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Abstract

In this work, we present our solutions to the image-based
vehicle re-identification (ReID) track and multi-camera ve-
hicle tracking (MVT) tracks on AI City Challenge 2019
(AIC2019). For the ReID track, we propose an enhanced
multi-granularity network with multiple branches to extract
visual features for vehicles with different levels of grains.
With the help of these multi-grained features, the proposed
framework outperforms the current state-of-the-art vehicle
ReID method by 16.3% on Veri dataset. For the MVT track,
we first generate tracklets by Kernighan-Lin graph parti-
tioning algorithm with feature and motion correlation, then
combine tracklets to trajectories by proposed progressive
connection strategy, finally match trajectories under differ-
ent camera views based on the annotated road boundaries.
Our MVT and ReID algorithms are ranked the 10 and 23 in
MVT and ReID tracks respectively at the NVIDIA AI City
Challenge 2019.

1. Introduction

With the advances of Intelligent Transportation Sys-
tem, the city-scale transportation data analysis includ-
ing multiple vehicle tracking (MVT) across cameras with
non-overlapping regions and vehicle re-identification have
drawn more and more attention in the recent years [18].

The vehicle ReID task aims at identifying moving
vehicles by matching a given car across different non-
overlapping cameras. The appearance of the vehicle may
significantly change due to lighting variation, occlusion,
viewing angle, or scale which makes ReID a challenging
task. Another challenge of vehicle ReID is to label accurate
ground-truth for vehicle ReID datasets because of the lim-
ited quality and viewing angles of traffic videos and the oc-
cluded or vague license plates. Moreover, the trained mod-
els on existing vehicle datasets may not work well for the
new testing environment because the cityscape differs from
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city to city and car models change from time to time [24].
Hence, the features learned from one dataset may not be
directly applicable to another dataset.

Comparing vehicle ReID with person ReID, the former
is considered more challenging because of small inter-class
variability and large intra-class variability of vehicles [18].
In other words, the number of car models is small which in-
dicates many cars may have same color and in same model.
It is difficult to distinguish cars with the same model and
color without other detailed information such as license
plate. In contrast, people are easier to distinguish because
of having more distinct features including face and clothing.
In addition, vehicles move along a fixed direction without
rotation and the key information of the vehicle might be
invisible in some frames. However, for humans, the key
features like face show up from time to time [6].

The objective of MVT is to discover the trajectories of all
vehicles through the videos under multiple camera views.
City-scale tracking of vehicles from multiple cameras is
challenging due to the following reasons. First, many cars
are in the same model and the similar appearance which
makes them harder to distinguish. Second, occlusion hap-
pens frequently in busy traffic flow which can lead to a high
number of identity switches between different cars. More-
over, the viewpoints or appearance of the same car can vary
largely in different cameras and under different lighting
conditions. To mitigate the above challenges, some meth-
ods utilize the 3D information of the vehicles or depth data
for more reliable predictions. The 3D information can be re-
trieved using the back-projection of vehicle positions from
the camera projection matrix [17]. The camera parameters
can also be optimized using evolutionary algorithms [19].

In general, MVT methods can be categorized into two
groups: 1) global optimization methods and 2) online meth-
ods. In the global optimization methods, the observations
of vehicles are grouped into tracklets based on spatial-
temporal continuity and the cost of data association (vehi-
cles to track identities) is minimized across the entire video
[6]. In contrast, in the online methods, the trajectory of each
target is constructed frame-by-frame in order to find the ap-



propriate matching model to connect the detection results
of the current frame to the track identities from the previous
frames.

In this paper, we describe the frameworks developed for
vehicles ReID and MVT tasks respectively. Our ReID net-
work includes several branches to extract feature with vari-
ous levels of grains. In our MVT framework, we first con-
sider tracklets generation as a graph partitioning problem
solved by KernighanLin algorithm with feature and motion
correlation, then propose a progressive connection strategy
to generate trajectories from tracklets, finally match these
trajectories under different camera views based on manu-
ally annotated road boundaries.

