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Abstract

Most automatic expression analysis systems attempt to recognize a small set
of prototypic expressions, such as happiness, anger, surprise, and fear. Such pro-
totypic expressions, however, occur rather infrequently. Human emotions and
intentions are more often communicated by changes in one or a few discrete
facial features. In this paper, we develop an Automatic Face Analysis (AFA)
system to analyze facial expressions based on both permanent facial features
(brows, eyes, mouth) and transient facial features (deepening of facial furrows)
in a nearly frontal-view face image sequence. The AFA system recognizes fine-
grained changes in facial expression into action units (AUs) of the Facial Action
Coding System (FACS), instead of a few prototypic expressions. Multi-state face
and facial component models are proposed for tracking and modeling the various
facial features, including lips, eyes, brows, cheeks, and furrows. During tracking,
detailed parametric descriptions of the facial features are extracted. With these
parameters as the inputs, a group of action units(neutral expression, 6 upper face
AUs, and 10 lower face AUs) are recognized whether they occur alone or in com-
binations. The system has achieved average recognition rates of 96.4% (95.4% if
neutral expressions are excluded) for upper face AUs and 96.7% (95.6% with neu-
tral expressions excluded) for lower face AUs. The generalizability of the system
has been tested by using independent image databases collected and FACS-coded
for ground-truth by different research teams.
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1. Introduction
Facial expression is one of the most powerful, natural, and immediate means

for human beings to communicate their emotions and intentions. The face can
express emotion sooner than people verbalize or even realize their feelings. In
the past decade, much progress has been made to build computer systems to un-
derstand and use this natural form of human communication [4, 3, 8, 10, 16, 18,
24, 26, 28, 32, 37, 38, 36, 40]. Most such systems attempt to recognize a small
set of prototypic emotional expressions, i.e. joy, surprise, anger, sadness, fear,
and disgust. This practice may follow from the work of Darwin [9] and more
recently Ekman [14, 12] and Izard et al. [19] who proposed that basic emotions
have corresponding prototypic facial expressions. In everyday life, however, such
prototypic expressions occur relatively infrequently. Instead, emotion more of-
ten is communicated by subtle changes in one or a few discrete facial features,
such as a tightening of the lips in anger or obliquely lowering the lip corners in
sadness [7]. Change in isolated features, especially in the area of the eyebrows or
eyelids, is typical of paralinguistic displays; for instance, raising the brows signals
greeting [11]. To capture such subtlety of human emotion and paralinguistic com-
munication, automated recognition of fine-grained changes in facial expression is
needed.

1.1. Facial Action Coding System

Ekman and Friesen [13] developed the Facial Action Coding System (FACS)
for describing facial expressions by action units (AUs). Of 44 FACS AUs that
they defined, 30 AUs are anatomically related to the contractions of specific facial
muscles: 12 are for upper face, and 18 are for lower face. AUs can occur either
singly or in combination. When AUs occur in combination they may beaddi-
tive, in which the combination does not change the appearance of the constituent
AUs, or non-additive, in which the appearance of the constituents does change.
Although the number of atomic action units is relatively small, more than 7,000
different AU combinations have been observed [30]. FACS provides descriptive
power necessary to describe the details of facial expression.

Commonly occurring AUs and some of the additive and non-additive AU com-
binations are shown in Tables 1 and 2. As an example of a non-additive effect, AU
4 appears differently depending on whether it occurs alone or in combination with
AU 1 (as in AU 1+4). When AU 4 occurs alone, the brows are drawn together and
lowered. In AU 1+4, the brows are drawn together but are raised due to the action
of AU 1. AU 1+2 is another example of non-additive combinations. When AU
2 occurs alone, it not only raises the outer brow, but also often pulls up the inner
brow which results in a very similar appearance to AU 1+2. These effects of the
non-additive AU combinations increase the difficulties of AU recognition.
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Table 1. Upper face action units and some combinations

NEUTRAL AU 1 AU 2 AU 4

Eyes, brow, and Inner portion of Outer portion of Brows lowered
cheek are the brows is the brows is and drawn
relaxed. raised. raised. together
AU 5 AU 6 AU 7 AU 1+2

Upper eyelids Cheeks are Lower eyelids Inner and outer
are raised. raised. are raised. portions of the

brows are raised.
AU 1+4 AU 4+5 AU 1+2+4 AU 1+2+5

Medial portion Brows lowered Brows are pulled Brows and upper
of the brows is and drawn together and eyelids are raised.

raised and pulled together and upward.
together. upper eyelids

are raised.
AU 1+6 AU 6+7 AU 1+2+5+6+7

Inner portion of Lower eyelids Brows, eyelids,
brows and cheeks cheeks are and cheeks

are raised. raised. are raised.
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Table 2. Lower face action units and some combinations. Single AU
23 and AU 24 are not included in this table because our database
happens to contain only occurances of their combination, but not
individual ones.

NEUTRAL AU 9 AU 10 AU 20

Lips relaxed The infraorbital The infraorbital The lips and the
and closed. triangle and triangle is lower portion of

center of the pushed upwards. the nasolabial
upper lip are Upper lip is furrow are pulled

pulled upwards. raised. Causes pulled back
Nasal root wrinkling angular bend in laterally. The

is present. shape of upper lip. mouth is
Nasal root wrinkle elongated.

is absent.
AU 12 AU15 AU 17 AU 25

Lip corners are The corners of The chin boss Lips are relaxed
pulled obliquely. the lips are is pushed and parted.

pulled down. upwards.
AU 26 AU 27 AU 23+24 AU 9+17

Lips are relaxed Mouth stretched Lips tightened,
and parted; open and the narrowed, and
mandible is mandible pulled pressed together.

lowered. downwards.
AU9+25 AU9+17+23+24 AU10+17 AU 10+25

AU 10+15+17 AU 12+25 AU12+26 AU 15+17

AU 17+23+24 AU 20+25
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1.2. Automated Facial Expression Analysis

Most approaches to automated facial expression analysis so far attempt to rec-
ognize a small set of prototypic emotional expressions. Suwaet al.[31] presented
an early attempt to analyze facial expressions by tracking the motion of twenty
identified spots on an image sequence. Essa and Pentland [16] developed a dy-
namic parametric model based on a 3D geometric mesh face model to recognize
5 prototypic expressions. Mase [26] manually selected facial regions that corre-
sponded to facial muscles and computed motion within these regions using optical
flow. The work by Yacoob and Davis [37] used optical flow like Mase’s work, but
tracked the motion of the surface regions of facial features (brows, eyes, nose, and
mouth) instead of that of the underlying muscle groups. Zhang [40] investigated
the use of two types of facial features: the geometric positions of 34 fiducial points
on a face and a set of multi-scale, multi-orientation Gabor wavelet coefficients at
these points for facial expression recognition.

