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Super-Resolved Fine Scale Sea Ice Motion Tracking
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Abstract—Monitoring sea ice activities is particularly critical
to safe naval operations in the Arctic Ocean. Accurately tracking
sea ice motions is essential to validate or even improve sea ice
models for ice hazard forecasts at a fine scale. Fine-scale motions
can be tracked from high-resolution radar or optical satellite
imagery but with limited coverage. Daily motions over the entire
Arctic are retrievable from passive microwave data, but at a much
lower spatial resolution. Thus, providing motions at the passive
microwave spatial and temporal coverage, but at an enhanced
spatial resolution, will be a significant benefit. To break the
resolution limitation and to boost tracking accuracy, a sequential
super-resolved fine scale sea ice motion tracking framework is
proposed in which a hybrid example-based single image super-
resolution algorithm is employed before the tracking procedure.
Experiments demonstrate that the proposed framework signifi-
cantly improves the tracking performance in both accuracy and
robustness for a benchmark algorithm and a recently proposed
state-of-the-art tracking algorithm.

Index Terms—AMSR2, example-based learning, maximum
cross correlation, motion tracking, passive microwave, patch
redundancy, sea ice, super-resolution, Suomi NPP.

I. INTRODUCTION

Sea ice is a vital component in the Earth’s climate as well
as posing potential hazards to shipping and other maritime
activities in the Polar regions. It is particularly critical to
monitor and track the motions of sea ice in near real-time
(i.e., within several hours of data acquisition) for safe naval
operations in the Arctic Ocean, as well as to further validate or
improve models of the polar ice pack, coupled with predictors
like ocean temperatures, sea level pressure, and geostrophic
winds, for ice hazard forecasts at a finer scale [1]-[4]. Several
international operational ice centers provide routine tactical
and strategic ice analyses in support of navigation and other
activities in the Arctic, including the U.S. National Ice Center
in Suitland, Maryland, USA [5].

The majority of operational sea ice monitoring techniques
relies on satellite-borne optical and synthetic aperture radar
(SAR) sensors, augmented by scatterometer and passive mi-
crowave imagery [6], [7]. Feasibility and accuracy in ice
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motion tracking hinge on the spatial and temporal resolutions
of the input data. High spatial resolution (i.e., 100 — 1,000 m)
is possible with visible and SAR imagery, but at the cost of
limited temporal sampling due to clouds (for visible imagery)
or limited coverage (for SAR—narrow swaths, longer orbital
repeat visits). On the other hand, passive microwave data can
provide near-complete daily coverage over the entire Arctic,
but at low spatial resolutions (i.e., 12.5 — 25 km) [2], [8], [9].

Compared with other means of measuring ice drift (e.g.,
buoys), satellite sensors provide a more complete and routine
coverage of Polar regions [10]. In particular, with the capa-
bilities to penetrate cloud cover and observe the surface all
day, satellite microwave sensors, including passive microwave
sensors, are often considered as the best option to estimate
sea ice drifts. The Defense Meteorological Satellite Program
(DMSP) Special Sensor Microwave Radiometer and its pre-
decessors, the Nimbus-7 Scanning Multichannel Microwave
Radiometer (SMMR) and a series of DMSP Special Sensor
Microwave/Imager (SSM/I) and Special Sensor Microwave
Imager and Sounder (SSMIS) instruments have been operated
for over 30 years, providing a long time-series of sea ice
motion data [11].

Beginning in 2002, the National Aeronautics and Space
Administration (NASA) Earth Observing System (EOS) Ad-
vanced Microwave Scanning Radiometer (AMSR-E) on the
Aqua platform and the Japan Aerospace Exploration Agency
(JAXA) AMSR?2 sensor on the Global Change Observation
Mission—Water (GCOM-W) platform have provided higher
resolution passive microwave imagery. The higher spatial res-
olution (i.e., 5—12.5 km) yields more accurate estimates of sea
ice motions [12], [13], though fine scale motions (such as frac-
tures and small lead openings) are still not detectable. These
fine scale motions are important for effectively tracking energy
fluxes, ice growth, and ocean freshwater fluxes. Moreover,
they are critically important for navigational guidance in ice-
infested waters. Providing motions at the passive microwave
spatial and temporal coverage but at enhanced resolution will
be a significant benefit.

This paper presents a test case application of image super-
resolution (SR) method enhancing passive microwave derived
sea ice motions. SR techniques have been utilized in the
remote sensing field for various applications [14]-[16]. In
this paper, we aim to accurately track sea ice motion at
fine scales by first constructing high-resolution images with
a hybrid example-based SR algorithm. Afterwards, a bench-
mark tracking algorithm based on maximum cross-correlation
(MCQ) [17] is applied to estimate sea ice drift vectors and
track the sea ice movements. To our best knowledge, the
proposed framework is the first to apply a hybrid example-
based SR scheme for the sea ice tracking purpose. We adopt
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the benchmark MCC algorithm since in principle, it can
work on any type of imagery and has been successfully
applied to sea ice with visible/infrared, scatterometer, SAR,
and passive microwave data. To demonstrate the potential of
the SR algorithm in further relevant applications, tracking of
specific individual sea ice objects is additionally demonstrated
using a state-of-the-art object tracking algorithm [18]. Overall,
this paper shows that by using the super-resolved images, the
accuracy of sea ice drift estimation is significantly improved
compared to using the original images.

The rest of the paper is organized as follows: Section
IT introduces general background of SR and motion track-
ing methods. Section III describes the data used throughout
this study. Section IV provides a detailed description of the
proposed super-resolved sea ice motion tracking framework.
Section V presents the experimental results and discussions.
The conclusions are drawn in Section VI.

II. RELATED WORK
A. Image Super-Resolution

Image SR aims to estimate a fine-resolution image from one
or multiple coarse-resolution images. It has been successfully
utilized in numerous applications such as medical imaging,
video surveillance, desktop publishing, remote sensing, etc.
Broadly speaking, depending on the number of input(s), image
SR can be divided into two categories: multi-image SR [19]-
[22] and single-image SR [23]-[34]. To alleviate the inherent
ambiguity, single image SR generally relies on additional
assumptions or priors to finalize a satisfying output.

Single image SR methods can be further -classified
as interpolation-based, reconstruction-based, and example
learning-based depending on the upscaling scheme. Provided
a low-resolution image, interpolation-based methods hinge
on pre-defined mathematical formula to predict intermediate
pixel values. This group of approaches replies on the weak
smoothness assumption and therefore, the generated high-
resolution images suffer from visual artifacts such as aliasing,
jaggies, and blurring.

To generate results with sharper edges, reconstruction-based
image SR tends to enforce certain statistical priors during
the estimation of the target image. Within this group of SR
methods, gradient profiles [23], [24] are popularly explored to
describe the edge statistics due to its easily modeled heavy-
tailed distribution [25]. Fattal [23] proposed a system that
generates the gradient field of the high-resolution image based
upon a statistical edge dependency relating edges of two
different resolutions. In [24], Sun et al. performed a gradient
field transformation to recover the high-resolution gradients
provided the low-resolution image based on a parametric
gradient profile model. A uniform parametric model for SR
tasks is extremely challenging since it is difficult to capture
the diverse characteristics of numerous natural images using a
limited number of parameters.

