
Graphics (TOG) (Proceedings of SIGGRAPH 2012) 31(4), 82:1–82:10 (2012)

8. Das, S., Kundu, M.K.: Effective management of medical information through roi-
lossless fragile image watermarking technique. Computer methods and programs
in biomedicine 111(3), 662–675 (2013)

9. Geladi, P., Isaksson, H., Lindqvist, L., Wold, S., Esbensen, K.:
Principal component analysis of multivariate images. Chemo-
metrics and Intelligent Laboratory Systems 5(3), 209 – 220
(1989). https://doi.org/https://doi.org/10.1016/0169-7439(89)80049-8,
http://www.sciencedirect.com/science/article/pii/0169743989800498

10. Ghoneim, A., Muhammad, G., Amin, S.U., Gupta, B.: Medical image forgery de-
tection for smart healthcare. IEEE Communications Magazine 56(4), 33–37 (2018)

11. Gong, E., Pauly, J.M., Wintermark, M., Zaharchuk, G.: Deep learning enables
reduced gadolinium dose for contrast-enhanced brain mri. Journal of Magnetic
Resonance Imaging 48(2), 330–340 (2018)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

13. Jalali, M.S., Kaiser, J.P.: Cybersecurity in hospitals: a systematic, organizational
perspective. Journal of medical Internet research 20(5), e10059 (2018)

14. Marra, F., Gragnaniello, D., Cozzolino, D., Verdoliva, L.: Detection of gan-
generated fake images over social networks. In: 2018 IEEE Conference on Mul-
timedia Information Processing and Retrieval (MIPR). pp. 384–389. IEEE (2018)

15. Mirsky, Y., Mahler, T., Shelef, I., Elovici, Y.: Ct-gan: Malicious tampering of 3d
medical imagery using deep learning. In: 28th {USENIX} Security Symposium
({USENIX} Security 19). pp. 461–478 (2019)



12 B. Reichman et al.

16. Nyeem, H., Boles, W., Boyd, C.: A review of medical image watermarking require-
ments for teleradiology. Journal of digital imaging 26(2), 326–343 (2013)

17. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context en-
coders: Feature learning by inpainting. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2536–2544 (2016)

18. Qureshi, M.A., Deriche, M.: A bibliography of pixel-based blind image forgery
detection techniques. Signal Processing: Image Communication 39, 46–74 (2015)

19. Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy-move
forgeries in images. In: 2016 IEEE International Workshop on Information Foren-
sics and Security (WIFS). pp. 1–6. IEEE (2016)

20. Ulutas, G., Ustubioglu, A., Ustubioglu, B., Nabiyev, V.V., Ulutas, M.: Medical
image tamper detection based on passive image authentication. Journal of digital
imaging 30(6), 695–709 (2017)

21. Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: Cnn-generated images
are surprisingly easy to spot... for now. arXiv preprint arXiv:1912.11035 (2019)

22. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging:
A review. Medical image analysis p. 101552 (2019)


