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2.5.1 Background 

In Skidmore et al. (2016) vegetation height is being mentioned as one of the remotely 

sensed (RS) EBV candidates (RS-EBVs) to support the measurement of the EBV ‘Ecosystem 

structure’, next to ecosystem distribution, fragmentation and land cover. While land cover is 

already provided as operational RS product since the eighties, vegetation height is currently 

the most challenging one, and subject of this chapter. Vegetation height can be measured 

directly or indirectly by specific RS sensors and could support the EBV ‘Ecosystem structure’ 

with very valuable information. Vegetation height is valuable information next to spectral 

information to identify specific ecosystem or vegetation types. Moreover, the regular 

mapping of vegetation height would help to identify processes such as shrub and tree 

encroachment. Noss (1990) describes a hierarchy concept for monitoring biodiversity. The 

different levels of information that can be considered for biodiversity and ecosystem studies 

are the compositional, structural and functional aspects at multiple levels of ecological 

complexity. Vegetation height is as such an important component of the structural aspect of 

ecological complexity. Bunce et al. (2013) emphasises the importance of habitat/vegetation 

structure in the development of biodiversity policies in their own right and also 

demonstrates that there are strong links between vegetation structure and occurrence of 

species. Only a very small part of all species can be monitored while vegetation structure or 

habitats, as a flagship for many species, are easier to be monitored. As mentioned before, 

vegetation height is an important aspect as well in the definition of an ecosystem or habitat 

type. For instance, measuring forest degradation from space requires an agreed definition of 

a forest. Without a clear definition it is hard to compare forest distribution across large 

areas or across time. In the 1990s, the Food and Agriculture Organization of the United 

Nations (FAO) defined forests as ecosystems with a minimum of 10% canopy cover of trees 

or bamboo associated with wild flora. That definition was updated in 2005 with a minimum 

height of 5 meters for trees. Such shifts influence perceptions of where forests are, as well 

as where they used to be (Skidmore et al. 2016).  

To enable the measurement of vegetation height, remote sensing can play a crucial role and 

can become an important information source. Early applications pertained to the 

stereoscopic visual interpretation of aerial photography were a great step forward in 

vegetation monitoring. More recently, satellite imagery with a large range of spatial and 

temporal resolutions is available and enables applications for entire ecosystems. Traditional 

vegetation mapping methods that use visual interpretation of aerial photography and in 

combination with field surveys are, and have always been, working very well. But they are 

often also labour intensive and temporal frequencies are low, while policies are currently 

demanding higher temporal monitoring frequencies. Therefore, also terrain and nature 

managers are looking for alternatives that can support the mapping and monitoring of 

vegetation in more efficient ways.  

New developments in remote sensing such as the use of very high resolution (VHR) satellite 

imagery (passive optical as well RADAR active sensors) and LiDAR (Light Detection And 

Ranging) techniques, next to the use of UAV platforms (Unmanned Aerial Vehicles), can 
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help to speed up the process of vegetation mapping and monitoring. Nevertheless, som e of 

these methods are all relatively new and requires ecologists and remote sensing experts to 

collaborate closely and review the newest methods and technologies. Therefore this chapter 

discusses the potential use of passive optical sensors, RADAR and LiDAR technology for 

measuring vegetation height to support the monitoring of the EBV ‘ecosystem structure’. 

See also chapters 4.1 and 5.1 for more information on current and upcoming Earth 

observation missions, respectively. 

 

2.5.2 Passive sensor technology 

Several studies have employed passive satellite sensor data to estimate vegetation height. 

A wide variety of features have been extracted from passive sensors of spatial resolutions 

ranging from several centimetres to some tens of metres. For example, the panchromatic 

channel of Worldview-1 imagery with a 0.5 m spatial resolution has been used to estimate 

the height of pine forest stands (Mora et al. 2013). The stand median grey-level value and 

the 90% percentile of crown size distribution in combination with a k-nearest neighbour 

model provided the highest accuracies in terms of the coefficient of determination (R2 = 

0.69) among other predictors and models. Donoghue and Watt (2006) approximated mean 

vegetation height for plots of 0.02 ha using directly the mean reflectance values from 

spectral bands of Landsat Enhanced Thematic Mapper Plus (ETM+) and IKONOS images. In 

particular, a curvilinear regression model with a power function was used to model mean 

height as y = axb, where y represents the mean height in a plot, x the mean reflectance, 

and a and b are real values. They managed to estimate the height of Sitka spruce 

plantations with R2 values up to 0.87. Spectral indices from Landsat images, i.e. the 

Normalized Difference Water Index (NDWI) and the Optimized Soil Adjusted Vegetation 

Index (OSAVI), have been used to estimate the height of soybean and corn (Anderson et al. 

