
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

High Resolution Sea Ice Motion Estimation With
Optical Flow Using Satellite Spectroradiometer Data

Zisis I. Petrou, Member, IEEE, and YingLi Tian, Senior Member, IEEE

Abstract—The purpose of this study is twofold: First, to
propose an approach based on optical flow for the estimation of
sea ice motion as an accurate, dense, and computationally effi-
cient alternative to state-of-the-art pattern matching approaches.
Second, to investigate the potential of MODIS optical satellite
data for combined daily and high resolution motion estimation. A
series of MODIS image pairs for a selected region in Arctic Ocean
are employed and sparse pairwise correspondences between
non-rigid patches are calculated. An edge preserving sparse-
to-dense interpolation is applied followed by variational energy
minimization to compute the final optical flow. A state-of-the-
art multi-resolution pattern-matching method based on phase
correlation and normalized cross-correlation is also implemented
and evaluated for comparison. Thorough experimentation with
different settings of input data pre-processing as well as varying
scales of motion is performed. The derived motion vectors are
compared with coarser resolution operational sea ice motion
vector products from combined buoy and microwave satellite
data. The proposed optical flow approach clearly outperforms the
pattern matching method in most cases, both in terms of accuracy
and motion vector consistency. The estimated motion vectors
from the MODIS images correlate highly with the operational
vector products. In addition, MODIS provides a vector field
with spatial resolution two orders of magnitude higher than the
operational products that is able to detect significantly smaller
sea ice drifts.

Index Terms—Arctic sea ice, dense matching, EpicFlow, hierar-
chical maximum cross correlation, Moderate Resolution Imaging
Spectroradiometer (MODIS), motion tracking, motion vectors,
optical flow, phase correlation, sea ice drift estimation.

I. INTRODUCTION

SEA ice motion is a crucial component in climate studies.
On a large (e.g., pan-Arctic) scale, estimation of sea ice

motion is necessary to quantify ice volume exchanges and
to understand the exchange of energy, momentum, and mass
between the ocean and the atmosphere [1]. It has been used to
validate or improve models predicting polar ice pack condi-
tions [2]–[4]. Between 1973 and 2003, the annual average sea
ice extent in the Arctic decreased by around 8% [5]. Reduced
sea ice extent is expected to increase sea ice motion. In fact,
an average increase on the Arctic sea ice drift speed by 10.6%
± 0.9% per decade was observed for the period 1992–2009,
significantly larger than the wind speed increase of around
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1.5% per decade for the same period [6]. Besides on a regional
scale, such increase can also have profound effects on a local
scale, affecting or putting in danger ship navigation, oil and
gas exploration, and fisheries. Thus, information on sea ice
motion is required on a daily basis and at a relatively high
spatial resolution [7], [8].

A variety of remote sensing data have been used for sea
ice motion estimation. Data from passive microwave satellite
sensors have been among the most widely employed in re-
search studies [4], [8]–[12] and operational sea ice motion
products [13], [14]. The main rationale is their independence
from cloud and sun illumination conditions, which allows all-
year coverage, and their extended swath width of around 1400
km, which permits multiple satellite passes over the Polar
regions, thus, daily coverage. Microwave scatterometers share
similar properties and have also been employed in several
studies [15]–[17]. However, the coarse spatial resolution of
both passive microwave sensors and scatterometers (typically
between 6.25 km and 25 km) hinders their applicability in lo-
cal scale conditions, e.g., for naval operations. On the contrary,
Synthetic Aperture Radar (SAR) data, combining weather- and
sunlight-independent monitoring potential with high spatial
resolution typically ranging between 25 and 400 m, have
been extensively applied in sea ice motion estimation [18]–
[25]. However, their relatively narrow swath width restricts
repeat coverage of Arctic regions to approximately three days
[4], [14]. In addition to the previous data, passive optical
sensor imagery, in particular from the Advanced Very High
Resolution Radiometer (AVHRR), has also been employed in
sea ice motion studies [26], [27] as well as in operational
products, such as from the National Snow and Ice Data
Center (NSIDC) [13]. The high sensitivity to clouds and
high atmospheric water presence, especially during summer
months of high ice melt and evaporation, and the need for sun
light, which hinders its applicability in several polar regions
during the mid-winter, may limit their use. On the other hand,
desirable properties include their wide swath providing daily
coverage and their higher spatial resolution than the passive
microwave sensors. However, the spatial resolution of AVHRR
still remains in the order of some kilometers (typically 1.1–5
km), with little usefulness for local-scale applications.