2. Related work

2.1. Re-identification

Person ReID training datasets are often weakly diverse
and the infrequent detailed information could be ignored
in the global feature learning. Hence, considering different
scales of the input images and capturing multiple granulari-
ties have drawn more attention in the recent state-of-the-art
methods such as Deep Pyramid Feature Learning (DPFL)
[5] and Multiple Granularities Network (MGN) [20]. Chen
et al. proposed to learn the most discriminative visual fea-
tures of different image scales. The network of DPFL in-
cludes multiple branches to model input image scaled to dif-
ferent resolutions and then a fusion branch is used to learn
the optimal integration of scale-specific features for the
complementary information across different scales. Wang
et al. proposed to aggregate salient features from the global
and local parts of the body [20]. The network consists of
a global branch to capture the global features and two lo-
cal branches to obtain the local feature representations with
multiple granularities. Softmax and triplet loss are deployed
for classification and metric learning, respectively.

A list of good practices is proposed in [1] to design
and train an efficient image representation model for per-
son ReID. The key practices include pre-training for iden-
tity classification, sufficiently large image resolution, state-
of-the-art base architecture, hard triplet mining, and dataset
augmentation with difficult examples. These techniques
such as triplet mining and ID classification have been em-
ployed in vehicle ReID [2, 11, 10]. Bai et al. [2] proposed
an online grouping method to partition the samples of each
vehicle ID into a set of groups (samples with similar at-
tributes in the same cluster) and incorporate the intra-class
variance with the triplet loss. The triplet loss is replaced
with Coupled Clusters Loss (CCL) in [11] to minimize the
distances of the same vehicle images and maximize those of
other vehicles. An extensive evaluation of contrastive and
triplet loss for vehicle ReID task is provided in [10].

As mentioned before, one inherent challenge in the ve-

hicle identification and tracking tasks is the variety of ap-
pearance from different viewing angles. To handle this
issue, Zhou et al. proposed a viewpoint invariant frame-
work by deploying a viewpoint-aware attention model and
the adversarial training architecture [27]. For the images
captured from arbitrary viewpoints, the single-view features
are transferred to a global multi-view feature representation.
Wang et al. proposed a framework with orientation invari-
ant feature embedding and spatial-temporal regularization
[21]. Yan et al. proposed a multi-grain based list ranking
(MGLR) approach [25]. They maintain a list of multi-grain
images and rank them based on the multi-grain relationship,
considering the possibility of any permutations after rank-
ing. The results in CityFlow showed the effectiveness of the
combination of hard triplet loss [7] with cross-entropy loss
[16] and DenseNet121 [8] to achieve the best performance
on CityFlow-ReID sub-dataset.

2.2. Multi-Object Tracking

Multi-object tracking (MOT) is a relatively new task
with only a few papers. Among the online methods for
MOT, SORT [4] achieved the best rank in 2D MOT 2015 by
deploying Kalman filter and Hungarian method for motion
prediction and data association, but ignores the appearance
features beyond the detection component and does not han-
dle occlusion well. DeepSORT [23] aggregates the appear-
ance features (extracted from a CNN) along with motion
information from Kalman filter and also used the Hungar-
ian algorithm for data association. This method reduced
the identity switches by 45% compared with SORT [4].
MOANA [17] employed an adaptive appearance model to
encode the long-term appearance change along each trajec-
tory in an online manner. With utilizing the long-term his-
tory of appearance, this model is more robust against the
change in lighting condition and object pose, resulting in
a better performance when occlusion happens. The winner
of AI City Challenge 2018 [19] proposed an offline frame-
work to address single camera tracking and vehicle ReID.
Their framework encodes the long-term appearance change
of each target using a histogram-based adaptive model. The
tracking is done by clustering the tracklets in a bottom-up
approach using several semantic features such as trajectory
smoothness, velocity change, and temporal information.
They incorporate the features extracted from a CNN pre-
trained on CompCars benchmark for the re-identification.

3. Methodology
3.1. Vehicle Re-Identification

Framework: The architecture of the proposed network
for vehicle ReID is shown in Fig. 1. The backbone of the
network is a convolution neural network that pre-trained
on ImageNet dataset, and the five parallel independent
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Figure 1. The architecture of the proposed network for vehicle ReID task. The backbone network is split into five independent branches
after the 4th convolution layer. During vehicle ReID testing, only the global features of the five branches are used as the representation for
each vehicle image.

branches extract features with different levels.
The settings of the five branches are shown in Table 1.