Automatic recognition of FACS action units (AU) is a difficult problem, and
relatively little work has been reported. AUs have no quantitative definitions and,
as noted, can appear in complex combinations. Mase [26] and Essa [16] described
patterns of optical flow that corresponded to several AUs, but did not attempt to
recognize them. Bartlett et al. [2] and Donato et al. [10] reported some of the most
extensive experimental results of upper and lower face AU recognition. They both
used image sequences that were free of head motion, manually aligned faces using
three coordinates, rotated the images so that the eyes were in horizontal, scaled the
images, and, finally, cropped a window of 60x90 pixels. Their system was trained
and tested using the leave-one-out cross-validation procedure, and the mean clas-
sification accuracy was calculated across all of the test cases. Bartlettet al. [2]
recognized 6 single upper face AUs (AU 1, AU 2, AU 4, AU 5, AU 6, and AU 7)
but no AUs occurring in combinations. They achieved 90.9% accuracy by com-
bining holistic spatial analysis and optical flow with local feature analysis in a
hybrid system. Donatoet al. [10] compared several techniques for recognizing
action units. These techniques included optical flow, principal component anal-
ysis, independent component analysis, local feature analysis, and Gabor wavelet
representation. The best performances were obtained by using Gabor wavelet
representation and independent component analysis with which a 95.5% average
recognition rate was reported for 6 single upper face AUs (AU 1, AU 2, AU 4, AU
5, AU 6, and AU 7) and 2 lower face AUs and 4 AU combinations (AU 17, AU 18,
AU 9+25, AU 10+25, AU 16+25, AU 20+25). For analysis purpose, they treated
each combination as if it were a separate new AU.

The authors’ group has developed a few version of the facial expression anal-
ysis system. Cohnet al. [8] and Lienet al. [24] used dense-flow, feature-point
tracking, and edge extraction to recognize 4 upper face AUs and 2 combinations
(AU 4, AU 5, AU 6, AU 7, AU 1+2, and AU 1+4) and 4 lower face AUs and 5
combinations (AU 12, AU 25, AU 26, AU 27, AU 12+25, AU 20+25±16, AU
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15+17, AU 17+23+24, and AU 9+17±25). Again each AU combination was re-
garded as a separate new AU. The average recognition rate ranged from 80% to
92% depending on the method used and AUs recognized.

These previous versions have several limitations. 1) They require manual
marking of 38 to 52 feature points around face landmarks in the initial input frame.
A more automated system is desirable. 2) The initial input image is aligned with
a standard face image by affine transformation, which assumes that any rigid head
motion is in-plane. 3) The extraction of dense flow is relatively slow, which lim-
its its usefulness for large databases and real-time applications. 4) Lip and eye
feature tracking is not reliable because of the aperture problem and when features
undergo a large amount of change in appearance, such as open to tightly closed
mouth or eyes. 5) While they used three separate feature extraction modules,
they were not integrated for the purpose of AU recognition. By integrating their
outputs, it is likely that even higher accuracy could be achieved. 6) A separate
hidden Markov model is necessary for each single AU and each AU combination.
Because FACS consists of 44 AUs and potential combinations numbering in the
thousands, a more efficient approach will be needed.

The current AFA system addresses many of these limitations. 1) Degree of
manual preprocessing is reduced by using automatic face detection [29]. Tem-
plates of face components are quickly adjusted in the first frame and then tracked
automatically. 2) No image alignment is necessary, and in-plane and limited out-
of-plane head motion can be handled. 3) To decrease processing time, the system
uses a more efficient facial feature tracker instead of a computationally intensive
dense-flow extractor. Processing now requires less than 1 second per frame pair.
4) To increase the robustness and accuracy of the feature extraction, multi-state
face-component models are devised. Facial feature tracking can cope with a large
change of appearance and limited out-of-plane head motion. 5) Extracted features
are represented and normalized based on an explicit face model that is invariant to
image scale and in-plane head motion. 6) More AUs are recognized, and they are
recognized whether they occur alone or in combinations. Instead of one HMM for
each AU or AU combination, the current system employs two Artificial Neural
Networks (one for the upper face and one for the lower face) for AU recogni-
tion. It recognizes 16 of the 30 AUs that have a specific anatomic basis and occur
frequently in emotion and paralinguistic communication.

2. Multi-State Feature-based AU Recognition
An automated facial expression analysis system must solve two problems: fa-

cial feature extraction and facial expression classification. In this paper, we de-
scribe our multi-state feature-based AU recognition system, which explicitly an-
alyzes appearance changes in localized facial features in a nearly frontal image
sequence. Since each AU is associated with a specific set of facial muscles, we
believe that accurate geometrical modeling and tracking of facial features will lead
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to better recognition results. Furthermore, the knowledge of exact facial feature
positions could be useful for the area-based [37], holistic analysis [2], and optical
flow based [24] classifiers.

Figure 1. Feature-based Automatic Facial Action Analysis (AFA)
system.

Figure 1 depicts the overall structure of the AFA system. Given an image se-
quence, the region of the face and approximate location of individual face features
are detected automatically in the initial frame [29]. The contours of the face fea-
tures and components then are adjusted manually in the initial frame. Both perma-
nent (e.g., brows, eyes, lips) and transient (lines and furrows) face feature changes
are automatically detected and tracked in the image sequence. Informed by FACS
AUs, we group the facial features into separate collections of feature parameters
because the facial actions in the upper and lower face are relatively independent
for AU recognition [13]. In the upper face, 15 parameters describe shape, motion,
eye state, motion of brow and cheek, and furrows. In the lower face, 9 parameters
describe shape, motion, lip state, and furrows. These parameters are geometrically
normalized to compensate for image scale and in-plane head motion.

The facial feature parameters are fed to two neural-network based classifiers.
One recognizes 6 upper face AUs (AU 1, AU 2, AU 4, AU 5, AU 6, AU 7) and
NEUTRAL, and the other recognizes 10 lower face AUs (AU 9, AU 10, AU 12,
AU 15, AU 17, AU 20, AU 25, AU 26, AU 27, AU 23+24) andNEUTRAL.
These classifiers are trained to respond to the designated AUs whether they oc-
cur singly or in combination. When AUs occur in combination, multiple output
nodes could be excited. For the upper face, we have achieved an average recog-
nition rate of 96.4% for 50 sample sequences of 14 subjects performing 7 AUs
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(includingNEUTRAL) singly or in combination. For the lower face, our sys-
tem has achieved an average recognition rate of 96.7% for 63 sample sequences
of 32 subjects performing 11 AUs (includingNEUTRAL) singly or in combi-
nation. The generalizability of AFA has been tested further on an independent
database recorded under different conditions and ground-truth coded by an inde-
pendent laboratory. A 93.3% average recognition rate has been achieved for 122
sample sequences of 21 subjects for neutral expression and 16 AUs whether they
occurred individually or in combinations.

3. Facial Feature Extraction
Contraction of the facial muscles produces changes in the direction and mag-

nitude of the motion on the skin surface and in the appearance of permanent and
transient facial features. Examples of permanent features are the lips, eyes, and
any furrows that have become permanent with age. Transient features include
facial lines and furrows that are not present at rest but appear with facial expres-
sions. Even in a frontal face, the appearance and location of the facial features
can change dramatically. For example, the eyes look qualitatively different when
open and closed. Different components require different extraction and detection
methods. Multi-state models of facial components have been introduced to detect
and track both transient and permanent features in an image sequence.

3.1. Multi-State Face Component Models

To detect and track changes of facial components in near frontal images, we
develop multi-state facial component models. The models are illustrated in Ta-
ble 3, which includes both permanent (i.e. lips, eyes, brows, and cheeks) and
transient components (i.e. furrows). A three-state lip model describes lip state:
open, closed, and tightly closed. A two-state model (open or closed) is used for
each of the eyes. Each brow and cheek has a one-state model. Transient facial
features, such as nasolabial furrows, have two states: present and absent.