The majority of the existing sea ice motion estimation
approaches have been based on pattern matching. Let two
geolocated images from the same area but captured in different
time, usually within a single- or multi-day interval, be used
as input. Then, for a specific subregion of the first image, or
a template, the approaches search within the second image to
find the subregion which best matches the pattern of the former
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one based on a specified evaluation measure. The Euclidean
distance between the two subregions indicates the motion of
the template, e.g., sea ice floes, from the first image to the
second. The most widely adopted template matching measure
for sea ice motion estimation has been the normalized cross-
correlation (NCC) [4], [8], [10], [12]–[14], [17], [26], [27],
whereas more recent studies have employed phase correlation
(PC), either in combination with NCC or alone [20]–[25].
Pattern matching approaches are relatively easy to implement
and have been able to capture translational, and to a lesser
degree, rotational motions. However, their applicability in non-
rigid transformations has been limited, whereas they often
result in a non-dense motion vector field of coarser spatial
resolution than the employed data.

This study has two main contributions. First, we propose
an optical flow approach with prior generation of sparse cor-
respondences between two images to provide sea ice motion
estimation. Optical flow has been applied in sea ice motion
before, but in a small number of studies, since its potential
in capturing large displacements has been considered limited
[20]. However, comparison of the proposed optical flow ap-
proach with a state-of-the-art pattern matching approach shows
that the former outperforms the latter under both small and
large sea ice drifts, while providing a neighborhood-consistent
and dense motion vector field at the resolution of the original
images. The second contribution of our paper is to explore the
use of optical Moderate Resolution Imaging Spectroradiometer
(MODIS) data for sea ice motion estimation. To the best
of our knowledge this is the first time MODIS data are
employed in sea ice motion studies. Despite the common
availability limitations of optical data, MODIS imagery shows
capable in providing sea ice motion vectors that i) combine a
spatial resolution similar to SAR data with the daily coverage
from AVHRR and passive microwave sensors, and ii) highly
correlate with operational sea ice motion products from buoys,
AVHRR, and passive microwave data [13].

The manuscript is structured as follows. Section II presents
related work on sea ice motion estimation with satellite data.
Section III refers to the selection and processing of the
employed data, whereas the methods proposed are described
in Section IV. Results of the experiments and discussions on
the outcomes are drawn in Sections V and VI, respectively.
Concluding remarks are provided in Section VII.

II. RELATED WORK

A. Pattern Matching Approaches

Pattern matching (or template or area-based or block match-
ing) approaches have been the most widely adopted ones in
sea ice motion estimation. Under this category, methodologies
based on maximum cross-correlation (MCC) have been among
the oldest and mostly employed. Starting to be used from the
early stages of satellite data in meteorological applications
[28], MCC-based approaches have been employed in sea ice
motion estimation since the mid 1980’s [26]. For a specific
template (subregion) in an image, the approaches search for
the template in a second image that maximizes the cross-
correlation with the former one. The most commonly used

evaluation measure is the normalized cross correlation, calcu-
lated as [29]:

NCC(ux, uy) =
cov[A(x, y), B(x+ ux, y + uy)]

σ[A(x, y)]σ[B(x+ ux, y + uy)]
, (1)

where A(x, y) represents the template centered at position
(x,y) in the first image, B(x+ ux, y + uy) a template of the
same size centered at (x + ux,y + uy) in the second image,
σ(A) and σ(B) stand for the standard deviation of the pixel
values of the templates A and B, respectively, cov(A,B) for
the covariance between A and B, and u = (ux, uy) represents
the displacement of the template, i.e., the motion vector. The
motion vector is often expressed as velocity, dividing the drift
by the respective time period of the motion. The normalization
by σ(A)σ(B) in (1) is used to make NCC illumination
invariant, i.e., decrease the sensitivity of the method to small
intensity variations between the pair images. In some studies
where the standard deviation of the images has been assumed
constant, the normalization term is omitted in order to face the
measure as convolution and calculate it faster in the Fourier
domain. However, most studies adopt the normalization term
to increase robustness to such variations and calculate NCC
in the spatial domain with the expense of higher computation
time.