Recently popularized example-based SR explores the re-
lations between high-resolution and the corresponding low-
resolution exemplars. Learning can be performed either via
an external dataset [26]-[29], within the input image [30]-
[33], or combined [34]. In later context we refer to them as

external, internal, and hybrid example-based learning. External
example-based learning methods aim to exploit the depen-
dencies between high-resolution and low-resolution exemplars
through a large image dataset. Coupled low-resolution/high-
resolution dictionaries are popular representations for the raw
patch exemplars or patch-related features. On the other hand,
internal example-based SR is based upon the fact that small
patches within a natural image tend to appear repeatedly
within the image itself and across different resolutions. This
redundancy is utilized in both image level [30]-[32] and the
gradient level [33].

Zontak and Irani [35] have demonstrated the effectiveness
of internal example-based SR under relatively small upscaling
factors. However, the difficulty in estimating missing high-
frequency details increases as the scaling factor gets larger
due to the increment of low-resolution/high-resolution ambi-
guities. External example-based learning breaks the limitation
by introducing new information from an external resource.
However, by adopting a universal training dataset, performance
of the external example-based SR depends on the similarity
between the testing images and the training dataset. The lack
of relevance between certain testing images or certain high-
frequency patches in the testing images and a universal training
dataset still exists. Keeping increasing the size of the training
dataset provides a limited solution but still leaves the key
problem untouched.

External example learning-based SR relies on learning pri-
ors or models from a large image dataset which leads to
a stable SR performance. It is often less time consuming
compared with internal-based approaches since the learning is
normally performed off-line. On the other hand, internal patch
redundancy has been validated to be powerful in recovering
missing high frequency details [35]. To absorb the benefits
in both external and internal example-based SR, a hybrid
example-based single image SR framework was proposed
in [34]. A proxy high-resolution image is first constructed
through a set of pre-built regression models learned from
external statistics. Afterwards, to recover the missing high-
frequency details of the patches that are rarely seen in the train-
ing set, gradients of the proxy image are fed into a pyramid
self-awareness framework guided by the input low-resolution
gradients. Finally, the refined high-resolution gradients along
with the input image are integrated into a uniform cost function
to recover the final high-resolution image.

B. Sea Ice Motion Tracking

Sea ice motion through remote sensing data has been ex-
tensively studied since the appearance and wide availability of
satellite imagery. As a side-note, although the term “motion”
may strictly refer to continuous monitoring (e.g., through
video), while imagery practically allows to detect displace-
ments, or drifts, due to its common use in the literature, the
term is used in this study interchangeably with the term “drift”.
Sea ice drift is usually estimated with satellite imagery via a
pattern matching method (e.g., [17], [36]). Sea ice drift vectors
have been derived from a variety of satellite imagery utilizing
a maximum cross-correlation (MCC) criterion [2], [13], [37].
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Fig. 1.  Daily composite AMSR2 image at 36.5 GHz from Jan-
uary 1, 2013, projected on a polar stereographic grid. The latitude-
longitude coordinates of the image corners are: upper-left (30.98°, 168.35°),
upper-right (31.37°,102.34°), lower-left (33.92°,279.26°), lower-right
(34.35°,350.03°) [40].

These methods have been used successfully for sea ice motion
for a variety of imagery, including visible [17], SAR [8], [38],
scatterometer [39], and passive microwave [2].

A key factor in the pattern matching methods is that a
characteristic and stable pattern, or a highly similar pattern,
needs to be detected in both images of a pair to potentially
retrieve a motion estimate. Visible and infrared sensors are
limited by clouds, which are often prevalent in the Arctic
regions. This substantially limits the number of motion vectors
that can be retrieved. Likewise, other high-resolution sensors,
such as SAR, have narrow swath widths and limited repeat
coverage. Though having a much lower spatial resolution,
passive microwave imagery has been especially useful for
monitoring sea ice motion because it is independent of solar
radiation, has complete daily coverage of the Arctic regions,
and atmospheric interference is insignificant in most cases.

MCC-based approaches have been widely applied recently
in sea ice drift estimation with several variations. Thomas et
al. [41] proposed a method for sea ice motion characterization
at a 400-m resolution vector field using European Remote
Sensing Satellite-1 (ERS-1) SAR imagery. Motion fields of
sea ice are obtained utilizing Phase Correlation (PC) pre-
selection and MCC in a multi-resolution processing system.
In [42], Thomas et al. developed a sea ice motion tracking
system at the geospatial mesoscale (i.e., 1 — 100 km?) and
proposed an adaptation of the algorithm that estimates drifts
at close proximity to discontinuous regions using image in-

painting. Building on this approach, Hollands and Dierking
[43] implemented a PC- and MCC-based pattern matching
algorithm to identify corresponding sea ice structure in a
sequence of SAR images for the observation of high-resolution
sea ice motions in the Weddell Sea at spatial resolutions
varying from a few hundred meters to a few kilometers.
Adapting the pattern matching approach in [41] by adding
a Fourier-Mellin transform to capture rotational motion, Berg
and Eriksson [44] recently proposed a hybrid pattern matching
and feature tracking approach, the latter component requiring
an image segmentation pre-processing step. Komarov and
Barber [45] introduced an approach for automated selection
of control points to which PC was applied to estimate can-
didate translational and rotational drifts, followed by MCC
for the final decision. In [46], Lavergne er al. had earlier
introduced a MCC-based sea ice motion tracking framework
with a continuous optimization step for computing the motion
vectors which are able to effectively reduce the quantization
noise generated by MCC. This approach is proved capable of
retrieving spatially smooth 48-h sea ice motion vector fields
in the Arctic.

III. DATA

In this paper, we employ AMSR2 data acquired from the
JAXA Earth Observation Research Center'. Level 2 swath data
of horizontal polarization 36.5 GHz brightness temperatures
were gridded on a 12.5 km polar stereographic grid, tangent to
the Earth’s surface at 70 degrees northern latitude [40], using a
simple drop-in-the-bucket method. All swaths from each day
are averaged to create daily-average brightness temperature
fields. The drift estimation algorithm is then applied to the
gridded brightness temperatures. Seven daily such images
from January 1-7, 2013 are employed, with the first one shown
as an example in Fig. 1.

To further demonstrate the applicability of the proposed SR
framework in tracking sea ice motion, a number of images
derived from the Visible Infrared Imaging Radiometer Suite
(VIIRS) on board the Suomi National Polar-orbiting Partner-
ship (NPP) satellite’ are used. The images are retrieved as
a sequence of daily non-geolocated frames forming a video
demonstrating the formation and motion of sea ice leads
(cracks) around the Beaufort Sea along the northern coasts of
Alaska and Canada. They include a total of 40 frames spanning
from February 17 to March 18, 2013.

Finally, a set of 6, 152 natural images (non-satellite images)
are used to train the regression models in the SR algorithm, as
explained in Section IV-A. The training images are collected
from the Berkeley segmentation dataset [47] and LabelMe
dataset [48] which consist of a variety of natural images with
different objects and scenes.

IV. METHODS

To enhance the quality of the satellite imagery and to further
increase the sea ice motion tracking accuracy, we propose a

Thttp://suzaku.eorc.jaxa.jp/GCOM_W/data/data_w_dpss.html
Zhttp://www.nnvl.noaa.gov/MediaDetail2.php?MedialD=1310&
MediaTypelD=3&ResourceID=104744
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Fig. 2. Flowchart of the proposed hybrid example-based super-resolution
algorithm. Provided a low-resolution image, a proxy high-resolution image is
constructed through a set of regression models trained using an external image
dataset. The input feature space is modeled with the Gaussian Mixture Models
(GMM) to ensure a targeted and effective learning. With the proxy image,
its gradients in both horizontal and vertical directions are refined utilizing
corresponding gradients of the input image. The refined high-resolution
gradients are then integrated into the reconstruction process to recover the
final output high-resolution image.

sequential super-resolved sea ice motion tracking framework.
The high-resolution satellite imagery is firstly constructed
utilizing the hybrid example-based SR algorithm within which
both external and internal statistics contribute to recover
quality edges and fine details. Afterwards, a benchmark drift
estimation algorithm is applied to show the superiority of
performing motion tracking with the super-resolved finer scale
imagery. In an additional experimental setting, a state-of-
the-art object tracking algorithm is applied on super-resolved
images to track individual sea ice objects (floes). The detailed
steps are presented in the following subsections, respectively.