2004) using the biomass development of the crop as main variable. Ahmed et al. (2015) 

used Landsat time series to approximate the height of conifer and deciduous forest stands. 

A random forest approach proved more effective than a nonlinear multiple regression 

model, with Time Since Disturbance (TSD) being the most discriminatory predictor for 

young (< 30 years) stands and the Normalized Difference Vegetation Index (NDVI) and the 

Tasseled Cap transformation Angle (TCA) the best ones for mature (> 30 years) stands. In 

a recent study, Hansen et al. (2016) evaluated Landsat 7 and 8 data both individually and 

in synergy to estimate tree height in an extensive area in Sub-Saharan Africa. Spectral band 

reflectance and NDVI values from a large number of images from 2013 and 2014 were 

collected and sorted for each pixel. Values below the 10th and above the 90th percentiles, 

i.e. the 20% most extreme values, were discarded. The means for the remaining ranges of 

values for each image band as well as NDVI were used as predictors in a regression tree 

approach. Predictors from the integrated Landsat 7 and 8 datasets achieved the lowest 

Mean Absolute Error (MAE = 2.45 m) suggesting their combined used as well as the 

potential integration of Sentinel-2 data in future height estimation studies in case LiDAR 

information is not available or limited. Besides spectral information, texture features 

extracted from passive sensors have been correlated with vegetation height in several 

studies. Early studies used simple texture features for the estimation of coniferous tree 

height, such as the mean (Puhr and Donoghue 2000) and the standard deviation (Franklin 

et al. 1986) of reflectance values within a 3×3 pixel moving window. Similar features have 

been calculated from Satellite Pour l’Observation de la Terre 5 (SPOT-5) images and 

evaluated with different regression models in hardwood and coniferous forests (Wolter et al. 

2009). In another study involving SPOT-5 data, a number of first-order and second-order 

texture features were used together with spectral ones in a tropical forest area (Castillo-

Santiago et al. 2010). The variance of the near-infrared (NIR) band in a 9×9 pixel window 

and the reflectance values in NIR and mid-infrared (MIR) bands were selected as the best 
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predictors by a multiple linear regression model (R2 = 0.71). Similar second-order grey-

level co-occurrence matrix (GLCM) texture features from IKONOS imagery approximated 

the height of oak, beech, and spruce trees with accuracies up to R2 = 0.76 (Kayitakire et al. 

2006). Chen et al. (2011) used spectral and texture features as well as shadow fraction 

from a Quickbird image to compare pixel-based and object-based analysis under nonlinear 

regression. The experimental results from the object-based approach proved more accurate 

than the pixel-based ones. Instead of a regression problem, as in the previous approaches, 

vegetation height estimation has also been formulated as a classification problem. In an 

object-based approach, Petrou et al. (2015) calculated texture features based on local 

variance, entropy, and local binary patterns from WorldView-2 imagery. The features were 

used to classify heathland vegetation to six height classes appropriate for habitat studies, 

ranging from less than 5 cm to 40 m. Filter-based dimensionality reduction and a random 

forest classifier achieved classification accuracies over 90%, identifying the best performing 

subsets of features and decreasing the originally extracted features by around 97%.  