In one of the first MCC approaches, Ninnis et al. [26]
used visible (0.58–0.68 µm) AVHRR images of 1.7 km to
estimate sea ice motion in the Beaufort Sea in non-overlapping
templates, i.e., for every 22 pixels, or around 37 km. Emery et
al. [27] applied filtering out of vectors with NCC value lower
than a threshold and vectors deviating from their neighboring
ones, and employed overlapping templates, thus, increasing the
resolution of the motion vector field to the one of the original
AVHRR data. Modifications of this method have been applied
to microwave sensors [4], [9], [11], [12] and/or scatterometer
data [8], [17] in later studies as well as in current operational
sea ice motion vector products [13]. Different approaches
have been proposed to increase the resolution of the resulting
motion vector field, such as linear oversampling [4], [12]
or interpolation in the image data [14] and curve fitting in
the correlation value domain [10], with the final resolution,
though, remaining in the order of some km. Besides the
high computation time when calculated in the spatial domain,
another shortcoming of NCC is that it can be used only under
the assumption of uniform translational or nearly translational
motion [30], thus, cannot handle rotational motion or non-rigid
transformations.

Phase correlation (PC) has been introduced in several stud-
ies to account for the NCC shortcoming in rotational motion
and speed up the calculation process. PC is calculated in
the Fourier domain taking advantage of the property that a
translational shift in the spatial domain is transformed into a
phase shift in the Fourier domain. Having a template A in
the first image and a template B in the same location in the
second image, the PC matrix is calculated as their normalized
cross-power spectrum [23], [25]:

PC = F−1
( F ∗AFB
|F ∗AFB |

)
, (2)
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where F ∗A stands for the conjugate Fourier transform of A,
FB for the Fourier transform of B, and F−1 the inverse
Fourier transform operator. The relative motion is estimated
from the location in the spatial domain that corresponds to the
maximum value of the PC matrix in (2). Thomas et al. [20]
proposed a multi-resolution approach using PC to pre-select
candidate motion vectors and NCC for the final evaluation
and selection. European Remote Sensing Satellite-1 (ERS-
1) SAR imagery was used with the resulting motion vector
field having a resolution of 400 m. A modification using
image impainting was later proposed to account for motion
estimation close to discontinuous regions [21]. Building on
this approach, Hollands and Dierking [22] utilized Envisat
Advanced SAR (ASAR) data at 25 m spatial resolution to
extract a motion vector field of a resolution of around 300
m. In [23], PC entirely substituted NCC, although not directly
providing a clear measure of similarity between two templates
[24].

Some studies have combined pattern matching with feature
tracking, i.e., identification of matching pixels, patches, or
generated features in the two images [24], [25], [31]. In
[25], an image pre-processing step, a Fourier-Mellin transform,
and a feature tracking approach were combined with multi-
resolution pattern matching to capture rotational motion. In
[24], candidate translational and rotational motion vectors
were estimated through an automated selection of control
points employing PC, whereas NCC was employed for the
final evaluation. Wavelet analysis has also been used to a lesser
degree [15].

B. Optical Flow Approaches

Certain studies on sea ice motion estimation have em-
ployed optical flow analysis [16], [18], [19]. Optical flow is
a computer vision approach estimating the apparent motion
of surfaces, edges, and objects between images. Images are
represented as 3D vector fields, I(x, y, t), where (x, y) and
t denote the spatial coordinates and time, respectively. For
a specific time instance pair of images, the spatial motion,
u = (ux, uy), is estimated for every pixel. To allow the
calculation of the optical flow, a number of assumptions are
needed. The most common one is the brightness constancy
assumption [32], which states that the brightness (intensity) of
a pixel remains constant during its motion, and for a specific
pixel is expressed as:

Ixux + Iyuy + It = 0, (3)

where Ix, Iy , and It denote the partial derivatives of the image
function in x axis, y axis, and time, respectively. Equation
(3) is under-determined, since only Ix, Iy , and It are known,
a condition related to the so-called aperture problem [32].
Additional constrains need to be introduced to overcome the
problem, with the main proposed solutions organized under
the feature-based and variational approach categories [33].
The former calculate the optical flow per pixel neighborhood
independently of the other pixel neighborhoods in an image,
assuming a constant or affine motion per neighborhood. They
mainly involve gradient based minimization of the quadratic