The branch H1 consists of a stride-2 convolution layer fol-
lowed by a global max pooling and 1× 1 convolution layer
to reduce the feature dimension from 2,048 to 256. With the
global max pooling over the whole feature map, this branch
is able to capture the global features. The branches H4,
H5, V 4, and V 5 consist of a non-stride convolution layer
followed by a stride max pooling to evenly dive the feature
map horizontally or vertically to stripe and the fine-grained
features are then extracted from each stripe. The extracted
fine grained features are then fed to fully connected layer to
reduce the dimension to 256.

During training, both the global and the fine grained fea-
tures are employed for ID classification with cross entropy
loss and metric learning with triplet loss. During testing,
only the global features from the five branches are concate-
nated for ReID.

Loss Function: For the task of person [1, 20] and ve-
hicle re-identification [18], both the cross entropy loss and
the triplet loss have been widely used for optimizing the
networks. Following others, the softmax loss is chosen for
the classification and the triplet loss is chosen as the loss for
metric learning during the training phase.

For discriminative learning, the problem has been formu-
lated as a multi-class classification while the label for each
image is the vehicle ID. For each feature fi that used for

Branch Part No. Max Size Dims Feature
H1 1 8× 8 256 fGg
H4 4 16× 5 256*3+256 {fP2

pi
|1i=0}, fP2

g

H5 5 16× 4 256*4+256 {fP3
pi
|2i=0}, fP3

g

V 4 4 5× 16 256*3+256 {fP4
pi
|1i=0}, fP4

g

V 5 5 4× 16 256*4+256 {fP5
pi
|2i=0}, fP5

g

Table 1. Comparison of the settings for the five branches in the
proposed network. ”Branch” refers to the name of branches. ”Part
No.” refers to the number of partitions on feature maps. ”Max
Size” refers to the size of max pooling for each branch. ”Dims”
refers to the dimension and number of features for the output rep-
resentations. ”Feature” means the symbols for the output feature
representations of each branch.

discriminative learning, the softmax loss is formulated as:

Lsoftmax = −
N∑
i=1

log
eW

T
yi

fi∑C
k=1 e

WT
k fi
, (1)

where Wk corresponds to a weight vector for class k, with
the size of mini-batch in training process N and the number
of classes in the training dataset C.

Among all the learned features, the softmax loss is com-
puted over the global features of all the five branches before
1 × 1 convolution reduction {zGg , zP2

g , zP3
g , zP4

g , zP5
g } and

all the fine-grained features extracted from all the stripes of
the five branches. The softmax over global features and the



fine-grained features forces network to focus on the most
discriminative parts of vehicles.

In addition to the softmax loss, all the global features are
trained with triplet loss to enhance ranking performance.
Following others [20], the batch-hard triplet loss is em-
ployed which is an improved version of the semi-hard triplet
loss. This loss function is formulated as follows:

Ltriplet = −
P∑
i=1

K∑
a=1

[α+ max
p=1...K

‖f(i)a − f(i)p ‖2

− min
n=1...K
j=1...P

j 6=i

‖f(i)a − f(j)n ‖2]+,
(2)

where f(i)a , f(i)p , f(i)n are the features extracted from anchor,
positive, and negative samples receptively, and α is the mar-
gin hyper-parameter to control the differences of intra and
inter distances. In the vehicle ReID, the positive and nega-
tive pairs refer to vehicles with same or different identity for
the anchor vehicle. With the loss function, only the hardest
positive and negative pairs in a mini-batch with P selected
identities and K images from each identity are selected to
obtain the loss for the batch.