2.5.3 RADAR technology  

RADAR (Radio Detection And Ranging) is an important tool for detecting the structure and 

height of vegetation because of its ability to penetrate clouds, to provide a signal from the 

geometric properties of the vegetation and to generate images over large areas. The RADAR 

signal, backscatter and interferometric phase, depends on the physical structure and 

dielectric properties allowing an indirect measurement of vegetation structure. Short 

wavelength RADAR (X- and C-band; ~2 cm and ~6 cm wavelength) only partially 

penetrates the vegetation / forest canopy and mainly receives a signal from leaves and 

small branches. In contrast, long wavelength RADAR (L- and P-band; ~23 and ~60 cm 

wavelength) penetrates the vegetation / forest canopy and the signal is primarily caused by 

branches and trunks making it more suitable for mapping ecosystem structure and 

vegetation height (Ulaby et al. 1986; Woodhouse 2005). Since the early 1990s several 

studies have demonstrated the relationship between RADAR backscatter and vegetation 

structure and height (e.g. Dobson et al. 1995, Joshi et al., 2015). Interferometric SAR 

(InSAR) allows a more direct estimation of height and the vertical distribution of vegetation 

(Florian et al., 2006, Papathanassiou et al., 2008, Treuhaft and Sinqueira 2004). InSAR 

derives its sensitivity to vertical vegetation structure from the difference in signal of two 

RADAR receivers separated in space by a known distance, the so called ‘‘baseline’’. The 

difference between phases of the signal received at the two ends of the baseline can be 

translated into a topographic height. The topography measured from InSAR depends on the 

vegetation characteristics and the RADAR wavelength. Shorter wavelengths provide a signal 

relatively close to the canopy, while longer wavelength penetrate deeper into the canopy to 

the ground surface (Rosen et al., 2000). Varying InSAR methods exist to detect the forest 

height. Some studies compare InSAR height with independent measurements of the ground 

surface (e.g. national surface height maps) (Kellndorfer et al., 2004, Kellndorfer et al., 

2006; Simard et al., 2006). A second approach, uses the difference in between multiple 

wavelengths (e.g. X-band and P-band) to measure interferometric heights at two 

frequencies. Height is calculated as the difference in elevation between the two 

measurements (Wheeler and Hensley, 2000, Sexton et al., 2009). More explorative studies 

make use of polarimetric InSAR (PolInSAR) technology and use both interferometric height 

and correlation, along with multiple baselines and/or polarizations in retrieving information 

on the vertical distribution directly (Cloude and Papathanassiou, 1998; Treuhaft and 

Siqueira, 2000, Kugler et al., 2007, Garestier et al., 2008, Khati & Singh, 2015). Garestier 

et al. (2008) used a random volume over ground (RVoG) model to detect forest height from 

single-pass X-and PolInSAR data set using HH and HV channels over a sparse pine forest. 

Recently, Khati & Singh (2015) successfully demonstrated the use of space-borne PolInSAR 

data acquired by TerraSAR-X/TandDEM-X for tree height inversion at a pine forest site. The 

observed RMSE of 7.6 m relates to an underestimation of the tree heights that is caused by 
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the low penetration capabilities of X-band RADAR into to forest canopy. Garestier et al. 

(2008) and Wang et al. (2016) found that forest height inversion using short wavelength 

RADAR (X- and C-band) strongly depends on the forest density. While forest height 

inversion has been demonstrated at sparse boreal forest, the applicability at dense tropical 

forest is very limited. Long wavelength PolInSAR (L- and P-band) is much lesser affected, 

however, current provision of long-wavelength PolInSAR data is limited (Wang et al., 2016).  

 

2.5.4 LiDAR technology  

The following subsections deal with LiDAR technology from different platforms that all have 

their own merits for surveying, they concern respectively, manned and unmanned airborne, 

spaceborne and terrestrial liDAR scanning. 

 

2.5.4.1 Airborne LiDAR 

The use of airborne laser scanning dates back to the 1970s. However, their commercial 

development is traced back to the mid-1990s only. From the perspective of ecological 

research, LiDAR can be therefore considered as a relatively new technology (Carson et al. 

2004). LiDAR was originally introduced to generate more accurate digital elevation models 

(DEMs) (Evans et al. 2006) but has recently become an effective tool for natural resources 

applications (Akay et al. 2008). In the process of creating a DEM, only reflections from the 

ground level are used, and reflections from vegetation are considered redundant. Recent 

studies with LiDAR data have explored the possibilities to use these redundant vegetation 

reflections as a new source of geospatial data that can provide fine-grained information 

about the 3D physical structure of terrestrial and aquatic ecosystems (Geerling et al. 2007). 