A. Super-Resolution

To improve the tracking accuracy of sea ice motion, a high-
resolution image is firstly constructed out of the low-resolution
input image using the hybrid exemplar-based SR approach
[34]. Fig. 2 illustrates the schematic pipeline of the upsampling
scheme. The system consists of three steps to upscale an input
image: proxy image recovery from external statistics, gradient-
level self-awareness from internal statistics, and final image
reconstruction.

Provided an input low-resolution image, a proxy high-
resolution image is generated with a set of pre-built regression
models trained on a large natural image dataset. Due to the
complicated characteristics revealed by the training images,
the input feature space is modeled with the Gaussian Mixture
Models (GMM) to ensure a targeted and effective learning.
Afterwards, within each Gaussian component, an individual
regression model is trained. Since the regression models are
trained on a large external dataset with thousands of images,
the constructed proxy high-resolution image generally has
stable SR performance. However, due to the fact that a
universal dataset is adopted for training, certain patches in
the unseen input image may appear rarely within the training

dataset and therefore lead to an over-smoothed prediction
with missing high-frequency details. Thus, based on the fact
that small patches tend to repeat themselves across scales, a
gradient-level coarse-to-fine self-refinement is performed after
obtaining the proxy image. Motivated by reconstruction-based
SR approaches, a gradient-level refinement is adopted to better
preserve the intensity changes. Finally, a fine quality high-
resolution image is reconstructed through minimizing a cost
function with the refined gradients.

In order to train the regression models, a large set of
low-resolution/high-resolution exemplar patch pairs are firstly
collected from an image dataset. All the images in the dataset
are treated as high-resolution images and we generate the
corresponding low-resolution images through a blur and down-
sampling process as illustrated in Eq. (1):

L=(H*G)ls, (1)

where L and H stand for the low-resolution and high-
resolution images, GG represents the blur kernel, | indicates
the downsampling process and s is the scaling factor.

For a low-resolution/high-resolution patch pair { P}, Py, }, we
subtract the mean value of P, from both patches to better
preserve the structure information and eliminate the absolute
value. After the subtraction and vectorization, the input low-
resolution and high-resolution features are represented as X &€
RXM and Y € R™*M respectively where [ and 7 denote the
corresponding feature dimensions and M indicates the number
of training samples in total.

To ensure an effective learning of different edge and tex-
ture patterns, we first employ GMM to represent the feature
distribution of the input low-resolution feature space. GMM is
adopted due to the fact that it is a generative model with the
capacity to model any given probability distribution function
when the number of Gaussian components is large enough.
GMM is based on a well-defined statistical model and is com-
putationally tractable. In our experiment, 200,000 randomly
sampled features are utilized to estimate the GMM parameters
of K components. We then assign each low-resolution feature
x; € X to corresponding Gaussian component with the
highest probability.

Suppose there are M), patches associated with the k-th
Gaussian component and X, € R>*Mr Y, € R™Mk repre-
sent the corresponding low-resolution/high-resolution features,
a linear regression model is then trained with the regression
coefficient Aj, learnt through:

Aj = argrﬂinﬂYk — Aka|2}7 2)
k

in which XkT =[X i 1]. During the testing phase, provided
a low-resolution image, patch-based features are extracted by
performing normalization and vectorization same as shown in
the training phase. Then each feature is assigned to a Gaussian
component according to the posterior where the corresponding
regression model is applied to obtain the high-resolution patch.
We employ simple averaging to blend overlapping pixels to
generate the proxy high-resolution image.
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To recover the missing high-frequency details for patches
that are not frequently seen during training, a gradient-level
self-awareness step is executed afterwards. As demonstrated
experimentally in [34], patches with higher variances tend to
appear less frequently within a natural image dataset. To refine
the proxy high-resolution image HP? with the low-resolution
input image L, patches in H? (size a X a) with variance
larger than a pre-set threshold 6 are extracted. Then for each
high variance patch, its k& most similar patches are searched
and extracted within L where the similarity of two patches
is measured in their mean square error. The next step is to
combine the k found patches in a softmax way and replace
the original patch with it.

The above self-awareness step is performed in the gradient
level rather than directly in the image level because gradients
better describe edges and textures due to the heavy-tailed
distribution. Moreover, gradient patches are mostly flat with
small variances. Therefore, only a small portion of the patches
need to be adjusted which leads to an efficient refinement
process. To be more specific, after obtaining the proxy image,
its gradients in the horizontal and vertical directions are
computed and refined with the corresponding gradients of the
input image.

It is validated in [30] that average patch recurrence across
scales decays as the resolution difference increases. Therefore,
in the self-awareness step, if the scaling factor s is larger
than 3, the refinement is executed in a coarse-to-fine manner.
To ensure a more effective refinement, all the patches are
normalized to have zero means and unit standard variances.
The combined gradient patch is then adjusted based on the
original mean and variance of the input patch.

The final high-resolution image is constructed from the
self-refined high-resolution gradients and the input image by
optimizing the following cost function:

H" = argrr}}nﬂVH —VH,.? +a|(H+G) ls —L*}, 3)

where V H,. represents the refined gradients after the pyramid
gradient-level self-awareness step. GG stands for a Gaussian
kernel with standard variance o that varies for different scaling
factors s: ¢ = {0.8,1.2,1.6} for s = {2,3,4}. « is the
weighting factor. The cost function consists of constraints in
both the gradient-level and the image-level. The first term
presents constraint imposed by the refined high-resolution gra-
dients. The second constraint ensures the consistency between
the output and the input images. The cost function can be
optimized through the gradient descent algorithm. Details of
the parameters can be found in Section V-A.

B. Sea Ice Drift Estimation

The MCC method essentially matches patterns (e.g., grid
cells) in two coincident images separated by a time inter-
val through the use of a sliding window within a given
neighborhood of the pattern’s location in the first image.
The new location of the pattern in the second image is
determined by searching for the location of the sliding window
where the cross-correlation with the pattern in the first image

is maximized. The motion estimate can be calculated in a
straightforward manner by dividing the displacement distance
by the time separation between the two images. In this
study, the MCC-based method proposed in [17] is applied for
drift estimation. Besides the Advanced Very High Resolution
Radiometer (AVHRR) data used in [17], this method has been
used with AMSR-E data in [13] and operationally applied to
passive microwave imagery as a component in a sea ice motion
product distributed by the National Snow and Ice Data Center
(NSIDC) [11].