Evaluation Metrics: Following other work [12, 18],
the mean-average-precision (mAP) and top-k are employed
for performance evaluation and comparison with other ap-
proaches. During the evaluation phase, a set of query im-
ages and a set of gallery images are given, and the goal is to
find the top-k nearest images from the gallery images which
match the query image. For each query image q, the average
precision is defined as:

AP (q) =

∑
k

P (k)× δk

Ngt(q)
, (3)

where P (k) represents the precision at rank k, Ngt(q) is
the total number of true retrievals for q. δk is 1 when the
matching of query image q is correct and the rank <= k.
mAP is then computed as average over all query images.

3.2. Multi-camera Vehicle Tracking

3.2.1 Framework

The pipeline of our proposed framework for multi-camera
multi-target tracking is presented in figure 2. It consists of
four components which are described in the following sub-
sections. (a) Given video streams, the Mask-RCNN net-
work is employed to extract bounding boxes and masks
of vehicles from videos. (b) After refinement for reduc-
ing false positive candidates, the proposed ReID network is
trained to extract feature vector for each detected candidate.
Meanwhile, camera calibration is applied to obtain the GPS
location from 2D-GPS projection for each detected vehicle

candidate. The appearance features and location informa-
tion of detected vehicle candidates are converted into corre-
lations for tracklet generation. (c) A progressive connection
method is proposed to incorporate tracklets to a whole tra-
jectory and revise two kinds of matching deviations. (d)
Finally, the identity matching across different cameras is
constrained with our manually annotated road boundaries
and determined by feature distance.

3.2.2 Vehicle Detection and Refinement

The vehicle detection results provided by AI City challenge
(generated by Mask-RCNN in the MOTChallenge) includ-
ing both bounding boxes and masks are employed. How-
ever, the initial detection results are very noisy with tiny,
parked and occluded vehicles. We further refine the detec-
tion results by reducing the false positives with small impact
on recall. As shown in Table 2 on all cameras in training
data, the refined vehicle detection results are significantly
improved compared to the original results.

F1 Recall Precision
w/o refinement 0.253 0.994 0.156
w/ refinement 0.695 0.993 0.560

Table 2. Detection results, without and with refinement.

Basic constraints: We add basic constraints for bound-
ing boxes, including height, width, area, aspect ratio of
bounding box, ratio of effective area in the bounding box
(both mask and foreground detection by ViBe [3] are used),
and distance of the center to edges, etc. Above parame-
ters are chosen over all training set. Also, we use NMS
with confident score threshold of 0.5 to remove overlapped
bounding boxes.

Background Detection. To generate the background
without moving vehicles, for each pixel p, we select all the
frames in which the pixel does not belong to any bounding
box. Then, the background value of p, is set as the aver-
age value of the pixels in the selected frames. If p is inside
a bounding box for all frames, it means that p is part of
a car which belongs to the background. Second, for each
detected region (bounding box), we crop the bounding box
and the corresponding region in the background image to
calculate the Structural Similarity Index (SSIM), as well as
the SSIM by cropping the mask from the bounding box and
the corresponding mask in the background. The thresholds
for SSIM based on bounding box and mask are 0.6 and 0.65,
respectively.

3.2.3 Tracklet generation

Same as [15], tracklet generation is treated as a graph parti-
tioning problem. Since most vehicles move fast, a 4-frame
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Figure 2. The pipeline of our proposed framework for multi-camera vehicle tracking (MVT) task. Annotated road boundaries are employed
as a constraint for trajectories.

sliding with a stride of 2 is employed to prevent the de-
tected bounding box centers to interleave together. In each
4-frame sliding window, the detected results are treated as
a weighted graph G = (V,E,W ), where V is a node set
of bounding boxes (indicates the centers or footpoints of
bounding boxes), E is an edge set linking nodes and W
is a correlation matrix. The KernighanLin algorithm [9] is
employed to handle graph partitioning with W composed
by feature correlation Wa, pixel-level motion correlation
Wpm, and GPS-level motion correlation Wgm. Before that,
Hierarchical Clustering [22] is employed to group detected
results into small groups to narrow the range of graph parti-
tioning and reduce the amount of calculation based on GPS
Euclidean distance between vehicles.