This result can then be applied in forestry, ecological (habitat) mapping and vegetation 

monitoring (Hyde et al. 2005). Airborne LiDAR provided most of the applications so far, but 

Terrestrial LiDAR as well as spaceborne and UAV liDAR will provide more and more 

applications in the future, since they all have their own merits. Scopus16 presents very well 

the steep increase in publications per year between 2000 and 2015, respectively from 

around 10 in 2000 to 400 publications in 2015 (search “LiDAR AND vegetation”). LiDAR is 

an active remote sensing technique that measures the properties of emitted scattered light 

to determine the 3D coordinates (x, y, z) and other properties of a distant target (St-Onge 

2005; Mallet et al. 2009). To do so, the LiDAR instrument transmits laser pulses and 

calculates the distance from a target based on energy that is reflected from the target back 

to the instrument. The time for laser pulses to return back to the LiDAR sensor is used to 

calculate the distance to the target (Akay et al. 2008). LiDAR provides geometric data but 

also radiometric data, such as signal intensity, amplitude, and pulse angle (Hall et al. 2005; 

Evans et al. 2006). The laser camera measurements are combined with the platform’s 

position and altitude data - measured by a differential global positioning system (GPS) and 

an inertial navigation unit (INU) - identifying the position and elevation of each collected 

point (Wehr et al. 1999).The “xy” accuracy of the pulse center is typically 0.05–0.5 m, 

depending on the flying height. The accuracy in “z” is usually better than 0.2 m. Values 

range from 0.2 m to 1.0 m for flying heights of 1–5 km (Korpela et al. 2009). 

                                           
16

 www.scopus.com 
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Figure 2.5.4.1.1 Example of a LiDAR point cloud of an individual tree, visualized in 3D, as 

taken by an UAV LiDAR camera (Acquired with VUX-SYS camera mounted on RiCopter). The 

colours represent the multiple returns. The first returns are indicated indicated in green and 

represent leaves or ground, while blues colours represent more the internal woody skeleton 

or branches of the tree.  

So airborne LiDAR offers the possibility to collect structural information over larger spatial 

extents than could not be obtained by field surveys (Bradbury et al. 2005). LiDAR, in 

contrast to optical remote sensing techniques, can be expected to bridge the gap in 3D 

structural information, including canopy shape, number of vegetation layers and individual 

tree identification at the landscape scale (Graf et al. 2009).  

2.5.4.2 UAV LiDAR (drones) 

The use of unmanned airborne vehicles (UAVs) or so-called drones that can carry a LiDAR 

camera is a recent development. Recently, the use and adoption of UAVs as a flexible 

sensor platform for monitoring has evolved rapidly. Potential application domains are e.g. 

agriculture (phenotyping of individual plants), coastal monitoring, dikes, archaeology, 

corridor mapping (power lines, railway tracks, pipeline inspection), topography, 

geomorphology, and construction site monitoring (surveying urban environments), next to 

forestry and vegetation monitoring. Until recently it was not possible to have a LiDAR 

camera on a UAV since the cameras were too heavy to be carried by a UAV. Before, LiDAR 

measurements were made only from manned helicopters or airplanes. Attaching a LiDAR 

sensor to a moving UAV platform allows 3D mapping of larger surface areas. The big 

advantage of the use of a UAV is its flexibility to be used in space and time. The major 

limitation compared to manned airborne laser scanning is still limited in its areal coverage, 

not only due to the technological capabilities but also due to aviation regulations which does 

not allow in most cases to fly beyond line of sight. The use of unmanned LiDAR Scanning 

(ULS) has certainly advantages compared to the more static terrestrial laser scanning (TLS) 

or large-scale systems using manned platforms (Kooistra and Mücher, 2015, business plan 

prepared for evaluation within CAT Agrofood Program of Wageningen University and 

Research Centre): 

1. In general, the flexible agile deployment is an important asset of UAV data collection 

especially compared to satellites and manned aircrafts: for example LiDAR observations 

can be combined with additional camera observation to characterize both the structure 

and bio-chemistry of 3D objects; 
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2. Compared to TLS, UAV based LiDAR scanning allows the coverage of a much larger areal 

extent allowing to investigate relevant processes at local to regional scale (up to 100 ha 

per day); 

3. Compared to manned platforms, UAV based LiDAR scanning allows timing of data 

acquisition at critical moments and repeated measurements as part of monitoring 

experiments. The costs for manned platforms for monitoring is often too expensive. 