The spatial resolution is a limiting factor in drift estima-
tion accuracy since in theory the displacement can only be
determined in discrete increments corresponding to the grid
resolution. In the method employed, an oversampling proce-
dure is conducted to calculate motion at subpixel resolutions
by moving the sliding window in increments of 1/4 of a grid
cell instead of complete grid cells, in each direction [2], [9].
This is performed by implicitly applying linear interpolation
that sets the value of the sub-grid cells equal to the weighted
average of the original ones; e.g., for a 1/4 sub-grid cell, it
weighs the original grid cell 75% and the next grid cell 25%.
With this oversampling procedure, sea ice drifts are expressed
as displacements of products of the 1/4 of the original grid
resolution, so the motion vector field resolution, i.e., the
minimum expressed displacement is 3,125 m, or 3.62 cm s~ !
for sequential day images. Thus, a drift larger than half of one
sub-grid cell, i.e., 1/8 of an image pixel or 1,562.5 m, will be
able to dominate the sub-grid cell value and be detected as drift
by the algorithm—though, expressed as the minimum possible
3,125 m drift. Besides oversampling, other subpixel motion
estimation approaches have been applied in the literature as
part of MCC-based motion estimation, such as curve fitting in
the correlation value domain [8] or interpolation in the image
data [46]. They could be used instead of oversampling in the
MCC-based motion estimation on the images generated after
applying the SR algorithm, i.e., still in tandem with the SR
approach, and comparison of them could be a topic for future
research. In this paper, staying consistent with the algorithm
as applied in [17], [13], and [11], we use a 4X oversampling
as described above.

Post-processing quality control of the estimated motion
vectors is then performed via two filtering approaches. First, a
minimum correlation threshold is applied to remove marginal
pattern matches that are more likely to be in error. Thresholds
of 0.1 and 0.4 were selected in [17] for AVHRR data, 0.6
in [10] for scatterometer data, whereas 0.7 in [13] for 36.5
and 89 GHz AMSR-E data; in our case, a threshold of 0.6
is selected after experimentation. Second, a spatial coherence
filter is used to remove outlying displacements by comparing
each motion vector with neighboring vectors. If one vector
is an outlier (i.e., the number of neighboring vectors whose
displacements are within 2 pixels of this vector is less than
two), it is deemed to be erroneous and should be removed. This
is effective because generally large-scale motion is correlated
at distances up to several hundred kilometers.

Motion errors are dependent on several factors, such as the
geolocation accuracy of the input imagery, the validity of the
assumption that the surface properties do not change between
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images, atmospheric interference, and the spatial resolution of
the imagery. Detecting motion during summer is challenging
because of surface melt and more atmospheric emission by
the moister atmosphere; thus, here we focus on winter scenes.
As in [17], a land mask is employed to identify and exclude
all land pixels from the motion vector computations.

While each of the above contributes to the total error, the
most significant limitation in the accuracy of ice motions
is the spatial resolution of the source imagery. With the
AMSR2 36.5 GHz data mapped to a 12.5 km resolution
grid, the motion can only be detected if it moves at least
one half grid cell during the chosen time interval (one half
sub-grid cell when oversampling is performed, as detailed
above). Higher frequency imagery, at 89 GHz, can also be
used and has roughly double the spatial resolution, gridded
at 6.25 km. However, the 89 GHz is more susceptible to
atmospheric interference and for AMSR-E, the 36.5 GHz
channels yielded motion errors of a similar magnitude as the
89 GHz channels [13]. There is also uncertainty due to the
use of daily average passive microwave images, where all
swaths over 24 hours are averaged into a daily composite.
This results in an ambiguous time interval because a 24-
hour separation is assumed for all grid cells in the images.
Thus, the retrieved pattern displacements are not associated
with a distinct instant in time and results in a temporal
smearing of the ice signal and distortion of surface patterns
that inhibits correlation comparisons between days. However,
daily composite microwave images have been preferred in
several research studies [2], [13], [37] and operational products
[11], since they reduce missing brightness temperature values
and allow drifts to be calculated at the whole grid.

Fortunately, many errors are independent, including esti-
mates from the same location at different times. This means
that while individual vector estimates may have large errors,
on average the errors are much smaller than the theoretical
error and, importantly, the estimates are largely unbiased. For
AMSR-E, the RMS error of daily motion speed has been found
to be on the order of 6 cm s~! with directional RMS values
on the order of 15 — 20 degrees [12], [13], [38].

A 6 cm s~ is a reasonable uncertainty for looking at large
scale sea ice circulation, particularly when tracking ice over
several days and weeks. Under this circumstance, it is not
possible to detect fine scale motions such as lead formation
(openings in the ice) and ridging (convergent motion), which
occur at scales of 1 km or less over subdaily intervals
(corresponding to a speed of less than 1 cm s~! over a
day). These fine scale motions are important for local and
regional processes (e.g., energy fluxes between the ocean and
atmosphere) and for navigational guidance.

C. Sea Ice Object Tracking

In addition to the estimation of sea ice drifts, we further
evaluate the potential of the images generated by the proposed
SR approach to track specific sea ice moving objects (floes).
Whereas the outcome of the MCC-based drift estimation
method is a set of motion vectors representing the displace-
ment or velocity of sea ice on the image grid, the outcome of

the tracking method is a bounding box indicating the position
of a specified object on each frame of a series of images.

Having as input the sequence of the Suomi NPP images,
as described in Section III, we select a sea ice object in the
first frame, i.e., the first image of the sequence, by manually
defining the rectangular bounding box enclosing the object.
Then, we apply the context tracker algorithm [18] to identify
the position of the sea ice object on the next images of the
sequence. The algorithm has proven effective in computer
vision tracking applications in unconstrained environments.
One main reason for its selection here is its performance in
tracking an object in the presence of similar neighboring ones
that might cause confusion, e.g., similarly looking sea ice
objects, and small changes in appearance. It works by defining
a set of so-called distracters and supporters. Distracters are
regions with appearance similar to the tracking object that co-
occur with it in several frames and might be potential sources
of confusion. The algorithm tracks the distracters in addition
to the selected object to prevent such confusion and false
detection, even if the object is occluded in some frames. The
supporters are extracted key points around the targeted object
which move together with it and help the tracking. Both of
them are automatically explored using a sequential randomized
forest, an online template-based appearance model, and local
features.

V. RESULTS AND DISCUSSIONS

In this section, the proposed sequential super-resolved fine
scale sea ice motion estimation system is evaluated with a
sequence of passive microwave images. The dataset used for
motion estimation is publicly available to allow reproduction
or comparison of the results®. We also test the hybrid example-
based SR method on tracking a selected sea ice object in a
sequence of images from the Suomi NPP satellite. In both sce-
narios, there is an obvious boost in the tracking performance
upon the super-resolved images.

A. Parameter Settings

The training dataset used for regression model learning is
the same as in [34] which consists of 6,152 natural images.
We do not utilize satellite images for training due to the fact
that natural images generally have much higher resolutions.
All patches with size 7 X 7 from low-resolution images are ex-
tracted with corners of each patch removed. The central 3sx3s
pixels in the corresponding high-resolution patch are utilized
to formulate the high-resolution feature in which s is the
magnification factor. The GMM model with 512 components is
trained upon 200, 000 randomly selected low-resolution/high-
resolution feature pairs. Afterwards, each feature is assigned
to a Gaussian component with the highest probability. Then
within each Gaussian component, a linear regression model
is learnt with maximum 1, 000 low-resolution/high-resolution
instances.