[34] or absolute [35] deviations shown in (3). The latter
approaches impose a motion vector smoothness constraint over
the entire image, minimizing an energy by means of variational
approaches, as in [36]:

min
ux,uy

[ ∫
Ω

(Ixux+Iyuy+It)
2dΩ+λ

∫
Ω

(|∇ux|2+|∇uy|2)dΩ
]
,

(4)
where Ω stands for the image domain and λ ∈ R for a relative
weight of the two terms. The first term represents the data
term, whereas the second the smoothness term.

Contrary to pattern matching and feature tracking ap-
proaches which mainly provide sparse motion vector fields,
optical flow approaches usually provide dense motion fields,
i.e., for every pixel of an image pair [18]. Since resulting
in individual pixel motion vectors instead of considering the
motion of a template as uniform, they can theoretically capture
more effectively sea ice deformations, such as ice ridges and
leads. In [18] and [19] a power spectrum and cross-correlation
techniques are initially applied for a rough estimation on
the translational and rotational motion, and then, variational
optical flow without the smoothness constraint is applied
iteratively to enhance the estimation of the rotational and
deformational motion. Feature-based optical flow has been
applied in scatterometer data for sea ice motion estimation
in [16]. The use of optical flow techniques has been relatively
restricted, considered highly sensitive to varying degrees of
illumination between images and inaccurate under large or
discontinuous displacements because of the inherent smooth
constraints applied to counteract the aperture problem [20].
However, optical flow techniques can be calculated, in general,
faster than NCC-based methods and provide a dense motion
vector field, contrary with some NCC methods where tem-
plates move in a multi-pixel step, whereas recent advances in
computer vision have significantly increased their robustness.

III. DATA

MODIS data from the bands 1 (620–670 nm) and 2 (841–
876) are selected for this study, as the ones with the highest
available resolution (nominal 250 m, in practice 231.66 m).
As in numerous studies [8], [12]–[14], daily composite images
are employed. Daily composites may cause small blurring in
sea ice floe edges, but since the best quality pixel from each
swath is kept, they are less sensitive to cloud contamination
and missing values compared with the single swath images.
In particular, Level 2G atmospherically corrected images from
the Terra satellite gridded into a sinusoidal map projection are
used (MOD09GQ surface reflectance product) [37]. To cause
no shape distortion to the sea ice objects in order to enhance
motion estimation, as followed in similar studies [21], [31],
[38], we reproject the data into a conformal projection, in
particular a polar stereographic grid, tangent to the Earth’s
surface at 70 degrees northern latitude (Table I) [39]. The
reprojection is performed with nearest-neighbor interpolation
to keep the original intensity values intact and minimize
potential edge smoothing. The genuine spatial resolution is
kept intact, i.e., 231.66 m. The selected study area lies in
the Eastern Beaufort Sea (Fig. 1), with its corner coordinates
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TABLE I
PARAMETERS OF THE SELECTED POLAR STEREOGRAPHIC PROJECTION.

Projection parameters

Ellipsoid Hughes
Earth radius (km) 6378.273
Eccentricity 0.081816153
Standard parallel 70◦N
Central Meridian 45◦W

Fig. 1. The study area in the Eastern Beaufort Sea, indicated by a black
rectangle, projected on a polar stereographic grid.

TABLE II
GEOGRAPHIC AND POLAR STEREOGRAPHIC COORDINATES OF THE
CORNERS OF THE STUDY AREA AS (LATITUDE, LONGITUDE) PAIRS.

Corner Geographic Polar stereographic

Upper-left (137◦17′9′′W, 72◦1′44′′N) (–1960719,78265)
Upper-right (137◦57′20′′W, 76◦3′15′′N) (–1515939,78265)
Lower-left (125◦34′26′′W, 71◦48′4′′N) (–1960719,–325512)
Lower-right (122◦52′52′′W, 75◦45′29′′N) (–1515939,–325512)

drawn in Table II. A series of mainly clear-sky images from
dates April 4–6 and 12–15, 2015, are selected to estimate sea
ice motion.