However only a limited number of manufacturers can provide at the moment such 

integrated UAV-LiDAR systems (ULS).  

2.5.4.3 Spaceborne LiDAR 

NASA’s GLAS instrument (Geoscience Laser Altimeter System) on the spaceborn ICESat 

platform (Ice, Cloud, and land Elevation satellite), launched on 12 January 2003, is a good 

example of the promising technique from space. Although the main objective of the GLAS 

instrument was to measure ice sheet elevations and changes in elevation through time, it 

was also very successful in measuring forest height. Amongst others Hayashia et al. (2013) 

showed that ICESat/GLAS data provides useful information on forest canopy height with an 

accuracy RMSE of 2.8 m. New advanced sensors to be launched in the next couple of years 

will provide increasingly accurate information on traits such as vegetation height and plant-

species characteristics. These include the NASA Global Ecosystem Dynamics Investigation 

Lidar (GEDI). The scientific goal of the GEDI is to characterize the effects of changing 

climate and land use on ecosystem structure and dynamics to enable radically improved 

quantification and understanding of the Earth's carbon cycle and biodiversity. Focused on 

tropical and temperate forests from its vantage point on the International Space Station 

(ISS), GEDI uses LiDAR to provide the first global, high-resolution observations of forest 

vertical structure (http://science.nasa.gov/missions/gedi/). 

2.5.4.4 Terrestrial LiDAR 

Terrestrial LiDAR, also called terrestrial laser scanning (TLS), is a ground-based remote 

sensing system that can measure 3D vegetation structure (i.e. the size and location of 

canopy elements) to centimetre or even millimetre accuracy and precision. Broad scale 

mapping based on remote sensing (satellite) data rarely, if ever, record the type of forest 

structural and dynamic information we require directly. Various simplifying assumptions, 

models and ancillary data are typically required to extract such information. At the fine 

(sub-ha plot) scale, it has also been difficult to incorporate rapid and robust assessment of 

accurate ground reference data of 3D forest structure into existing surveying and mapping 

strategies. This is in part due to the relative newness of such detailed structural data and 

the consequent lack of consistent methods for processing and analyzing these data in 

conjunction with more traditional survey and monitoring methods (Calders et al, 2015a).  

 

2.5.5  LiDAR applications supporting EBV ecosystem structure 

In this section some examples of LiDAR applications in vegetation monitoring are given, 

related to the EBV ecosystem structure. The first three subsections are on forest 

parameters, vegetation structure, and habitat classification, all based on airborne LiDAR. 

Real LiDAR monitoring applications are so far mainly limited to Terrestrial LiDAR, and these 

are described in last subsection.  

2.5.5.1 Forest structure 

Vegetation vertical structure is defined as the bottom to top configuration of above-ground 

vegetation including for example, canopy cover, tree and canopy height, vegetation layers, 

and biomass or volume (Bergen et al. 2008). LiDAR remote sensing being capable of 

providing both horizontal and vertical information at high spatial resolutions and vertical 

http://science.nasa.gov/missions/gedi/
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accuracies, allows forest attributes to be retrieved (Dubayah et al. 2000; Akay et al. 2008). 

Both discrete-return and full waveform devices have been used worldwide for characterizing 

forest structure (Lefsky et al. 2002a; Lim et al. 2003). These technologies have successfully 

been used to retrieve tree height (Jan 2005; Wang et al. 2008; Rosette et al. 2009; Heurich 

et al. 2008), above ground biomass and timber volumes (Calders et al., 2015;Means et al. 

2000; Lefsky et al. 2002b; Zimble et al. 2003; Patenaude et al. 2004; Zhao et al. 2009) and 

leaf area (Roberts et al. 2005;) across various ecosystems such as temperate (Anderson et 

al. 2006) or tropical forest (Drake et al. 2002). The combination of airborne LiDAR data with 

other optical remote sensing data also shows promising results for the estimation of forest 

structural characteristics (Coops et al. 2004), often better that when LiDAR data were used 

alone (Hudak et al. 2002; Wulder et al. 2003). In some case the intensity recorded by the 

LiDAR sensors is also used to measure tree metrics and vegetation structure (Lovell et al. 