The maximum scaling factor is set to 3 in a single step in the
pyramid gradient-level self-awareness. If the scaling factor s is

3http://media-lab.ccny.cuny.edu/wordpress/Code/sea_ice_flow_dataset.zip
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Fig. 3. Super-resolution of the passive microwave imagery (with scaling factor
of 4). From left to right, the columns represent zoom-ins of the ground-truth
image, the low-resolution image, and the generated high-resolution image. It
is clearly indicated that the hybrid example-based super-resolution approach
reconstructs the ice contours with minimal artifacts consistent with the ground-
truth instances. This figure is better viewed on screen with high-resolution
display.

larger than this threshold, a coarse-to-fine scheme is adopted
with a factor of /s per step. Patch size a in the self-refinement
is 7 and the pre-set threshold 6 is 5. During the search, the
number k of the similar patches is set to be 5. Following
experimentation, we assign « in Eq. (3) to 4/7 to ensure both
stable SR performance and fast convergence.

B. Drift Estimation

To demonstrate the effectiveness of the super-resolved fine
scale sea ice motion tracking, the proposed framework is
evaluated over the sequence of the AMSR2 passive microwave
images from January 1-7, 2013. Provided the ground-truth
(original AMSR?2) imagery, we first generate low-resolution
inputs of 50 km pixel spacing, by downsampling them under
a scaling factor of 4. After that, the hybrid example-based SR
algorithm is applied on the low-resolution images to generate
the high-resolution instances with the same magnification
factor 4. It is noteworthy that in a real application, the SR
process would be applied on the original images, creating
new images of 3.125 km spatial resolution. The reason of
applying the SR process on the 50 km downsampled data and
not the 12.5 km original ones, is the lack of images of spatial
resolution higher than 12.5 km that we could use as ground-
truth to evaluate the SR images against. Since only 12.5 km
resolution images are available, we use these as ground-truth
and create images of the same resolution, to demonstrate
how accurately the SR process can increase the resolution
of the input images (i.e., the 50 km ones) by 4 times and
approximate the ideal high resolution images (i.e., the 12.5
km original AMSR2 images). For ease of interpretation and
direct comparison with the super-resolved imagery, we upscale
the 50 km input images to the same size as the ground-truth
images using nearest-neighbor (NN) interpolation and use the

interpolated results as the low-resolution inputs to perform
motion estimation.

Fig. 3 presents the zoom-in comparisons before and after
the hybrid example-based SR algorithm. Compared with the
ground-truth instances, fine details and high quality edges are
recovered with minimal visual artifacts after the SR.

Following the generation of the NN and SR images, the
MCC-based drift estimation algorithm is applied on all pairs
of consecutive days from each of the original AMSR2, NN,
and SR image sets. Fig. 4 draws an example of the motion
vector fields (velocities) resulting from the three image sets
for the image pairs of January 1 and 2. The results cover the
whole Arctic area and they are restricted to areas with sea
ice. Areas of land and areas of sea and ocean not covered by
ice are masked out. Zero-magnitude vectors are not drawn in
the figure. It is readily seen that zero-magnitude vectors are
much more common in the NN vector field than the SR field,
i.e., the algorithm cannot detect sea ice drift in the NN image
pair in the extent it does in the SR pair. It is also noted that
the magnitude of the vectors estimated with the SR pair is
closely related with the vectors from the original image pair.
On the contrary, several vectors from the NN pair appear an
order of magnitude larger than the original image pair vectors,
even exceeding values of 70 cm s~! [11] and 100 cm s~*
[49] considered as maximum realistic velocities. In particular,
whereas the maximum velocities estimated for the original and
SR pairs are 36.9 cm s~! and 50.1 cm s~ 1, respectively, the
maximum one for the NN pair is 157.1 cm s~!. The results
are similar for the image pairs from the rest studied days.

Fig. 5 offers a close-up look of Fig. 4 for the main Arctic
region around the North Pole. The motion vector field from
each image set appears in a separate figure. In addition to the
observations discussed above, Fig. 5 highlights the similarities
in the distribution of the non-zero-magnitude vectors between
the original (Fig. 5a) and the super-resolved (Fig. 5c) images.
In a large area around the North Pole (black dot near the center
of the images), the SR images are able to reveal drifts in a
much closer detail than the NN images, which are incapable of
depicting small sea ice displacements. On the contrary, the NN
images result in the erroneous detection of large-extent drifts
in a region where the two other image sets detect small or
no drifts (western part of the region, Fig. 5b). This suggests
the existence of intense image artifacts in the NN images,
in contrast with the smoother results by the SR images. As
a note, since all land pixels are excluded from the motion
vectors calculations in all images, any artifacts in the NN
and SR images in the land pixels, and to a large degree in
the coastlines, are expected to have only small effect in the
estimated motion vectors.

To quantitatively evaluate the benefits from the super-
resolved images compared with the low-resolution NN ones,
Fig. 6 draws the scatterplots of the x-axis (vertical) and y-axis
(horizontal) drifts from the two image sets, compared with the
respective drifts from the original AMSR2 images considered
as ground truth, for the image pairs on January 1 and 2. Several
outliers can be noticed for the NN drift vectors in both axes
(Fig. 6a and 6b), whereas the distribution of data in the SR is
more compact. In addition, the least squares linear regression
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Fig. 4. Estimated motion vectors from the first pair (January 1-2, 2013) of images, for each of the original AMSR2 (Orig.), low-resolution nearest-neighbor

(NN), and super-resolution (SR) image sets.

fit line is calculated for each image pair and axis drift and
drawn as a solid line; the 1-by-1 ideal correlation between the
NN or SR results and the original data is drawn as a dashed
line. As observed, the fitting lines for the drifts in the SR
images (Fig. 6¢c and 6d) are closer to the ideal-fit line than
the one in the NN images (Fig. 6a and 6b), revealing that the
correlation between SR and original image vectors is higher
compared with the correlation between the NN and original
image vectors.

Table I provides a thorough quantitative evaluation of the
NN and SR motion vectors compared with the original image
data considered as ground-truth. As observed, the relative

squared error (“RSE”), root mean squared error (“RMSE”),
and mean absolute error (“MAE”) are consistently smaller
for the SR vectors than the NN ones for both the vertical
and horizontal drifts and all image pairs. On the contrary,
the Pearson correlation coefficient (“P”) is significantly higher
for SR vectors compared with the NN vectors. This shows
that there is a strong positive correlation between the SR and
original vectors in several cases, whereas on the contrary,
almost no, or even slightly inverse (for Jan 2-3 pair and y-
axis), correlation appears for NN vectors.

Fig. 7 plots the error distributions (in km) of the NN and
SR motion vectors in the two axes, compared with the vectors



SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 9

(W)

Fig. 5. Close-up look for the main Arctic region around the North Pole of the estimated motion vectors from the first pair (January 1-2, 2013) of images,
for the (a) original AMSR2 (Orig.), (b) low-resolution nearest-neighbor (NN), and (c) super-resolution (SR) image sets.
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Fig. 6. Scatterplots of NN and SR drift estimates (in km) in the two axes compared with the vectors from the original images considered as ground-truth,
for the image pairs on January 1 and 2. (a) NN drift in the x-axis (vertical); (b) NN drift in the y-axis (horizontal); (c) SR drift in the x-axis; (d) SR drift in
the y-axis. In addition to the drift data, the 1-by-1 ideal match line is drawn as dashed line, as well as the least squares linear regression fit line as solid one.
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Fig. 7. Error distributions from the (a) NN and (b) SR drift estimates in the two axes compared with the vectors from the original images considered as
ground-truth, for the image pairs on January 1 and 2. The histograms of the probability distribution functions appear on the bottom and right part of the plot,

for the x- and y-axis drifts, respectively.

from the original images, for the image pair Jan 1-2. Apart
from a slight bias on the positive direction in the x axis,
no significant biases are observed in the two vectors sets.
However, a number of extreme error values (outliers) can
be observed in both axes of the NN vectors. This seems to
partially affect the standard deviation of the distribution which
appears larger than the SR respective one for both axes in the
schematic representation of the probability density function
histograms appearing below and on the right of the main plot
areas. In fact, the standard deviations of the errors for the
SR vectors are consistently lower for all image pairs than
the NN vectors, as seen in Table II. This reveals the lack
of outlier vectors in the SR images and the close relevance
with the vectors from the original data. The mean values of
the errors are closer to zero for the SR vectors than the NN
vectors, showing a smaller bias towards negative or positive
drifts. Regarding differences between the x and y directions,
no strong biases in one versus the other direction are observed
in either the NN or the SR data.