3.2. Permanent Features

Lips: A three-state lip model represents open, closed and tightly closed lips. A
different lip contour template is prepared for each lip state. The open and closed
lip contours are modeled by two parabolic arcs, which are described by six pa-
rameters: the lip center position (xc, yc), the lip shape (h1, h2 andw), and the
lip orientation (θ). For tightly closed lips, the dark mouth line connecting the lip
corners represents the position, orientation, and shape.

Tracking of lip features uses color, shape, and motion. In the first frame, the
approximate position of the lip template is detected automatically. It then is ad-
justed manually by moving four key points. A Gaussian mixture model represents
the color distribution of the pixels inside of the lip template [27]. The details of
our lip tracking algorithm have been presented in [33].
Eyes: Most eye trackers developed so far are for open eyes and simply track
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Table 3. Multi-state facial component models of a frontal face

Component State Description/Feature

Open
Lip

Closed

θ

h2

h1

(xc, yc)
X

w

p1

p2 p3

p4

Tightly closed Lip corner1 Lip corner2

Eye Open

r
θ

h1
(x0, y0)

(xc, yc) h2

w

Closed corner2
(x1, y1) (x2, y2)
corner1

Brow Present

Cheek Present

Furrow Present

Eye’s inner corner line

α1  α2

furrows
nasolabial

Absent
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the eye locations [23, 39]. To recognize facial AUs, however, we need to detect
whether the eyes are open or closed, the degree of eye opening, and the location
and radius of the iris. For an open eye, the eye template (Table 3), is composed
of a circle with three parameters(x0, y0, r) to model the iris and two parabolic
arcs with six parameters(xc, yc, h1, h2, w, θ) to model the boundaries of the eye.
This template is the same as Yuille’s [39] except for the two points located at the
center of the whites of the eyes. For a closed eye, the template is reduced to 4
parameters: two for the position of each of the eye corners.

The open-eye template is adjusted manually in the first frame by moving 6
points for each eye. We found that the outer corners are more difficult to track
than the inner corners; for this reason, the inner corners of the eyes are tracked
first. The outer corners then are located on the line that connects the inner corners
at a distance of the eye width as estimated in the first frame.

The iris provides important information about the eye state. Part of the iris is
normally visible if the eye is open. Intensity and edge information are used to
detect the iris. We have observed that the eyelid edge is noisy even in a good
quality image. However, the lower part of the iris is almost always visible, and its
edge is relatively clear if the eye is open. Thus, we use a half circle mask to filter
the iris edge (Figure 2). The radius of the iris circle templater0 is determined in
the first frame, since it is stable except for large out-of-plane head motion. The
radius of the circle is increased or decreased slightly (δr) from r0 so that it can
vary between minimum radius(r0 − δr) and maximum radius(r0 + δr). The
system determines that the iris is found when the following two conditions are
satisfied. One is that the edges in the mask are at their maximum. The other is
that the change in the average intensity is less than a threshold. Once the iris is
located, the eye is determined to be open and the iris center is the iris mask center
(x0, y0). The eyelid contours then are tracked. For a closed eye, a line connecting
the inner and outer corners of the eye is used as the eye boundary. The details of
our eye-tracking algorithm have been presented in [34].

(x0, y0)

r0

r1

r2

Figure 2. Half circle iris mask. (x0, y0) is the iris center; r0 is the iris
radius; r1 is the minimum radius of the mask; r2 is the maximum
radius of the mask.

Brow and cheek: Features in the brow and cheek areas are also important for
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expression analysis. Each left or right brow has one model – a triangular template
with six parameters(x1, y1), (x2, y2), and(x3, y3). Each cheek has also a sim-
ilar six parameter down-ward triangular template model. Both brow and cheek
templates are tracked using Lucas-Kanade algorithm [25].

3.3. Transient Features

In addition to permanent features that move and change their shape and posi-
tions, facial motion also produces transient features that provide crucial informa-
tion for recognition of certain AUs. Wrinkles and furrows appear perpendicular to
the direction of the motion of the activated muscles. Contraction of thecorrugator
muscle, for instance, produces vertical furrows between the brows, which is coded
in FACS as AU 4, while contraction of the medial portion of thefrontalismuscle
(AU 1) causes horizontal wrinkling in the center of the forehead.

Some of these transient features may become permanent with age. Perma-
nent crows-feet wrinkles around the outside corners of the eyes, which are char-
acteristic of AU 6, are common in adults but not in children. When wrinkles
and furrows become permanent, contraction of the corresponding muscles pro-
duces only changes in their appearance, such as deepening or lengthening. The
presence or absence of the furrows in a face image can be determined by edge
feature analysis [22, 24], or by eigen-image analysis [21, 35]. Terzopoulos and
Waters [32] detected the nasolabial furrows for driving a face animator, but with
artificial markers. Kwon and Lobo [22] detected furrows using snakes to classify
pictures of people into different age groups. Our previous system [24] detected
horizontal, vertical, and diagonal edges using a complex face template.

In our current system, we detect wrinkles in the nasolabial region, the nasal
root, and the areas lateral to the outer corners of the eyes (Figure 3). These areas
are located using the tracked locations of the corresponding permanent features.
We classify each of the wrinkles into one of two states: present and absent. Com-
pared with the neutral frame, the wrinkle state is classified as present if wrinkles
appear, deepen, or lengthen. Otherwise, it is absent.

We use a Canny edge detector to quantify the amount and orientation of fur-
rows [6]. For nasal root wrinkles and crows-feet wrinkles, we compare the num-
ber of edge pixelsE in the wrinkle areas of the current frame with the number
of edge pixelsE0 of the first frame. If the ratioE/E0 is larger than a thresh-
old, the furrows are determined to be present. Otherwise, the furrows are absent.
For nasolabial furrows, the existence of vertical to diagonal connected edges is
used for classification. If the connected edge pixels are larger than a threshold,
the nasolabial furrow is determined to be present and is modeled as a line. The
orientation of the furrow is represented as the angle between the furrow line and
line connecting the eye inner corners. This angle changes according to different
AUs. For example, the nasolabial furrow angle of AU 9 or AU 10 is larger than
that of AU 12.
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Figure 3. The areas for nasolabial furrows, nasal root, and outer
eye corners.