Two kinds of masks are generated from MODIS products to
enhance motion estimation, in particular an ocean mask for all
dates and a pixel quality mask for each date. The former is pro-
duced from the state layer of the MODIS surface reflectance
product of 1 km spatial resolution (MOD09GA) [40]. Pixels
indicated as “shallow ocean,” “continental/moderate ocean,”
and “deep ocean” in all dates are selected, in order to distin-
guish sea ice from land, coastlines, and inland water pixels. A
pixel quality mask for each date is generated by concatenating
i) a pixel quality mask from the 250 m MOD09GQ products,
indicating pixels at ideal quality of capturing and geometric
and atmospheric correction, and ii) a cloud-free and cloud-
shadow-free mask from the 1 km MOD09GA products. The
ocean and quality masks are re-projected to the grid and spatial
resolution of the daily composite images.

IV. METHODS

A. Optical Flow

The proposed optical flow framework is based on the
recently introduced computer vision approach for optical flow
termed Edge-Preserving Interpolation of Correspondences
(EpicFlow) [41]. The approach achieves competitive results
even in cases of large displacements and significant occlusions.
These are beneficial properties for a sea ice motion estimation
framework to account for large drifts, due to either fast sea
ice motion or lack of daily imagery, and for partial occlusions,
e.g., due to cloud contamination or sea ice deformations.

As a first step of the framework, edge detection is performed
in each MODIS image and band individually. The edge
detection methodology proposed in [42] is followed here,
demonstrating state-of-the-art results in low computational
time, a highly desirable property for large remote sensing
images. The approach faces edge detection as a structured
learning problem. An image is split into patches and for each
patch a local segmentation (edge) mask is produced by using
random forests trained with appropriate structured labels. The
local edge masks from all image patches are aggregated into
the final edge mask with the same dimensions as the original
image.

Before applying optical flow in an image pair, sparse
correspondences between the two images are generated. The
rationale is to provide initialization conditions to allow optical
flow capture fast motions, since the matching correspondences
can be arbitrarily distant in the two images, and increase
its robustness to illumination changes, motion discontinuities,
and occlusions. The approach proposed in [43] is followed,
adopting a bottom-up multi-stage architecture with interleav-
ing convolutions and max-pooling and with analogies to deep
convolutional networks. The approach starts by splitting the
first image in small non-overlapping patches and calculating
the Scale Invariant Feature Transform (SIFT) descriptor [44].
Each patch is split in four quadrants (each of 2×2 pixels) and
their best matching correspondences are searched in the second
image, independently, thus allowing non-rigid matching. A
response map is generated from the different similarity values
arising from convolutions from the candidate locations and
the local maximum is selected (max-pooling) for each patch.
The patch size is increased by a factor of two and the process
is repeated until reaching the dimensions of the image. The
local maxima from each iteration are merged, favoring the ones
from larger patches. In our case, due to memory constraints,
the original patches are downsampled to half size. Sparse
correspondences are produced, although with high density and
implicit smoothness that facilitates the application of optical
flow.

The sparse correspondences between an image pair, forming
a set C, are then used by the optical flow approach to perform
sparse-to-dense interpolation, i.e., generate dense correspon-
dences. For an image pair, using the previously detected edges
each pixel, p, of the first image not belonging to C is assigned
to its closest pixel pc ∈ C, based on a geodesic distance:

D(p, pc) = inf
Γ∈Pp,pc

∫
Γ

E(ps)dps, (5)
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where Pp,pc stands for all possible paths between pixels
p and pc, and E(ps) for the cost of crossing through a
pixel ps, which increases when crossing edges. For each
correspondence pc ∈ C, its nearest neighbors pn ∈ C
identified and form a system of equations whose least square
solution forms a locally-weighted affine estimation [45] of the
distance of pc to its correspondence in the second image. These
affine transformation parameters are then used to estimate the
distance, i.e., the correspondence, of each pixel p /∈ C assigned
to pc with its match in the second image. The resulting dense
correspondences are used to initialize a variational energy
minimization to calculate the final optical flow. The data
term proposed in [46, eq. (27)], as robust under outliers and
illumination variations, and the smoothness term in [47], with
a local weight a(x) = exp(−κ||∇2I(x)||). Here, x is the
pixel coordinate and κ is set as 5.