C. Object Tracking

Similar as the previous experiments, we apply context
tracker [18] to the low-resolution input frames and the super-
resolved frames for comparison. By comparing the tracking
results with the ground-truth results, a boost in the tracking
performance is observed after SR.

Fig. 8 illustrates the tracking comparisons over the selected
frames of the whole sea ice movement period. Three different
ice fragments are tracked as marked in bounding boxes with
different colors. The bounding boxes are manually labeled and
are the same in the starting frame. As observed, starting from

frame 12 (i.e., on Feb. 28), context tracker is unable to locate
one of the ice fragment instance (marked in red) within the
low-resolution input. However, on the contrary, the tracking
results over the corresponding super-resolved frame are almost
identical compared with the ground-truth. As time goes by,
context tracker failures keep occurring in the low-resolution
inputs for other ice fragment instances. On the other hand,
the tracking performance over the super-resolved imagery is
stable and accurate.

The success plots for the NN and SR images are calculated
to quantitatively evaluate their tracking performance compared
with the tracking results from the original images, as a widely
employed evaluation measure in object tracking [50]. For each
image and object, the overlap score, or intersection-to-union
ratio, between the region of the object bounding box, r;, and
the respective ground-truth bounding box from the original
image, r,, is calculated as d = |r; N 7o|/|r: U ry|, where
the nominator and denominator represent the intersection and
union between the two regions, respectively. The tracking is
considered correct if d is larger than a pre-defined threshold,
dy. For each of the three objects, the ratio of the number of
frames (images) where the object is correctly detected to the
overall number of frames is calculated. The average ratio over
the three objects is the success rate, S, for the specific type
of image and overlap threshold. To make the evaluation more
robust, we calculate S for different values of dj ranging from 0
to 1 (with a step of 0.05). The Area Under Curve (AUC) is also
calculated for the NN and SR plots, as a further quantitative
measure of their agreement with the ground truth results.
The generated plots are provided in Fig. 9. As expected, S
generally decreases as d increases, since the requirement for a
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Fig. 8. Tracking comparisons of sea ice fragments around the Beaufort Sea spanning from Feb. 17 to Mar. 18 in year 2013. The rows represent the tracking
results on the ground-truth images (Orig.), the low-resolution input images (NN), and the generated high-resolution images (SR), respectively, for 4 indicative
dates. Three ice fragment instances are tracked in the sequential frames as marked in bounding boxes with different colors. Context tracker [18] loses track
of the tracking instances in low-resolution instances but keeps a stable performance over the super-resolved frames. This figure is better viewed on screen
with high-resolution display.

TABLE I
10 ‘ ‘ i i QUANTITATIVE EVALUATION OF THE LOW-RESOLUTION
— NN (AUC: 0.40) NEAREST-NEIGHBOR (NN) AND SUPER-RESOLUTION (SR) DRIFT
0.8 — SR (AUC: 0.61) || VECTORS COMPARED WITH THE VECTORS FROM THE ORIGINAL AMSR2
' IMAGES, FOR ALL IMAGE PAIRS INDIVIDUALLY AND AGGREGATED. “§X”
AND “JY” INDICATE THE DRIFTS ON THE VERTICAL AND HORIZONTAL
L6l | AXES, RESPECTIVELY. “SAMPLES” STAND FOR THE TOTAL NUMBER OF
" DRIFT VECTORS COMPARED, “RSE” FOR THE RELATIVE SQUARED ERROR,
§ “RMSE” THE ROOT MEAN SQUARED ERROR IN KM, “MAE” THE MEAN
S04 1 ABSOLUTE ERROR IN KM, AND “P” THE PEARSON CORRELATION
n COEFFICIENT.
0.2+ R F3e dy
Dates | Samples | RSE | RMSE | MAE | P | RSE [ RMSE | MAE | P
%856 0.2 0.4 0.6 0.8 1.0 al

Jan 1-2 1165 | 6.16 12.22 382 | 0.04 | 6.94 12.28 4.08 | 0.02
Jan 2-3 1163 | 5.03 13.14 | 4.66 | 0.09 | 3.34 12.73 4.79 | -0.01
Jan 3-4 1120 | 3.34 11.26 4.10 | 0.12 | 2.80 12.54 | 487 | 0.04
Fig. 9. Success plots of the three-object tracking with the NN and SR Suomi Jan 4-5 1121 | 456 | 1211 | 356 | 001 | 240 | 1275 | 5.80 | 0.07
NPP images compared with the results from the original images, for different Jan 5-6 18 | 1.96 681 | 2311006 | 122 | 1043 | 588 | 037
overlap thresholds. The Area Under Curve (AUC) values are also provided.

Overlap threshold

Jan 6-7 1117 | 500 | 10.15 | 3.10 | 0.04 | 2.13 | 12.83 | 587 | 0.34

Total 6804 | 429 | 11.16 | 3.60 | 0.06 | 2.51 | 1229 | 521 | 0.16
SR

correct matching gets stricter. As readily seen, the success rate Jan 1-2 1165 | 115 | 528 | 275|044 | 1.26 | 522 | 270 | 046

for the SR images is significantly higher than the NN images, Jan 2-3 1163 | 1.00 | 585 | 3.04 | 0.55 | 0.86 | 645 3.06 | 052

Jan 3-4 1120 | 0.80 550 | 259 0.58 | 0.72 6.36 | 297 | 0.59

for almost the entire range of overlap thresholds. In particular,
Jand-5 | 1121 | 117 | 613 | 267|036 | 070 | 686 | 3.43 | 0.62

S for the NN images drops by around 20% immediately after

. . . Jan 5-6 1118 | 182 | 657 | 304|020 | 072| 801 | 381 | 063
dog > 0'1s apphed.' On the contrary, S remains above .0.8 for Tan 6.7 117 | 16s | sss | 284 loso | 060 | 731 | 354 | 069
the SR images until dy = 0.4. The AUC value for NN is 0.40, Total 6304 | 119 | 5871 28210430761 675! 324 | 061
whereas for SR it is 0.61, more than 50% higher.
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TABLE II
QUANTITATIVE EVALUATION OF THE ERRORS OF THE LOW-RESOLUTION
NEAREST-NEIGHBOR (NN) AND SUPER-RESOLUTION (SR) DRIFT
VECTORS COMPARED WITH THE VECTORS FROM THE ORIGINAL AMSR2
IMAGES, FOR ALL IMAGE PAIRS INDIVIDUALLY AND AGGREGATED. “ux”
AND “fy” STAND FOR THE MEAN ERROR VALUES IN THE X AND Y
DIRECTIONS, RESPECTIVELY, WHEREAS “ox” AND “oy” FOR THE
RESPECTIVE STANDARD DEVIATION.