3.4. Examples of Feature Extraction

Permanent Features:Figure 4 shows the results of tracking permanent features
for the same subject with different expressions. In Figure 4 (a), (b) and (d), the
lips are tracked as they change in state from open to closed and tightly closed. The
iris position and eye boundaries are tracked while the eye changes from widely
opened to tightly closed and blink (Figure 4 (b), (c), and (d)). Notice that the
semi-circular iris model tracks the iris even when the iris is only partially visible.
Figures 5 and 6 show examples of tracking in subjects who vary in age, sex, skin
color, and in amount of out-plane head motion. Difficulty occurs in eye tracking
when the eye becomes extremely narrow. For example, in Figure 5 (a), the left
eye in the last image is mistakenly determined to be closed because the iris was
too small to be detected. In these examples, face size varies between 90×80 and
220×200 pixels. For display purpose, images have been cropped to reduce space.
Additional results can be found at http://www.cs.cmu.edu/∼face.
Transient Features: Figure 7 shows the results of nasolabial furrow detection
for different subjects and AUs. The nasolabial furrow angles systematically vary
between AU 9 and AU 12 (Figure 7 (a) and (b)). For some images, the nasolabial
furrow is detected only on one side. In the first image of Figure 7 (d), only the
left nasolabial furrow exists, and it is correctly detected. In the middle image
of Figure 7 (b), the right nasolabial furrow is missed because the length of the
detected edges is less than threshold. The results of nasal root and crows-feet
wrinkle detection are shown in Figure 8. Generally, the crows-feet wrinkles are
present for AU 6, and the nasal root wrinkles appear for AU 9.
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(a) (b) (c) (d)

Figure 4. Permanent feature tracking results for different expres-
sions of same subject. (a) Happy, (b) Surprise, (c) Disgust, (d)
Anger. Note appearance changes in eye and mouth states. In this
and the following figures, images have been cropped for display
purpose. Face size varies between 90×80 and 220×200 pixels.
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(a) (b) (c) (d)

Figure 5. Permanent feature tracking results for different subjects
(a), (b), (c), (d).
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(a) (b) (c)

Figure 6. Permanent feature tracking results with head motions.
(a) Head yaw, (b) Head pitch, (c) Head up and left with back-
ground motion.
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(a)

(b)

(c)

(d)

Figure 7. Nasolabial furrow detection results.
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(a)

(b)

(c)

Figure 8. Nasal root and crows-feet wrinkle detection. For the left
image of (a), (b), and (c), crows-feet wrinkles are present. For the
right image of (a), (b), and (c), the nasal root wrinkles appear.
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4. Facial Feature Representation and AU recognition by Neural
Networks

We transform the extracted features into a set of parameters for AU recogni-
tion. We first define a face coordinate system. Because the inner corners of the
eyes are most reliably detected and their relative position is unaffected by muscle
contraction, we define thex-axis as the line connecting two inner corners of eyes
and they-axis as perpendicular to it. We split the facial features into two groups
(upper face and lower face) of parameters because facial actions in the upper face
have little interaction with facial motion in lower face, and vice versa [13].
Upper Face Features: We represent the upper face features by 15 parame-
ters, which are defined in Table 4. Of these, 12 parameters describe the motion
and shape of the eyes, brows, and cheeks, 2 parameters describe the state of the
crows-feet wrinkles, and 1 parameter describes the distance between the brows.
To remove the effects of variation in planar head motion and scale between im-
age sequences in face size, all parameters are computed as ratios of their current
values to that in the initial frame. Figure 9 shows the coordinate system and the
parameter definitions.

Table 4. Upper face feature representation for AU recognition

Permanent features (Left and right) Other features
Inner brow Outer brow Eye height Distance of
motion motion (reheight) brows
(rbinner) (rbouter) (Dbrow)
rbinner rbouter reheight Dbrow

=bi−bi0
bi0

. =bo−bo0
bo0

. = (h1+h2)−(h10+h20)
(h10+h20)

. =D−D0
D0

.
If rbinner > 0, If rbouter > 0, If reheight > 0, If Dbrow < 0
Inner brow Outer brow Eye height Two brows drawn
move up. move up. increases. together.
Eye top lid Eye bottom lid Cheek motion crows-feet wrinkles
motion (rtop) motion (rbtm) (rcheek) Wleft/right

rtop rbtm rcheek If Wleft/right = 1,
=h1−h10

h10
. =−h2−h20

h20
. =− c−c0

c0
. Left/right crows

If rtop > 0, If rbtm > 0, If rcheek > 0, feet wrinkle
Eye top lid Eye bottom lid Cheek present.
move up. move up. move up.

Lower Face Features: Nine parameters represent the lower face features ( Ta-
ble 5 and Figure 10). Of these, 6 parameters describe lip shape, state and motion,
and 3 describe the furrows in the nasolabial and nasal root regions. These param-
eters are normalized by using the ratios of the current feature values to that of the
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Figure 9. Upper face features. hl(hl1 + hl2) and hr(hr1 + hr2) are
the height of left eye and right eye; D is the distance between
brows; cl and cr are the motion of left cheek and right cheek. bli
and bri are the motion of the inner part of left brow and right
brow. blo and bro are the motion of the outer part of left brow
and right brow. fl and fr are the left and right crows-feet wrinkle
areas.

Figure 10. Lower face features. h1 and h2 are the top and bottom
lip heights; w is the lip width; Dleft is the distance between the left
lip corner and eye inner corners line; Dright is the distance between
the right lip corner and eye inner corners line; n1 is the nasal root
area.
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Table 5. Lower face feature representation for AUs recognition

Permanent features
Lip height Lip width Left lip corner
(rheight) (rwidth) motion (rleft)
rheight rwidth rleft

= (h1+h2)−(h10+h20)
(h10+h20)

. =w−w0
w0

. =−Dleft−Dleft0
Dleft0

.
If rheight > 0, If rwidth > 0, If rleft > 0,
lip height lip width left lip corner
increases. increases. moves up.
Right lip corner Top lip motion Bottom lip
(rright) (rtop) motion(rbtm)
rright rtop rbtm

=−Dright−Dright0
Dright0

. =−Dtop−Dtop0
Dtop0

. =−Dbtm−Dbtm0
Dbtm0

.
If rright > 0, If rtop > 0, If rbtm > 0,
right lip corner top lip bottom lip
moves up. moves up. moves up.

Transient features
Left nasolibial Right nasolibial State of nasal
furrow angle furrow angle root wrinkles
(Angleft) (Angright) (Snosew)
Left nasolibial Left nasolibial If Snosew = 1,
furrow present furrow present nasal root wrinkles
with angleAngleft. with angle present.

Angright.
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neutral frame.
AU Recognition by Neural Networks: We use three-layer neural networks with
one hidden layer to recognize AUs by a standard back-propagation method [29].
Separate networks are used for the upper- and lower face. For AU recognition in
the upper face, the inputs are the 15 parameters shown in Table 4. The outputs are
the 6 single AUs (AU 1, AU 2, AU 4, AU 5, AU 6, and AU7) andNEUTRAL.
In the lower face, the inputs are the 7 parameters shown in Table 5 and the outputs
are 10 single AUs ( AU 9, AU 10, AU 12, AU 15, AU 17, AU 20, AU 23+24, AU
25, AU 26, and AU 27) andNEUTRAL. These networks are trained to respond
to the designated AUs whether they occur singly or in combination. When AUs
occur in combination, multiple output nodes are excited.

5. Experimental Evaluations
We conducted three experiments to evaluate the performance of our system.

The first is AU recognition in the upper face when image data contain only sin-
gle AUs. The second is AU recognition in the upper and lower face when image
data contain both single AUs and combinations. The third experiment evaluates
the generalizability of our system by using completely disjointed databases for
training and testing, while image data contain both single AUs and combinations.
Finally, we compared the performance of our system with that of other AU recog-
nition systems.

5.1. Facial Expression Image Databases

Two databases were used to evaluate our system: the Cohn-Kanade AU-Coded
Face Expression Image Database [20] and Ekman-Hager Facial Action Exem-
plars [15].
Cohn-Kanade AU-Coded Face Expression Image Database:We have been
developing a large-scale database for promoting quantitative study of facial ex-
pression analysis [20]. The database currently contains a recording of the facial
behavior of 210 adults who are 18 to 50 years old; 69% female and 31% male;
and 81% Caucasian, 13% African, and 6% other groups. Over 90% of the subjects
had no prior experience in FACS. Subjects were instructed by an experimenter to
perform single AUs and AU combinations. Subjects’ facial behavior was recorded
in an observation room. Image sequences with in-plane and limited out-of-plane
motion were included.