Feature correlation. The feature used for tracking is
extracted by our network trained on the Veri dataset [12] or
CityFlow dataset [18]. Both global and local features from
the fully connected layers are extracted and concatenated
into a 3,328-dimensional feature vector for each vehicle.
Each wij in the feature correlation matrix Wf represents
the correlation between two feature vectors vi and vj , de-
fined as wij =

ta−‖vi,vj‖2
ta

, where the threshold ta is the
mean value of mean positive pairs distance and mean neg-
ative pairs distance of all training data. Strongly correlated
feature vector pairs receive wij near 1.

Pixel-level motion correlation. Since the 4-frame pro-
cessing window is very short for fast moving vehicles, we
assume the tracklet as a straight line. The velocity of each
bounding box center is estimated by nearest center points.
A linear motion model is employed to do forward-backward
prediction of each center. The correlation between two cen-
ters is defined as wpm = α(tpm − ef − eb), where ef and
eb represent forward and backward prediction errors respec-
tively, tm is obtained from training data to separate positive
and negative evidence, α is a scaling factor. The range of
wpm is −∞ to α× tm.

GPS-level motion correlation. Similar as pixel-level

motion correlation, we further employ Wgm to represents
the motion correlation of detected results in GPS space,
which balances the influence of image perspective principle
to estimate motion. The middle point of the bottom edge
of each bounding box is chosen as the footpoint of corre-
sponding object to calculate GPS position.

3.2.4 Trajectory generation and refinement

We propose a progressive connection method to incorporate
tracklets to a whole trajectory. Since the generated 4-frame
tracklets have 2-frame overlap with previous and next track-
lets, a simple matching score is employed to measure how
many bounding box centers are perfectly matched between
two tracklets. Specific algorithm steps are described as Al-
gorithm 1.

When only using progressive connection for all tracklets,
as shown in Figure 3, two kinds of matching deviations may
happen. False positive detections of tracklets may bring tra-
jectories to a wrong direction. False negative detections and
occlusion may occur interval which break a trajectory into
two trajectories. For the case (a), the corresponding cen-
ter distance is averaged and normalized by mean diagonal
length of bounding boxes, a threshold 0.15 is set to distin-
guish whether these two trajectories should be fuse together
or not. For the case (b), Gaussian regression is applied for
both trajectories to predict center location in the interval,
center distance is computed same as case (a), a threshold
0.3 is used to decide whether these two trajectories should
share same identity or not.

To further improve the results of trajectory generation,
the short trajectories and the trajectories whose center
points are almost not moving are deleted.

3.2.5 Multi-camera identity matching

To compare the trajectories under different camera views,
all features of one trajectory are averaged as the representa-



Algorithm 1 Progressive Connection
1: tl: tracklet; tj: trajectory; score: matching score; fdist: fea-

ture distance between two tracklets;
2: for each 4-frame window sliding with 2 frames do
3: Find all tl within the sliding window
4: if no active tj then
5: Convert tl to new tj, label new identity
6: else
7: for each active tj do
8: Compute score to all not attached tl
9: if one tl with score of 2 then

10: Find tl with score of 2 and attach to tj
11: else if one tl with score of 1 then
12: Find tl with score of 1 and attach to tj
13: else if two tls with score of 1 then
14: Choose tl with lower fdist and attach to tj
15: else if all tls with score of 0 then
16: End tj
17: end if
18: end for
19: if exist tl with no tj to attach then
20: Convert tl to new tj, label new identity
21: end if
22: end if
23: end for

overlap

(a) (b)
gaussian regression prediction

interval

Figure 3. Two kinds of matching deviations: (a) Overlapped tra-
jectories and (b) interval trajectories.

tion. Since arbitrary inter-camera identity matching is very
inefficient and impractical, here, three constraints are ap-
plied to narrow the matching range which are direction con-
straint, camera location constraint and road boundary con-
straint. In the matching range, two trajectories with the low-
est feature distance will share the same identity. After ap-
plying these three constraints, the trajectories obtain the in-
formation of camera locations and the estimated time of the
vehicle to appear in the next camera view.

Direction constraint. The direction of each trajectory is
determined by the order in which the bounding box centers
appear.