2003; Hall et al. 2005; Evans et al. 2006; Weishampel et al. 2007).Those studies have 

demonstrated the ability of LiDAR techniques to measure vegetation height, and cover as 

well as more complex attributes of canopy structure. From those measurements, further 

analysis can be done related to the vegetation attributes and function. 

2.5.5.2 Vegetation structure 

Vegetation attributes and structure information generated from airborne LiDAR data have 

also applications beyond forestry and are of a great help for ecological functions 

understanding. These canopy metrics and structural data have been proven to be strong 

predictors of species richness for woodland birds in several studies (Vierling et al. 2008; 

Mason et al. 2003; Hill et al. 2005), even in difficult terrain (Hyde et al. 2005). 

Furthermore, the correlation between LiDAR-derived estimates of vegetation structure 

important to birds have been demonstrated in areas ranging from grasslands to forests 

(Bradbury et al. 2005; Hinsley et al. 2006). LiDAR have been also demonstrated to be able 

to identify differently structured habitat units and to quantify variation in vegetation 

structure within those units (Bradbury et al. 2005). LiDAR can also provide indication about 

territories and breeding success of several types of birds species (Bergen et al. 2008). Graf 

et al. (2009) concluded their study on the great potential offered by LiDAR for effective 

habitat monitoring and management of endangered species. In Korpela et al. (2009) the 

result obtained using LiDAR for the mire habitat classification accuracy were considered as 

surpassing earlier results with optical data. Some studies also highlighted that the result of 

habitat analysis obtained with LiDAR may be enhanced when used in combination with 

spectral data (Bergen et al. 2007; Clawges et al. 2008; Hyde et al. 2006). In view of those 

results, LiDAR remote sensing shows considerable efficacy for habitat 

mapping/characterization and wildlife management in fine detail across broad areas. It may 

replace many labour-intensive, field-based measurements, and can characterize habitat in 

novel ways (Vierling et al. 2008). Considering monitoring applications, the repeatable and 

high absolute “xyz” accuracy is advantageous since changes can be detected at submeter 

scales and the same measurement units can be monitored over time (Korpela et al. 2009). 

In that sense, LiDAR constitutes an efficient tool for short and long term monitoring of 

changes in surface structure and vegetation. For example, Wieshampel et al. (2007) used 

LiDAR measurements to monitor vegetation recovery after several disturbances and Calders 

et al (2015) used TLS for phenology monitoring. 

2.5.5.3 Habitat classification 

Studies conducted in order to classify vegetation or habitats using LiDAR showed that 

discrimination of some types was only possible based on vegetation height and density 

when they had similar spectral reflectances (Geerling et al. 2007; Geerling et al. 2009). 

LiDAR appeared to succeed as well in characterizing tree species with the canopy height as 

the strongest explanatory variables in the vegetation classification (Korpela et al. 2009; 

Geerling et al. 2007). The integration of spectral information coming from optical remote 
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sensing data and canopy height data generated from LiDAR into the classification has been 

demonstrated to produce an ecologically meaningful thematic product for a complex 

woodland environment (Hill et al. 2005). In most of the ecological studies based on LiDAR 

techniques, the intensity/amplitude is rarely used as it must be calibrated and corrected 

first (Mallet et al. 2009), even though it appears as a potential important factor for feature 

extraction or land cover classification. Antonarakis et al. (2008) demonstrate that the 

combination of intensity and elevation data from LiDAR point clouds can be enough to 

classify multiple land types using object-based classification method. Other studies using 

intensity values were conducted and their results imply that the intensity of the laser return 

signal can be used for classification purposes (Lim et al. 2003; Brennan et al. 2006; Korpela 

et al. 2009). A biodiversity observation system that is consistent and cost effective is 

desirable, but its development and implementation remains a significant challenge. Recent 

advances in Earth Observation (EO) allow inroads to the design of such a system (Mücher et 

al, 2015). Light Detection and Ranging (LiDAR) and Very High Resolution (VHR) multi-

spectral sensors are increasingly becoming available. These images provide opportunities 

for land cover and habitat mapping with a very high spatial resolution of 1 or 2 meters 

(mapping scale ~ 1:4000) and a high thematic differentiation in such a way that the derived 

maps meet the demand of end-users such as terrain and nature conservation managers. 