The image sequences began with a neutral face and were digitized into 640x480
pixel arrays with either 8-bit gray-scale or 24-bit color values. To date, 1,917 im-
age sequences of 182 subjects have been FACS coded by certified FACS coders for
either the entire sequence or target AUs. Approximately 15% of these sequences
were coded by two independent certified FACS coders to validate the accuracy
of the coding. Inter-observer agreement was quantified with coefficient kappa,
which is the proportion of agreement above what would be expected to occur by
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chance [17]. The mean kappas for inter-observer agreement were 0.82 for target
AUs and 0.75 for frame-by-frame coding.
Ekman-Hager Facial Action Exemplars: This database was provided by Ekman
at the Human Interaction Laboratory, University of California, San Francisco, and
contains images that were collected by Hager, Methvin, and Irwin. Bartlett et
al. [2] and Donato et al. [10] used this database to train and test their AU recog-
nition systems. The Ekman-Hager database includes 24 Caucasian subjects (12
males and 12 females). Each image sequence consists of 6 to 8 frames that were
sampled from a longer image sequence. Image sequences begin with a neutral
expression (or weak facial actions) and end with stronger facial actions. AUs
were coded for each frame. Sequences containing rigid head motion detectable
by a human observer were excluded. Some of the image sequences contain large
lighting changes between frames, and we normalized intensity to keep the average
intensity constant throughout the image sequence.

5.2. Upper Face AU Recognition for Image Data Containing Only Single
AUs

In the first experiment, we used a neural network-based recognizer having the
structure shown in Figure 11. The inputs to the network were the upper face
feature parameters shown in Table 4. The outputs were the same set of 6 single
AUs (AU 1, AU 2, AU 4, AU 5, AU 6, AU 7); these are the same set that were used
by Bartlett and Donato. In addition, we included an output node forNEUTRAL.
The output node that showed the highest value was interpreted as the recognized
AU. We tested various numbers of hidden units and found that 6 hidden units gave
the best performance.

Figure 11. Neural network-based recognizer for single AUs in the
upper face. The inputs are the feature parameters, and the output
is one label out of 6 single AUs and NEUTRAL.
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From the Ekman-Hager database, we selected image sequences in which only
a single AU occurred in the upper face. 99 image sequences from 23 subjects
met this criterion. These 99 image sequences we used are the superset of the 80
image sequences used by Bartlett and Donato. The initial and final two frames
in each image sequence were used. As shown in Table 6, the image sequences
were assigned to training and testing sets in two ways. InS1, the sequences were
randomly selected, so the same subject was allowed to appear in both training
and testing sets. InS2, no subject could appear in both training and testing sets;
testing was performed done with novel faces.

Table 6. Details of training and testing data from Ekman-Hager
Database that are used for single AU recognition in the upper face.
In S1, some subjects appear in both training and testing sets. In
S2, no subject appears in both training and testing sets.

Data Set number of Single AUs
Sequences AU1 AU2 AU4 AU5 AU6 AU7 NEUT RAL Total

S1 T rain 47 14 12 16 22 12 18 47 141
T est 52 14 12 20 24 14 20 52 156

S2 T rain 50 18 14 14 18 22 16 50 152
T est 49 10 10 22 28 4 22 49 145

Table 7 shows the recognition results with theS1 testing set. The average
recognition rate was 88.5% when samples ofNEUTRAL were excluded (Rec-
ognizing neutral faces is easier), and 92.3% when samples ofNEUTRAL were
included. For theS2 test set (i.e. novel faces), the recognition rate remained
virtually identical: 89.4% (NEUTRAL exclusive) and 92.9% (NEUTRAL in-
clusive), which is shown in Table 8.

5.3. Upper and Lower Face AU Recognition for Image Sequences Contain-
ing Both Single AUs and Combinations

Because AUs can occur either singly or in combinations, an AU recognition
system must have the ability to recognize them however they occur. All previous
AU recognition systems [2, 10, 24] were trained and tested on single AUs only. In
these systems, even when AU combinations were included, each combination was
treated as if it were a separate AU. Because potential AU combinations number in
the thousands, this method of separately treating AU combinations is impractical.
In our second experiment, we trained a neural network to recognize AUs singly
and in combinations by allowing multiple output units of the networks to fire when
the input consists of AU combinations.
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Table 7. AU recognition for single AUs on S1 training and testing
sets in experiment 1. A same subject could appear in both train-
ing and testing sets. The numbers in bold are results excluding
NEUTRAL.

Recognition outputs
AU 1 AU 2 AU 4 AU 5 AU 6 AU 7 NEUT RAL

AU1 12 2 0 0 0 0 0
H AU2 3 9 0 0 0 0 0
u AU4 0 0 20 0 0 0 0
m AU5 0 0 0 22 0 0 2
a AU6 0 0 0 0 12 2 0
n AU7 0 0 0 0 2 17 1

NEUT RAL 0 0 0 0 0 0 52
Recognition 88.5% (excludingNEUTRAL)

Rate 92.3% (includingNEUTRAL)

Table 8. AU recognition for single AUs on S2 train and testing sets
in experiment 1. No subject appears in both training and testing
sets. The numbers in bold are results excluding NEUTRAL.

Recognition outputs
AU 1 AU 2 AU 4 AU 5 AU 6 AU 7 NEUT RAL

AU1 10 0 0 0 0 0 0
H AU2 2 7 0 0 0 0 1
u AU4 0 0 20 0 0 0 2
m AU5 0 0 0 26 0 0 2
a AU6 0 0 0 0 4 0 2
n AU7 0 0 0 0 0 21 1

NEUT RAL 0 0 0 0 0 0 49
Recognition 89.4% (excludingNEUTRAL)

Rate 92.9% (includingNEUTRAL)
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Figure 12. Neural network-based recognizer for AU combinations
in the upper face.

Upper Face AUs:The neural network-based recognition system for AU combina-
tion is shown in Figure 12. The network has a similar structure to that used in ex-
periment 1, where the output nodes correspond to 6 single AUs plusNEUTRAL.
However, the network for recognizing AU combinations is trained so that when an
AU combination is presented, multiple output nodes that correspond to the com-
ponent AUs are excited. In training, all of the output nodes that correspond to
the input AU components are set to have the same value. For example, when a
training input is AU 1+2+4, the output values are trained to be 1.0 for AU 1, AU
2, and AU 4; 0.0 for the remaining AUs andNEUTRAL. At the run time, AUs
whose output nodes show values higher than the threshold are considered to be
recognized.

A total of 236 image sequences of 23 subjects from the Ekman-Hager database
(99 image sequences containing only single AUs and 137 image sequences con-
taining AU combinations) were used for recognition of AUs in the upper face. We
split them into training (186 sequences) and testing (50 sequences) sets by sub-
jects (9 subjects for training and 14 subjects for testing) to ensure that the same
subjects did not appear in both training and testing. Testing, therefore, was done
with ”novel faces”. From experiments, we have found that it was necessary to in-
crease the number of hidden units from 6 to 12 to obtain optimized performance.