Camera location constraint. Based on camera loca-
tions, the approximate time running between different cam-
eras can be estimated,

Road boundary constraint. For each camera view, the
road boundaries are manually annotated as shown in Fig-
ure 3. The value of boundary represents the next show up

camera view through the current direction.

Figure 4. Examples of annotated road boundaries in background.

3.2.6 Evaluation Metrics

In [14], the authors modeled the ground-truth and computed
trajectories with a biparitie graph G = (VT , VC , E) where
the vertex set VT has one regular node for each true tra-
jectory and one false positive node for each computed tra-
jectory. In other hand, vertex set VC has one regular node
for each computed trajectory and one false negative node
for each true trajectory. A bipartite match associates one
ground-truth trajectory to exactly one computed trajectory
by minimizing the number of mismatched frames over the
true and computed data.
IDTP (True Positive ID) includes the pairs of computed

identity and ground-truth identity which are matched. Sim-
ilarly, IDFP and IDFN stand for false positive ID and
false negative ID, respectively. IDP , IDR and IDF 1 is
defined as following measurement similar to detection eval-
uation metrics.

IDP =
IDTP

IDTP + IDFP
(4)

IDR =
IDTP

IDTP + IDFN
(5)

IDF1 =
2 IDTP

2 IDTP + IDFP + IDFN
(6)

4. Experiments
4.1. Dataset

Veri776: The Veri776 dataset is proposed by [12]
and is a widely used benchmark dataset for vehicle re-
identification. The dataset consists of 40, 000 bounding box
annotations of 776 cars (identities) across 20 cameras in
traffic scenes. Each vehicle is captured in 2−18 cameras in
various viewpoints and varying illuminations. Our model is
evaluated on this dataset to obtain a baseline for the vehicle
ReID task of AIC2019.



Granularity Backbone Resolution MAP Rank-1 Rank-5 MAP (RK) Rank-1 (RK) Rank-5 (RK)
H1 ResNet50 224 66.7 91.8 96.1 71.4 92.9 94.9

H1, H2 ResNet50 224 74.4 94.9 97.3 76.9 95.4 96.2
H1, H2, H3 ResNet50 224 77.7 95.3 97.1 79.8 95.5 96.5

H1, H2, H3, H4 ResNet50 224 79.5 95.5 97.6 81.5 96.1 97.4
H1, H2, H3, H4 ResNet50 256 80.5 96.1 98.0 82.4 96.4 97.4
H1, H2, H3, H4 SEResNext50 256 81.9 96.2 97.9 83.9 96.9 97.7

Table 3. Impacts of different branches to the performance. The mean average precision (mAP) on Veri776 is reported. ”RK” refers to the
results improved by performing Re-Ranking.

AI City 2019 Dataset: CityFlow [18] is a new dataset
for AI City Challenge 2019 and is considered as the largest
scale dataset in terms of spatial coverage and number of
cameras. The dataset is collected from 40 cameras spanning
across 10 intersections with a duration of 3.25 hours. It
includes 229, 680 bounding boxes of 666 vehicle identities
where each passes through at least 2 cameras.

4.2. Implementation Details

During training for ReID, each image is resized into
320× 320 and then a patch with a size of 256× 256 is ran-
domly selected from each image as a training image. Each
image is also applied with three types of data augmentation:
(1) horizontal flip with 50% probability, (2) rotate with a
degree randomly sampled from −10 to 10 degree, (3) set
the values of pixels within a randomly selected patch with
0. The training is optimized by AMSGrad [13] using 120
epochs and with a batch size of 120. The initial learning rate
is set to 0.0003 and is decayed by 0.1 at 20 and 40 epochs.

4.3. Results of Image-based Re-Identification

Impact of granularity: To verify the effectiveness of
each branch in the proposed network, ablation experiments
with different component settings are conducted on the Veri
dataset. As shown in the Table 3, the performance with the
only global features is 66.7% on Veri datasets. The finer
branch can significantly boost performance. For example,
the branch H2 can boost the performance of H1 branch
by 7.7%, while H3 can further boost the performance by
3.3%. Also, the re-ranking [26] can significantly improve
the performance for all the networks.