NN SR
Dates Lk Ly Ox oy Lx fhy oy oy
Jan 1-2 | 1.03 | 0.58 | 12.19 | 12.27 | 0.30 | 0.57 | 5.28 | 5.19
Jan 2-3 | 0.53 | 1.59 | 13.13 | 12.64 | -0.67 | 1.02 | 5.82 | 6.37
Jan 3-4 | 1.05 | 1.36 | 11.21 | 12.48 | 0.23 | 0.60 | 5.50 | 6.33
Jan 4-5 | 1.05 | 1.31 | 12.07 | 12.69 | 0.23 | 0.11 | 6.13 | 6.86
Jan 5-6 | 0.00 | 2.09 | 6.81 | 10.22 | -0.12 | 0.68 | 6.57 | 7.99
Jan 6-7 | 0.64 | 0.89 | 10.13 | 12.81 | 0.09 | 0.24 | 5.83 | 7.31
Total 072 | 1.30 | 11.14 | 1223 | 0.01 | 0.54 | 5.87 | 6.73

VI. CONCLUSION

In this paper, we propose a novel sequential fine scale
sea ice motion tracking framework in which the tracking
performance is significantly improved using the super-resolved
imagery. Provided an input low-resolution satellite imagery,
the hybrid example-based super-resolution algorithm is em-
ployed to generate the corresponding high-resolution instance.
Afterwards, a benchmark tracking method is applied to detect
the sea ice motion.

As demonstrated by the experimental results, the proposed
approach is effective in approximating the outcomes achieved
by the native high-resolution data, and significantly outper-
forms the low-resolution data used for the generation of the
super-resolved ones. We further demonstrate the transferability
of the proposed framework in a different setting by applying a
state-of-the-art object tracking algorithm in the super-resolved
imagery. An obvious boost in the tracking performance is
observed.

ACKNOWLEDGMENT

AMSR2 data was supplied by the GCOM-W1 Data Pro-
viding service, Japan Aerospace Exploration Agency (JAXA).
We also thank Xuejian Rong for his valuable assistance during
the preparation of the object tracking experiments.

REFERENCES

[1] CEOS Disaster Management Support Group, “Ice hazards,” 2001.
[Online]. Available: http://cryos.ssec.wisc.edu/docs/CEOS_ICE_
HAZARDS_Report_2001.pdf, Accessed on: Jun. 22, 2016.

[2] W. N. Meier, J. A. Maslanik, and C. W. Fowler, “Error analysis and
assimilation of remotely sensed ice motion within an Arctic sea ice
model,” J. Geophys. Res., vol. 105, pp. 3339-3356, 2000.

[3] N. Kimura, A. Nishimura, Y. Tanaka, and H. Yamaguchi, “Influence of
winter sea-ice motion on summer ice cover in the Arctic,” Polar Res.,
vol. 32, 2013.

[4] L. W. A. De Silva, H. Yamaguchi, and J. Ono, “Ice—ocean coupled
computations for sea-ice prediction to support ice navigation in Arctic
sea routes,” Polar Res., vol. 34, 2015.

[5] US National Ice Center, “The United States National Ice Center (NIC),”
[Online]. Available: http://www.natice.noaa.gov, Accessed on: Jun. 22,
2016.

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]
[28]
[29]
(30]
(31]
(32]

(33]

C. Bertoia, M. Manore, and H. Andersen, “Mapping ice covered waters
from space,” Backscatter, vol. 12, no. 3, pp. 14-22, 2001.

K. Partington, T. Flynn, D. Lamb, C. Bertoia, and K. Dedrick, “Late
twentieth century Northern Hemisphere sea-ice record from U.S. Na-
tional Ice Center ice charts,” J. Geophys. Res., vol. 108, no. 11, 2001.
R. Kwok, A. Schweiger, D. Rothrock, S. Pang, and C. Kottmeier, “Sea
ice motion from satellite passive microwave imagery assessed with ERS
SAR and buoy motions,” J. Geophys. Res., vol. 103, no. 4, pp. 8191—
8214, 1998.

‘W. N. Meier and J. A. Maslanik, “Effect of environmental conditions on
observed, modeled, and assimilated sea ice motion errors,” J. Geophys.
Res., vol. 108, 2003.

F. Girard-Ardhuin and R. Ezraty, “Enhanced arctic sea ice drift estima-
tion merging radiometer and scatterometer data,” IEEE Trans. Geosci.
Remote Sens., vol. 50, no. 7, pp. 2639-2648, 2012.

M. Tschudi, C. Fowler, J. Maslanik, J. S. Stewart, and W. Meier, “Polar
Pathfinder daily 25 km EASE-Grid sea ice motion vectors, version 3,”
Boulder, Colorado USA: NASA National Snow and Ice Data Center
Distributed Active Archive Center, 2016. doi: http://dx.doi.org/10.5067/
O57VAIT2AYYY.

R. Kwok, “Summer sea ice motion from the 18 GHz channel of AMSR-
E and the exchange of sea ice between the Pacific and Atlantic sectors,”
Geophys. Res. Lett., vol. 35, 2008.

W. N. Meier and M. Dai, “High-resolution sea-ice motions from AMSR-
E imagery,” Ann. Glaciol., vol. 44, pp. 352-356, 2006.

M. T. Merino and J. Nunez, “Super-resolution of remotely sensed images
with variable-pixel linear reconstruction,” IEEE Trans. Geosci. Remote
Sens., vol. 45, no. 5, pp. 1446-1457, 2007.

F. Li, X. Jia, D. Fraser, and A. Lambert, “Super resolution for remote
sensing images based on a universal Hidden Markov Tree model,” IEEE
Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1270-1278, 2010.

S. Guo, S. Liu, S. Yang, and L. Jiao, “Remote sensing image super-
resolution reconstruction based on nonlocal pairwise dictionaries and
double regularization,” IEEE J. Sel. Topics Appl. Earth Observ. in
Remote Sens., vol. 7, no. 12, pp. 4784-4792, 2014.

W. Emery, C. Fowler, J. Hawkins, and R. Preller, “Fram Strait satellite
image-derived ice motions,” J. Geophys. Res., vol. 96, no. C3, pp. 4751—
4768, 1991.

T. B. Dinh, N. Vo, and G. Medioni, “Context Tracker: Exploring
supporters and distracters in unconstrained environments,” in CVPR,
2011.

J. Boulanger, C. Kervrann, and P. Bouthemy, “Space-time adaptation
for patch-based image sequence restoration,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 24, pp. 1096-1102, 2007.

S. Farsiu, M. Robinson, M. Elad, and P. Milanfar, “Fast and robust
multiframe super resolution,” IEEE Trans. Image Process., vol. 13, pp.
1327-1344, 2004.

M. Protter, M. Elad, H. Tekeda, and P. Milanfar, “Generalizing the
non-local-means to super-resolution reconstruction,” IEEE Trans. Image
Process., vol. 18, pp. 36-51, 2009.

B. Shi, H. Ben-Ezra, S. Yeung, C. Fernandez-Cull, R. Shepard, C. Barsi,
and R. Raskar, “Sub-pixel layout for super-resolution with images in the
octic group,” in ECCV, 2014.

R. Fattal, “Image upsampling via imposed edge statistics,” in ACM
SIGGRAPH, 2007.

J. Sun, J. Sun, Z. Xu, and H. Shum, “Image super-resolution using
gradient profile prior,” in CVPR, 2008.

J. Huang and D. Mumford, “Statistics of natural images and models,”
in CVPR, 1999.

J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” IEEE Trans. Image Process., vol. 19, pp. 2861—
2873, 2010.