Because input sequences could contain one or more AUs, several outcomes
were possible.Correct denotes that the recognized results were completely iden-
tical to the input samples.Partially correct denotes that some but not all of the
AUs were recognized (Missing AUs) or that AUs that did not occur were mis-
recognized in addition to the one(s) that did (Extra AUs). If none of the AUs
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Table 9. Upper face AU recognition with AU combinations in
experiment 2. The numbers in bold face are results excluding
NEUTRAL. The Missing AUs column shows the AUs that are
missed. The Extra AUs column lists the extra AUs that are mis-
recognized. The recognized AU with ”*” indicates that it includes
both Missing AUs and Extra AUs.

Recognized AUs
Actual AUs Samples Correct P artially correct Incorrect

Missing AUs Extra AUs

AU 1 8 4 - 4(AU 1 + AU 2) -
AU 2 4 - - 2(AU 1 + AU 2) -

2(AU 1 + AU 2 + AU 4)

AU 4 8 8 - - -
AU 5 8 8 - - -
AU 6 8 8 - - -
AU 7 4 2 - 2(AU 6 + AU 7) -

AU 1+2 16 16 - - -
AU 1+2+4 8 8 - - -
AU 1+2+5 4 2 2(AU 1 + AU 2 + AU 4)* -
AU 1+4 4 4 - - -
AU 1+6 4 2 2(AU 1) - -
AU 4+5 8 6 2(AU 4) - -
AU 6+7 16 14 2(AU 6) - -

NEUTRAL 50 50 - - -
With Total 100 82 18

respect 150 132
to Recognition 82% (excludingNEUTRAL)

samples rate 88% (includingNEUTRAL)
False alarm 12% (excludingNEUTRAL)

6.7% (includingNEUTRAL)
With Total 172 164 8 14 -

respect 222 214
to Recognition 95.4% (excludingNEUTRAL)

AU rate 96.4% (includingNEUTRAL)
components False alarm 8.2% (excludingNEUTRAL)

6.3% (includingNEUTRAL)
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that occurred were recognized, the result wasIncorrect.
Using Equations (1) and (2), we calculated recognition- and false-alarm rates

for input samples and input AU components, respectively. Human FACS coders
typically use the latter to calculate percentage agreement. We believe, however,
that the recognition rates based on input samples are the more conservative mea-
sures.

Recognition rate =





Total number of correctly recognized samples
Total number of samples based on inputsamples

Total number of correctly recognized AUs
Total number of AUs based onAU components

(1)

False alarm rate =





Total number of recognized samples with extra AUs
Total number of samples based on inputsamples

Total number of extra AUs
Total number of AUs based onAU components

(2)
Table 9 shows a summary of the AU combination recognition results of 50

test image sequences of 14 subjects from the Ekman-Hager database. For input
samples, we achieved average recognition and false alarm rates of 88% and 6.7%
respectively whenNEUTRAL was included, and 82% and 12% respectively
whenNEUTRAL was excluded. AU component-wise, an average recognition
rate of 96.4% and a false alarm rate of 6.3% were achieved whenNEUTRAL
was included and a recognition rate of 95.4% and a false alarm rate of 8.2% was
obtained whenNEUTRAL was excluded.

Recognition rates in experiment 2 were slightly higher than those in experiment
1. There are two possible reasons. One is that in the neural network used in
experiment 2, multiple output nodes could be excited to allow for recognition of
AUs occurring in combinations. Another reason maybe that a larger training data
set was used in experiment 2.
Lower Face AUs: The same structure of the neural network-based recognition
scheme as shown in Figure 12 was used, except that the input feature parameters
and the output component AUs now are those for the lower face. The inputs were
the lower face feature parameters shown in Table 5. The outputs of the neural
network were the 11 single AUs (AU 9, AU 10, AU 12, AU 15, AU 17, AU 20,
AU 25, AU 26, AU 27, AU23+24, andNEUTRAL) (see Table 2). Note that
AU 23+24 is modeled as a single unit, instead of as AU 23 and AU 24 separately,
because they almost always occurred together in our data. Use of 12 hidden units
achieved the best performance in this experiment.

A total of 463 image sequences from the Cohn-Kanade AU-Coded Face Ex-
pression Image Database were used for lower face AU recognition. Of these, 400
image sequences were used as the training data and 63 sequences were used as
the testing data. The test data set included 10 single AUs,NEUTRAL, and 11
AU combinations (such as AU 12+25, AU 15+17+23, AU 9+17+23+24, and AU
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Table 10. Lower face AU recognition results in experiment 2.

Recognized AUs
Actual AUs Samples Correct P artially correct Incorrect

Missing AUs Extra AUs

AU 9 2 2 - - -
AU 10 4 4 - - -
AU 12 4 4 - - -
AU 15 2 2 - - -
AU 17 6 6 - - -
AU 20 4 4 - - -
AU 25 30 30 - - -
AU 26 12 9 - - 3(AU 25)
AU 27 8 8 - - -

AU 23+24 0 - - - -
AU 9+17 12 12 - - -

AU 9+17+23+24 2 2 - - -
AU 9+25 2 2 - - -
AU 10+17 4 1 1(AU 17) - -

2(AU 10 + AU 12)*
AU 10+15+17 2 2 - - -

AU 10+25 2 2 - - -
AU 12+25 8 8 - - -
AU 12+26 2 - 2(AU 12 + AU 25)* -
AU 15+17 8 8 - - -

AU 17+23+24 4 4 - - -
AU 20+25 8 8 - - -

NEUTRAL 63 63 - - -
With Total No. of 126 118 8

respect input samples 189 181
to Recognition 93.7% (excludingNEUTRAL)

samples rate of samples 95.8% (includingNEUTRAL)
False alarm 6.4% (excludingNEUTRAL)
of samples 4.2% (includingNEUTRAL)

With Total No. 180 172 5 7 3
respect of AUs 243 235

to Recognition 95.6% (excludingNEUTRAL)
AU rate of AUs 96.7% (includingNEUTRAL)

components False alarm 3.9% (excludingNEUTRAL)
of AUs 2.9% (includingNEUTRAL)
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17+20+26) from 32 subjects; none of these subjects appeared in training dataset.
Some of the image sequences contained limited planar and out-of-plane head mo-
tions.

Table 10 shows a summary of the AU recognition results for the lower face
when image sequences contain both single AUs and AU combinations. As above,
we report the recognition and false alarm rates based on both number of input
samples and number of AU components (see equations (1) and (2)). With respect
to the input samples, an average recognition rate of 95.8% was achieved with a
false alarm rate of 4.2% whenNEUTRAL was included and a recognition rate of
93.7% and a false alarm rate of 6.4% whenNEUTRAL was excluded. With re-
spect to AU components, an average recognition rate of 96.7% was achieved with
a false alarm rate of 2.9% whenNEUTRAL was included, and a recognition rate
of 95.6% with a false alarm rate of 3.9% was obtained whenNEUTRAL was
excluded.
Major Causes of the Misidentifications: Most of the misidentifications come
from confusions between similar AUs: AU1 and AU2, AU6 and AU7, and AU25
and AU26. The confusions between AU 1 and AU 2 were caused by the strong
correlation between them. The action of AU 2, which raises the outer portion of
the brow, tends to pull the inner brow up as well (see Table 1). Both AU 6 and AU
7 raise the lower eyelids and are often confused by human AU coders as well [8].
All the mistakes of AU 26 were due to confusion with AU 25. AU 25 and AU
26 contain parted lips but differ only with respect to motion of the jaw, but jaw
motion was not detected or used in the current system.