As a final step, all calculated motion vectors with velocity
more than 70 cm/sec per day are pruned to this maximum. As
an example, for an image pair of consecutive days, any motion
vector with 2-norm exceeding 60.48 km, or ≈261 pixels, is
pruned to a magnitude of 60.48 km. This threshold is the
one adopted by the NSIDC operational sea ice motion vector
product and selected for consistency, since the latter is used
for validation in this study (Section V).

B. Pattern Matching

A multi-resolution sea ice motion estimation approach using
NCC and PC, as a popular choice in recent studies [20]–[22],
[24], in particular mainly based on [22], is also implemented
for comparison with the optical flow framework.

A multi-resolution image pyramid is first constructed from
each of the available MODIS bands and dates. The image
of the highest resolution is filtered by a 5×5 pixel median
filtering. Then, for the construction of each new image pyramid
level, a 5×5 pixel normal Gaussian filtering is applied [48],
followed by a subsampling by 2 in both directions; thus, for
each pyramid level, the image size is half than the previous
one.

A multi-cascade approach is additionally followed, where
in each cascade stage the size of the templates to be matched
in the image pair is halved. The largest size of template
is equal to the size of the coarsest resolution image in the
pyramid. Given the size of the original images (1920×1743
pixels), the adopted restriction on the smallest template having
at least 10×10 pixels to allow robust calculations, and the
parameters in [22], we select a four-level pyramid and five-
stage cascade scheme—with the largest template and the
coarsest resolution image being 240×218 pixels. This results
in a number of 128×128 non-overlapping templates of the
smallest size within the image of the highest resolution.

For an image pair, at each cascade stage (i.e., templates of
a certain size) and each pyramid level, a template in the first
image, is compared with an equal-size template in the second,
unless it has ≤10% of non-ocean or bad quality pixels, based
on the quality masks (Section III), in which case it is flagged
as missing. The PC matrix is calculated and the elements
with values >25% of the maximum PC value, excluding 8-

connected elements, are identified as candidate vectors indicat-
ing the relative motion between the two templates. Equation
(2) is used to calculate the PC, adding 0.05 to the denominator
to filter out frequencies with very low amplitudes. Candidate
motion vectors that exceed the maximum magnitude of 60.48
km/day are discarded. For each of the rest vectors, the template
in the second image is moved accordingly. For each of the
vectors whose template in the second image includes <10% of
non-ocean or bad quality pixels the NCC is calculated as in (1).
The motion vector with the maximum NCC value is selected.
As a note, motivated by similar studies [8], [27], we further
evaluate two cut-off NCC thresholds, 0.6 or 0.3, below which
the vector is flagged as missing. The experimental results with
no threshold are more accurate, thus, no cut-off value is finally
employed. After the vector selection, the template in the first
image moves to the next location and the process is repeated,
resulting, finally, in a field of motion vectors.

The process starts from the cascade stage with the maximum
templates and the pyramid level with the coarsest resolution
image. Then, it moves to the next pyramid level up to the
last with the highest resolution image. The next cascade stage
follows, i.e., the template size is halved, and the process
restarts from the coarsest resolution image, until all cascade
stage and pyramid level combinations are processed. At each
stage-level step, the motion vectors from the previous step
are inherited and refined. At the highest resolution level, the
templates in the first image are non-overlapping, whereas for
each next level the step between templates is halved to keep
their number fixed for a certain cascade stage. At the final
cascade stage and high-resolution pyramid level, 128×128
non-overlapping templates are formed, which is the number
of the finally generated motion vectors.

Further processes to improve the accuracy of the motion
vectors are applied after each cascade-level step. The consis-
tency of each vectors with its neighbors is checked [8], [49].
In a neighborhood of 25×25 vectors, if the central vector has
a magnitude or direction deviating by 4 standard deviations of
the mean or 2 standard deviations of the median of magnitude
or direction of the neighboring vectors, then it is flagged
as missing. Then, a 3×3 vector median filtering is applied
in vectors flagged as non-missing. Instead of an isotropic
median filter in both directions independently, a median vector
filtering as in [50] is adopted in our experiments. Finally, the
missing vectors are interpolated with fifth-degree 2D Horner’s
polynomials [51].