Compare with others on the Veri dataset: We com-
pare the proposed methods with the current state-of-the-art
methods for vehicle ReID on the Veri and AIC dataset and
show the performance in Table. 4. Our model outperforms
the current state-of-the-art Vehicle ReID method on Veri-
776 dataset by 16.3% on mAP.

Visualization of the results: The qualitative results on
CityFlow dataset are shown in Fig. 5. The top-10 ranking
lists for six query images are visualized.

Method mAP Rank-1
OIFE [21] 48.0 89.4
VAMI [27] 50.1 77.0
GSTE [2] 59.5 96.2
MoV1BS [10] 67.6 90.2
Ours 83.9 (+16.3%) 96.9 (+6.7%)

Table 4. Quantitative evaluation of the state-of-the-art metric
learning methods in vehicle ReID on Veri dataset. Our model out-
performs the state-of-the-art method on Veri dataset by 16.3% on
mAP.

4.4. Ablation Study of the Single-camera Tracking

To evaluate the effectiveness of different components in
the proposed single-camera tracking method, ablation stud-
ies are conducted and the tracking performance for single
camera are reported and compared. During all the exper-
iments, the features are extracted by the proposed ReID
network which is only trained on Veri776 dataset, and all
the training set of CityFlow are used as the validation set.
Trained with a cross-domain vehicle dataset, the results of
single-camera vehicle tracking on the CityFlow training set
are shown in Table 5.

Method IDF1 IDP IDR
baseline 0.594 0.449 0.878
baseline+Gg 0.605 0.459 0.890
baseline+Gg +Gm 0.630 0.477 0.926
baseline+Gg +Gm + Tjr 0.657 0.499 0.962
baseline+Gg +Gm + Tjr + Tjd 0.755 0.647 0.907

Table 5. The impacts of different components in the proposed
single-camera tracking method. The results are obtained by test-
ing the algorithm on the training split of CityFlow dataset while
the feature extractor is trained on Veri776 dataset. The baseline
only employs visual features and pixel-level motion correlation for
tracklet generation without trajectory refinement, the Gg repre-
sents GPS-based Hierarchical grouping before tracklet generation,
the Gm represents GPS-based motion correlation for tracklet gen-
eration, the Tjr represents trajectory matching deviations refine-
ment, the Tjd represents short and motionless trajectory deletion.

The experiments are conducted to evaluate the com-
ponents including: GPS-based grouping (Gg), GPS-based
motion correlation (Gm), Trajectory refinement (Tjr), and



Figure 5. Top-10 ranking lists for six query images on CityFlow dataset by our network. The images with green boundaries belong to the
same identity as the query, and images with red borders do not.

Trajectories (Tjd). Most of the components can signifi-
cantly boost the tracking performance on CityFlow dataset.
Among all the components, the Tjd can boost the perfor-
mance by 0.093 on CityFlow dataset since it can effectively
reduce the false positive of trajectories.

4.5. Results on AIC2019

Table 6 lists the ranks of our team and the results of our
team as well as the top three and the last teams on MVT and
ReID tasks of AIC2019. Our MVT and ReID algorithms
are ranked the 10 out of 22 and the 23 out of 84 teams in
MVT and ReID tracks respectively. Our ReID method is
based on images and does not use the temporal information
of the tracklets, therefore, the performance can be further
improved by utilizing the temporal information of tracklets.

5. Conclusion
To handle vehicle re-identification (ReID) and multi-

camera vehicle tracking (MVT) tracks on AI City Challenge
2019, we have proposed an enhanced multi-granularity net-
work and designed an offline tracking framework. The pro-
posed ReID network outperforms the current state-of-the-

MVT ReID
Rank Team ID IDF Rank Team ID mAP
1 21 0.7059 1 59 0.8554
2 49 0.6865 2 21 0.7917
3 12 0.6653 3 97 0.7589
10 52 0.2850 23 52 0.4096
22 45 0.0326 84 133 0.0003

Table 6. Results and ranks of our proposed methods on MVT and
ReID tasks of AIC2019.

art vehicle ReID methods by 16.3% on the Veri dataset and
ranks the 23rd place in AIC2019, while the framework for
MVT tracking ranks the 10th place.
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