The launch of the multi-spectral Worldview-2 (WV-2) sensor with eight spectral bands 

(including the coastal, yellow and red edge as well as a second (overlapping) NIR channel) 

and a spatial resolution of 2 meters provides new opportunities for discrimination of land 

covers/habitats, hence it is preferred for adoption with the EODHaM system (Lucas et al, 

2015). A limitation of using optical imagery is that information on vegetation height cannot 

be retrieved with sufficient reliability unless relationships with, for example, textural 

measures are provided (Lucas et al, 2015). As such, LiDAR is complementary to optical EO 

data, since the technology allows for the measurement of vegetation structure (Mücher et 

al., 2013). LiDAR-derived canopy height models (CHM) represent the calculated height of 

the woody vegetation above the ground surface (in centimetres) for each individual grid 

cell. This is critical for the descriptions of woody life forms within the Food and Agricultural 

Organization (FAO) Land Cover Classification System (LCCS) taxonomy (di Gregorio and 

Jansen, 2005) and the General Habitat Category (GHC) system for habitat surveillance and 

monitoring (Bunce et al., 2008). Since vegetation physiognomy and structure are an 

important diagnostic criteria in the land cover as well as habitat classification system, we 

put a major emphasis on the exploitation of LiDAR data for CHM in combination with multi-

temporal and multi-spectral VHR satellite imagery. The CHM is a result of the difference in 

height between the calculated Digital Surface Model (DSM), indicating the top of the 

vegetation, and the Digital Terrain Model (DTM), indicating the ground surface. EODHaM 

requires in general several satellite images distributed over the growing season (a pre-peak 

flush image, a peak flush image, and a post-peak flush image) which allows the calculation 

of a wider range of spectral indices with a sufficient spatial detail. The imagery needs to be 

acquired for periods that are phenological optimal for the discrimination of land cover and 

habitat classes (Lucas et al., 2015). An important additional input in the EODHAM system 

was the CHM with a spatial resolution of 1 by 1 meter and vegetation height indicated in 

centimetres, as derived from the LiDAR multiple return data. It shows that the combination 

of LiDAR with VHR satellite imagery is a powerful tool for the identification of plant life forms 

and associated land covers due to the generic possibilities that it provides in combination 

with the EODHAM system for any site across the globe. Even though the validation is not 

showing the highest accuracies (Mücher et al, 2015). 

2.5.5.4 Forest Monitoring 

The potential of TLS for forest monitoring was first demonstrated more than a decade ago, 

but has not yet reached its full potential, for the reasons outlined above. Newnham et al. 
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(2015) & Anderson et al. (2015) provide a full review of the development of TLS as a forest 

measurement tool. 

 

 

Figure 1.5.5.4.1: Illustration of a 3D terrestrial in-situ laser scanner point cloud of a 

Maranthaceae forest in Lopé National Park located in central Gabon. The data were collected 

with a RIEGL VZ-400 LiDAR camera from 7 different scan locations. Coloured by height 

(blue = 0 m; red = 45 m).  

 

Terrestrial LiDAR sensors are usually tripod mounted and record single scans from a fixed 

location. As such, scans are affected by occlusion, i.e. the near objects in the forest can 

obscure objects further from the scanner. The effects of occlusion can be significantly 

reduced by obtaining data from multiple scan locations. Multiple single scans made at 

different locations can be co-registered (to within mm accuracy depending on instrument 

and environment) using high reflectivity targets that act as tie-points between different 

scans (see Figure 2.5.5.4.1). A range of scientific and commercial scanners are currently 

available. Whereas airborne LiDAR systems have been used in forest measurements since 

the mid-eighties (Nelson et al., 1984), the first commercial terrestrial laser scanners came 

to the market in the late 90s with instruments such as the RIEGL LMS Z210 and CYRAX 

2200. The first TLS instruments used a time-of-flight ranging principle, with phase-shift 

based ranging instruments following soon after. The commercial instruments were (and still 

are) generally developed for precision mapping and survey applications where hard targets 

(i.e. structurally continuous surfaces) dominate e.g. urban areas and/or mineral and 

petrochemical exploration. This has implications for their use in forest applications, where 

many laser hits are partial, and/or from softer targets (i.e. structurally fragmented or 

dispersed surfaces) with anisotropic reflecting surfaces such as leaves or needles and bark. 