5.4. Generalizability between Databases

To evaluate the generalizability of our system, we trained the system on one
database and tested it on another independent image database that was collected
and FACS coded for ground-truth by a different research team. One was Cohn-
Kanade database and the other was the Ekman-Hager database. This procedure
ensured a more rigorous test of generalizability than more usual methods which
divide a single database into training and testing sets. Table 11 summarizes the
generalizability of our system.

For upper face AU recognition, the network was trained on 186 image se-
quences of 9 subjects from the Ekman-Hager database and tested on 72 image
sequences of 7 subjects from the Cohn-Kanade database. Of the 72 image se-
quences, 55 consisted of single AUs (AU 1, AU 2, AU 4, AU 5, AU 6, and AU
7) and the others contained AU combinations such as AU 1+2, AU 1+2+4, and
AU 6+7. We achieved a recognition rate of 93.2% and a false alarm of 2% (when
samples ofNEUTRAL were included), which is only slightly (3-4%) lower than
the case Ekman-Hager database was used for both training and testing.

For lower face AU recognition, the network was trained on 400 image se-
quences of 46 subjects from the Cohn-Kanade database and tested on 50 image
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Table 11. Generalizability to independent databases. The numbers
in bold are results from independent databases.

Test databases Train
Cohn-Kanade Ekman-Hager databases

upper 93.2% 96.4% Ekman-
Recognition face (Table 9) Hager

Rate lower 96.7% 93.4% Cohn-
face (Table 10 ) Kanade

sequences of 14 subjects from the Ekman-Hager database. Of the 50 image se-
quences, half contained AU combinations, such as AU 10+17, AU 10+25, AU
12+25, AU 15+17, and AU 20+25. No instances of AU 23+24 were available in
the Ekman-Hager database. We achieved a recognition rate of 93.4% (when sam-
ples ofNEUTRAL were included). These results were again only slightly lower
than those of using the same database. The system showed high generalizability.

5.5. Comparison With Other AU Recognition Systems

We compare the current AFA system’s performance with that of Cohn et al. [8],
Lien et al. [24], Bartlett et al. [2], and Donato et al. [10]. The comparisons are
summarized in Table 12. When performing comparison of recognition results in
general, it is important to keep in mind differences in experimental procedures
between systems. For example, scoring methods may be either by dividing the
dataset into training and testing sets [8, 24] or by using a leave-one-out cross-
validation procedure [2, 10]. Even when the same dataset is used, the particular
AUs that were recognized or the specific image sequence that were used for eval-
uation are not necessarily the same. Therefore, minor differences in recognition
rates between systems are not meaningful.

In Table 12, the systems were compared along several characteristics: feature
extraction methods, recognition rates, treatment of AU combinations, AUs recog-
nized, and databases used. The terms ”old faces” and ”novel faces” in the third
column requires some explanation. ”Old faces” means that in obtaining the recog-
nition rates some subjects appear in both training and testing sets. ”Novel faces”
means no same subject appears in both training and testing sets; this is obviously
a little more difficult case than ”Old faces”. In the fourth column, the terms ”No”,
”Y es/Y es”, and ”Y es/No” are used to describe how the AU combinations are
treated. ”No” means that no AU combination was recognized. ”Y es/Y es” means
that AU combinations were recognized and AUs in combination were recogniz-
able individually. ”Y es/No” means that AU combinations were recognized but
each AU combination was treated as if it were a separate new AU. Our current
AFA system, while being able to recognize a larger number of AUs and AU com-
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Table 12. Comparison with other AU recognition systems. In the
fourth column, ”No” means that no AU combination was recog-
nized. ”Y es/Y es” means that AU combinations were recognized
and AUs in combination were recognizable individually. ”Y es/No”
means that AU combinations were recognized but each AU com-
bination was treated as if it were a separate new AU.

Systems Methods Recognition Treatment of AUs to be Databases
rates AU combinations recognized

88.5%
(old faces) No

89.4% AU 1, 2, 4, Ekman-
Current AFA Feature-based (novel faces) AU 5, 6, 7. Hager

system 95.4% Y es/Y es
AU 9,10,12,15, Cohn-

95.6% Y es/Y es AU17,20,25,26, Kanade
AU27,23+24.

85.3%
Feature-based (old faces)

Bartlett 57% AU 1, 2, 4, Ekman-
et al. [2] (novel faces) No AU 5, 6, 7. Hager

Optic-flow 84.5%
Hybrid 90.9%

ICA or Gabor 96.9% AU 1, 2, 4,
Donato wavelet No AU 5, 6, 7. Ekman-

et al. [10] Others 70.3%-85.6% Hager
ICA or Gabor 95.5% Y es/No AU17,18,9+25

Others 70.3%-85.6% AU10+25,16+25
89% Y es/No AU1+2,1+4, 4,

AU 5, 6, 7.
Cohn Feature-Tracking AU12,6+12+25, Cohn-

et al.[8] 82.3% Y es/No AU20+25,15+17, Kanade
AU17+23+24,9+17. (Subset)

AU 25, 26, 27
Dense-flow 91% Y es/No AU 1+2,1+4,

Edge-detection 87.3% AU 4.
Feature-Tracking 89% Y es/No AU1+2,1+4, 4,

Lien AU 5, 6, 7.
et al.[24] AU12,6+12+25,

Dense-flow 92.3% Y es/No AU20+25,15+17, Cohn-
AU17+23+24,9+17. Kanade

AU12,6+12+25, (Subset)
Feature-Tracking 88% Y es/No AU20+25,15+17,

AU17+23+24,9+17.
AU 25, 26, 27

Edge-detection 80.5% Y es/No AU9+17,12+25.
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binations, shows the best or near the best recognition rates even for the tests with
”novel faces” or in tests where independent different databases are used for train-
ing and testing.

6. Conclusion
Automatically recognizing facial expressions is important to understand hu-

man emotion and paralinguistic communication, to design multimodal user inter-
faces, and to relate applications such as human identification. The facial action
coding system (FACS) developed by Ekman and Friesen [13] is considered to be
one of the best and accepted foundations for recognizing facial expressions. Our
feature-based automatic face analysis (AFA) system has shown improvement in
AU recognition over previous systems.

It has been reported [2, 5, 40] that template based methods (including image
decomposition with image kernels such as Gabors, Eigenfaces, and Independent
Component Images) outperform explicit parameterization of facial features. Our
comparison indicates that a feature-based method performs just as well as the best
template based method and in more complex data. It may be premature to con-
clude that one or the other approach is superior. Recovering FACS-AUs from
video using automatic computer vision techniques is not an easy task, and nu-
merous challenges remain [20]. We feel that further efforts will be required for
combining both approaches in order to achieve the optimal performance, and that
tests with a substantially large database are called for [1].
Acknowledgements

The authors would like to thank Paul Ekman, at the Human Interaction Lab-
oratory, University of California, San Francisco for providing the Ekman-Hager
database. The authors also thank Zara Ambadar, Bethany Peters, and Michelle
Lemenager for processing the images. The authors appreciate the helpful com-
ments and suggestions of Marian Bartlett, Simon Baker, Karen Schmidt, and
anonymous reviewers. This work was supported by the NIMH grant R01 MH51435.