J. Sun, J. Zhu, and M. Tappen, “Context-constrained hallucination for
image super-resolution,” in CVPR, 2010.

R. Timofte, V. Smet, and L. Gool, “Anchored neighborhood regression
for fast example-based super-resolution,” in /CCV, 2013.

C. Yang and M. Yang, “Fast direct super-resolution by simple functions,”
in ICCV, 2013.

D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single
image,” in ICCV, 2009.

G. Freedman and R. Fattal, “Image and video upscaling from local self-
examples,” ACM T. Graphic., vol. 28, pp. 1-10, 2010.

J. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from
transformed self-exemplars,” in CVPR, 2015.

Y. Xian and Y. Tian, “Single image super-resolution via internal gradient
similarity,” J. Vis. Commun. Image R., vol. 35, pp. 91-102, 2016.



SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 13

(34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47

(48]

[49]

[50]

Y. Xian, X. Yang, and Y. Tian, “Hybrid example-based single image
super-resolution,” in ISVC, 2015.

M. Zontak and M. Irani, “Internal statistics of a single natural image,”
in CVPR, 2011.

A. K. Liu, Y. Zhao, and S. Y. Wu, “Arctic sea ice drift from wavelet
analysis of NSCAT and special sensor microwave imager data,” J.
Geophys. Res., vol. 104, pp. 11529-11538, 1999.

W. J. Emery, C. Fowler, and J. A. Maslanik, “Satellite-derived maps of
Arctic and Antarctic sea-ice motion: 1988 to 1994,” Geophys. Res. Lett.,
vol. 24, no. 8, pp. 897-900, 1997.

H. Sumata, R. Kwok, R. Gerdes, F. Kauker, and M. Karcher, “Uncer-
tainty of Arctic summer ice drift assessed by high-resolution SAR data,”
J. Geophys. Res. Oceans, vol. 120, pp. 5285-5301, 2015.

J. Haarpaintner and G. Spreen, “Use of enhanced-resolution
QuikSCAT/SeaWinds data for operational ice services and climate
research: Sea ice edge, type, concentration, and drift,” IEEE Trans.
Geosci. Remote Sens., vol. 45, no. 10, 2007.

National Snow and Ice Data Center, “Documentation: Polar stereo-
graphic projection and grid,” [Online]. Available: http://nsidc.org/data/
polar-stereo/ps_grids.html, Accessed on: Jun. 27, 2016.

M. Thomas, C. Geiger, and C. Kambhamettu, “High resolution (400 m)
motion characterization of sea ice using ERS-1 SAR imagery,” Cold
Reg. Sci. Technol., vol. 52, pp. 207-223, 2008.

M. Thomas, C. Kambhamettu, and C. Geiger, “Motion tracking of
discontinuous sea ice,” IEEE Trans. Geosci. Remote Sens., vol. 49,
no. 12, 2011.

T. Hollands and W. Dierking, “Performance of a multiscale correlation
algorithm for the estimation of sea-ice drift from SAR images: Initial
results,” Ann. Glaciol., vol. 52, no. 57, pp. 311-317, 2011.

A. Berg and L. E. B. Eriksson, “Investigation of a hybrid algorithm
for sea ice drift measurements using Synthetic Aperture Radar images,”
IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 5023-5033, 2014.
A. Komarov and D. Barber, “Sea ice motion tracking from sequential
dual-polarization RADARSAT-2 images,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 1, 2014.

T. Lavergne, S. Eastwood, Z. Teffah, H. Schyberg, and L. Breivik, “Sea
ice motion from low-resolution satellite sensors: An alternative method
and its validation in the Arctic,” J. Geophys. Res., vol. 115, 2010.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A Database of Human
Segmented Natural Images and its Application to Evaluating Segmen-
tation Algorithms and Measuring Ecological Statistics,” in /CCV, 2001.
B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “LabelMe:
A database and web-based tool for image annotation,” Int. J. Comput.
Vision, vol. 77, pp. 157-173, 2008.

M. Leppiranta, The Drift of Sea Ice, 2nd ed.
Germany: Springer, 2011.

Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,”
in IEEE Conf. Computer Vision and Pattern Recognition, Portland, OR,
2013, pp. 2411-2418.

Berlin-Heidelberg,

Yang Xian (S’14) received the B.E. degree from
Southeast University, Nanjing, China, in 2009 and
the M.S. degree from New York University, New
York, USA, in 2012. She is currently pursuing the
Ph.D degree in Computer Science at the Graduate
Center, the City University of New York, New York,
USA. Her research interests are in the synergic areas
of computer vision, computational photography, and
machine learning. She has been working on large-
scale surveillance event detection, image captioning,
and designing quality enhancement algorithms, i.e.,

super-resolution, completion, for both RGB images and depth maps.

Zisis 1. Petrou (S’05-M’15) received the Diploma
in electrical and computer engineering from the
Aristotle University of Thessaloniki, Greece, in
2007 and the M.Sc. degree in space studies from the
International Space University, Strasbourg, France,
in 2009. In 2015, he received the Ph.D. degree in
remote sensing from the Department of Electrical
and Electronic Engineering, Imperial College Lon-
don, United Kingdom.

In 2009, he was an Intern with the German
Aerospace Center (DLR), Oberpfaffenhofen, Ger-
many. From 2009 to 2016, he was a Research Assistant with the Centre
for Research and Technology Hellas, Thessaloniki, Greece. Since February
2016, he has been a Postdoctoral Research Scholar with the City College
of New York, City University of New York. His research interests include
classification, motion detection and prediction analysis on remote sensing
images using advanced machine learning, image processing, and computer
vision techniques.

Dr. Petrou is a member of the Technical Chamber in Greece. He was the
recipient of the Best Paper Award for Young Professionals under 35 at the 2nd
International Conference on Space Technology, Athens, in 2011, sponsored
by IEEE. He has been a scholar of the European Space Agency (ESA) and
the Onassis Foundation, Greece.

YingLi Tian (M’99-SM’01) received the B.S. and
M.S. degrees from Tianjin University, China, in
1987 and 1990, and the Ph.D. degree from Chinese
University of Hong Kong, Hong Kong, in 1996.

After holding a faculty position at National Lab-
oratory of Pattern Recognition, Chinese Academy
of Sciences, Beijing, she joined Carnegie Mellon
University in 1998, where she was a postdoctoral
fellow at the Robotics Institute. She then worked
as a research staff member in IBM T. J. Watson
Research Center from 2001 to 2008. She is one of
the inventors of the IBM Smart Surveillance Solutions. She is currently a
professor in the Department of Electrical Engineering at City College and
Graduate Center, City University of New York. Her current research focuses
on a wide range of computer vision problems from motion detection and
analysis, assistive technology, to facial expression analysis, human action
recognition, and video surveillance.

Walter N. Meier was born in Farmington, Michi-
gan. He received a B.S. degree in aerospace engi-
neering from the University of Michigan in 1991,
a M.S. degree (in 1992) and a Ph.D. (in 1998) in
aerospace engineering sciences from the University
of Colorado, Boulder within the universitys inter-
disciplinary Program in Atmospheric and Oceanic
Sciences.

He is currently a research scientist at the NASA
Goddard Space Flight Center Cryospheric Sciences
Lab in Greenbelt, Maryland, USA. Previously, he
has worked as research scientist at the National Snow and Ice Data Center
in Boulder, Colorado, as an adjunct assistant professor at the United States
Naval Academy in Annapolis, Maryland, and as a visiting scientist at the
United States National Ice Center in Washington, DC. Dr. Meier is a member
of the American Geophysical Union.