Of the scientific (i.e. non-commercial) scanners, the Echidna Validation Instrument (EVI) 

was one of the first laser scanners specifically designed to monitor vegetation (Strahler et 

al., 2008). Commonly used commercial instruments include the RIEGL VZ-series, Leica C10 

and HDS7000, Optech ILRIS-HD and FARO Focus3D X 330 and Trimble TX8. Newnham et al. 

(2012) provide a detailed independent comparison between some commercial scanners and 

evaluated their performance for measuring vegetation structure. 
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2.5.6 Status and outlook 

Monitoring ecosystem structure can now be supported by a wide range of remote sensing 

techniques. The challenge to date is to support the biodiversity community with a global 

observing system that revolves around the monitoring of a set of agreed variables essential 

to the tracking of changes in biological diversity on Earth (Pettorelli, 2016), such as EBV 

ecosystem structure. To achieve this the remote sensing techniques available have to be 

exploited to a much wider range and should complement each other, so that large parts of 

the globe can be monitored in reality. LiDAR technique is a tremendously growing remote 

sensing technique that due to its absolute physical measurements of height and structure 

has an enormous potential for applications. As we have seen LiDAR instruments can be 

placed on many different platforms that all have their own merits, ranging from terrestrial 

to spaceborne LiDAR. Although the LiDAR instruments are still very expensive we see that 

prices are lowering due to its wide range of applications, and makes it also slowly affordable 

to mount on UAV platforms. For regular forest monitoring terrestrial LiDAR still has the best 

credits but will probably change with increasing use of UAV and spaceborne platforms. We 

have mainly focused on vegetation and more specifically on forest, but it should be stressed 

that the LiDAR technique has a wide range of applications from terrain, infrastructure and 

urban applications, to agriculture, archaeology, geology, bathometry, and many other 

domains. Spaceborne LiDAR is not yet well developed but planned satellite sensors as 

NASA’s GEDI show that this will change. Passive sensor data can be used in certain cases as 

alternatives of LiDAR data for vegetation height estimation. Although not as accurate as 

LiDAR overall, satellite passive sensors have provided high precision approximations of 

height and have been proven particularly useful in cases where LiDAR information was 

unavailable due to high cost or limited coverage. Several types of predictors have been 

derived from passive sensor imagery, including reflectance values, spectral indices, texture 

features, or even temporal and semantic-based information (e.g. time-since-disturbance 

features in multi-temporal imagery). ESA’s upcoming P-band RADAR ‘BIOMASS’ mission 

holds promises for accurate space-borne large-area estimation of vegetation structure and 

height. It is intended to derive vegetation structure and height using POLInSAR globally and 

at a spatial scale of 100-200 m (Scipal et al., 2010). Due to the long wavelength of ~60 cm 

a much reduced saturation and underestimation of forest height is expected when compared 

to results found for shorter wavelength RADAR (e.g. Garestier et al. 2008, Khati & Singh 

2015), even over dense tropical forests. Such variety of features is essential in creating 

non-redundant information between active and passive sensor data and improve height 

estimation. Experiments involving synergies of LiDAR, RADAR, and passive multispectral 

data have shown that fusion of data from different sensors can provide increased 

performance compared with single-sensor data (Hyde et al. 2006). Furthermore, passive 

optical imagery can indirectly complement LiDAR data in height estimation by spectrally 

distinguishing vegetation from ground and remove noisy LiDAR measurements from the 

background that deteriorate accuracy (Riaño et al. 2007). Finally, widely and freely 

available RADAR and passive optical RS data, think of for example SENTINEL 1 and 2, 

should be used in synergy with limited but highly accurate LiDAR measurements to increase 

the spatial coverage of vegetation height measurements. 
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