References
[1] Facial Expression Coding Project. Cooperation and competition between Carnegie

Mellon University and University of California, San Diego (Unpublished), 2000.
[2] M. Bartlett, J. Hager, P.Ekman, and T. Sejnowski. Measuring facial expressions by

computer image analysis.Psychophysiology, 36:253–264, 1999.
[3] M. J. Black and Y. Yacoob. Trcking and recognizing rigid and non-rigid facial mo-

tions using local parametric models of image motion. InProc. Of International con-
ference on Computer Vision, pages 374–381, 1995.

[4] M. J. Black and Y. Yacoob. Recognizing facial expressions in image sequences using
local parameterized models of image motion.International Journal of Computer
Vision, 25(1):23–48, October 1997.

[5] R. Brunelli and T. Poggio. Face recognition: Features versus templates.IEEE Trans.
on Pattern Analysis and Machine Intelligence, 15(10):1042–1052, Oct. 1993.

32



[6] J. Canny. A computational approach to edge detection.IEEE Trans. Pattern Analysis
Mach. Intell., 8(6), 1986.

[7] J. M. Carroll and J. Russell. Facial expression in hollywood’s portrayal of emotion.
Journal of Personality and Social Psychology., 72:164–176, 1997.

[8] J. F. Cohn, A. J. Zlochower, J. Lien, and T. Kanade. Automated face analysis by
feature point tracking has high concurrent validity with manual facs coding.Psy-
chophysiology, 36:35–43, 1999.

[9] C. Darwin.The Expression of Emotions in Man and Animals. John Murray, reprinted
by University of Chicago Press, 1965, 1872.

[10] G. Donato, M. S. Bartlett, J. C. Hager, P. Ekman, and T. J. Sejnowski. Classify-
ing facial actions.IEEE Transaction on Pattern Analysis and Machine Intelligence,
21(10):974–989, Oct. 1999.

[11] Eihl-Eihesfeldt.Human ethology. NY: Aldine de Gruvter, 1989.
[12] P. Ekman. Facial expression and emotion.American Psychologist, 48:384–392,

1993.
[13] P. Ekman and W. Friesen.The Facial Action Coding System: A Technique For The

Measurement of Facial Movement. Consulting Psychologists Press, Inc., San Fran-
cisco, CA, 1978.

[14] P. Ekman and W. V. Friesen.Pictures of facial affect. Palo Alto, CA: Consulting
Psychologist., 1976.

[15] P. Ekman, J. Hager, C. H. Methvin, and W. Irwin.Ekman-Hager Facial Action Ex-
emplars. Unpublished data, Human Interaction Laboratory, University of California,
San Francisco.

[16] I. Essa and A. Pentland. Coding, analysis, interpretation, and recognition of facial
expressions.IEEE Trans. on Pattern Analysis and Machine Intell., 19(7):757–763,
July 1997.

[17] J. Fleiss.Statistical Methods for Rates and Proportions. NY: Wiley, 1981.
[18] K. Fukui and O. Yamaguchi. Facial feature point extraction method based on com-

bination of shape extraction and pattern matching.Systems and Computers in Japan,
29(6):49–58, 1998.

[19] C. Izard, L. Dougherty, and E. A. Hembree. A system for identifying affect expres-
sions by holistic judgments. InUnpublished Manuscript, University of Delaware,
1983.

[20] T. Kanade, J. Cohn, and Y. Tian. Comprehensive database for facial expression anal-
ysis. InProceedings of International Conference on Face and Gesture Recognition,
pages 46–53, March, 2000.

[21] M. Kirby and L. Sirovich. Application of the k-l procedure for the characteriza-
tion of human faces.IEEE Transc. On Pattern Analysis and Machine Intelligence,
12(1):103–108, Jan. 1990.

[22] Y. Kwon and N. Lobo. Age classification from facial images. InProc. IEEE Conf.
Computer Vision and Pattern Recognition, pages 762–767, 1994.

[23] K. Lam and H. Yan. Locating and extracting the eye in human face images.Pattern
Recognition, 29(5):771–779, 1996.

[24] J.-J. J. Lien, T. Kanade, J. F. Cohn, and C. C. Li. Detection, tracking, and classifica-
tion of action units in facial expression.Journal of Robotics and Autonomous System,
31:131–146, 2000.

33



[25] B. Lucas and T. Kanade. An interative image registration technique with an ap-
plication in stereo vision. InThe 7th International Joint Conference on Artificial
Intelligence, pages 674–679, 1981.

[26] K. Mase. Recognition of facial expression from optical flow.IEICE Transactions, E.
74(10):3474–3483, October 1991.

[27] R. R. Rao.Audio-Visal Interaction in Multimedia. PHD Thesis, Electrical Engineer-
ing, Georgia Institute of Technology, 1998.

[28] M. Rosenblum, Y. Yacoob, and L. S. Davis. Human expression recognition from
motion using a radial basis function network archtecture.IEEE Transactions On
Neural Network, 7(5):1121–1138, 1996.

[29] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.IEEE
Transactions On Pattern Analysis and Machine intelligence, 20(1):23–38, January
1998.

[30] K. Scherer and P. Ekman.Handbook of methods in nonverbal behavior research.
Cambridge University Press, Cambridge, UK, 1982.

[31] M. Suwa, N. Sugie, and K. Fujimora. A preliminary note on pattern recognition of
human emotional expression. InInternational Joint Conference on Pattern Recogni-
tion, pages 408–410, 1978.

[32] D. Terzopoulos and K. Waters. Analysis of facial images using physical and anatom-
ical models. InIEEE International Conference on Computer Vision, pages 727–732,
1990.

[33] Y. Tian, T. Kanade, and J. Cohn. Robust lip tracking by combining shape, color and
motion. InProc. Of ACCV’2000, pages 1040–1045, 2000.

[34] Y. Tian, T. Kanade, and J. Cohn. Dual-state parametric eye tracking. InProceed-
ings of International Conference on Face and Gesture Recognition, pages 110–115,
March, 2000.

[35] M. Turk and A. Pentland. Face recognition using eigenfaces. InProc. IEEE Conf.
Computer Vision and Pattern Recognition, pages 586–591, 1991.

[36] Y. Yacoob and M. J. Black. Parameterized modeling and recognition of activities. In
Proc. 6th IEEE Int. Conf. on Computer Vision, pages 120–127, Bombay, India, 1998.

[37] Y. Yacoob and L. Davis. Recognizing human facial expression from long image
sequences using optical flow.IEEE Trans. on Pattern Analysis and Machine Intell.,
18(6):636–642, June 1996.

[38] Y. Yacoob, H.-M. Lam, and L. Davis. Recognizing faces showing expressions. In
Proc. Int. Workshop on Automatic Face- and Gesture-Recognition, pages 278–283,
Zurich, Switserland, 1995.

[39] A. Yuille, P. Haallinan, and D. S. Cohen. Feature extraction from faces using de-
formable templates.International Journal of Computer Vision, 8(2):99–111, 1992.

[40] Z. Zhang. Feature-based facial expression recognition: Sensitivity analysis and ex-
periments with a multi-layer perceptron.International Journal of Pattern Recogni-
tion and Artificial Intelligence, 13(6):893–911, 1999.

34