V. RESULTS

A. Validation Strategy

Although the most desirable way of validating sea ice
motion vectors from remote sensing is the comparison with
buoys, with position accuracy around 0.5 km/day [12], [13],
there is no buoy data available in this study for the area of
interest. Therefore, we compare the generated motion vectors
with the operational sea ice motion vectors provided by
NSIDC, in particular the gridded Polar Pathfinder daily 25 km
EASE-Grid (Equal-Area Scalable Earth Grid) sea ice motion
vectors version 3 product [13]. The vectors are produced by
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fusion of buoy, AVHRR, and passive microwave data, have a
spatial resolution of 25 km, and are distributed in a gridded
format covering the entire Arctic, thus, providing an adequate
number of vectors in our selected area for statistical analysis.
Although the NSIDC grid vectors are subject to errors, with
the root-mean-squared errors (RMSE) of the vectors from
the individual sensors ranging between 3.29 cm/sec and 5.24
cm/sec [13], i.e., around 3–4 km/day, they are employed in this
study as means to evaluate the consistency and the degree of
correlation of the generated motion vectors with an operational
product. In line with the validation strategy in previous studies
[12], [14], the closest motion vector from the pattern matching
method is selected for each NSIDC grid vector in the study
area. For direct comparison, the optical flow vector with origin
in the same location as the pattern matching one is selected
as well.

B. Optical Flow and Pattern Matching Comparison

Motion vectors are estimated for the six image pairs of
consecutive dates, i.e., five pairs of one-day interval and one
pair of six-day interval (Section III) from each MODIS band
separately.

Figure 2 draws an example of the motion vectors gener-
ated by the optical flow (“Flow”) and the pattern matching
(“MCC”) approaches, using the MODIS band 2 products from
April 4 and 5. The results for the full study area are shown on
top for the two approaches, together with the respective grid
data used for validation (“Grid”). On a broad scale, the motion
vectors from both approaches seem to correlate similarly well
with the grid data. However, some close-up instances, e.g.,
from the lower-right corner of the area shown in Fig. 2c
and 2d, show some cases where the MCC vectors tend to
have significantly larger magnitude or deviations in direction
compared with the reference data.

Table III provides a number of statistical evaluation mea-
sures from the comparison between the optical flow and pat-
tern matching vectors with the reference NSIDC grid data, for
all six image pairs of MODIS band 2. In particular, the relative
squared error (RSE), root mean-squared error (RMSE), mean-
absolute error (MAE), and the Pearson correlation coefficient
[52] are calculated for the drifts in both x and y axes. In all
accuracy measures the motion vectors from the optical flow
approach correlate with the grid data significantly higher than
the pattern matching vectors do. As an indicative example, the
RMSE of pattern matching vectors on the x axis is more than
double the one of optical flow. On the contrary, optical flow
vectors on the same axis reach almost a perfect correlation (P
= 0.952) with the grid data. Optical flow vectors approach the
grid data more closely on the x axis than the y axis, whereas
this difference is not so notable in pattern matching vectors.

The aforementioned results are schematically represented by
the scatterplots between the optical flow or pattern matching
and the reference grid data drawn in Fig. 3. In line with the
accuracy measures in Table III, the optical flow motion vectors
correlate with the NSIDC grid data vectors higher than the
pattern matching ones. In particular, the former vectors lie
closer to the ideal one-by-one fitting line (“baseline”), with

TABLE III
OVERALL ACCURACY EVALUATION OF THE OPTICAL FLOW (“FLOW”) AND

PATTERN MATCHING (“MCC”) VECTORS, FOR ALL SIX IMAGE PAIRS OF
MODIS BAND 2 DATA, THROUGH RELATIVE SQUARED ERROR (RSE),

ROOT MEAN-SQUARED ERROR (RMSE), MEAN-ABSOLUTE ERROR (MAE),
AND THE PEARSON CORRELATION COEFFICIENT.

Flow MCC

# vectors 1522 1522

δx

RSE 0.245 1.174
RMSE (km) 5.705 12.494
MAE (km) 2.875 4.398
P 0.952 0.450

δy

RSE 6.163 9.605
RMSE (km) 8.121 10.138
MAE (km) 4.724 5.462
P 0.609 0.425

TABLE IV
MEAN AND STANDARD DEVIATION OF THE ERROR DISTRIBUTIONS OF THE

OPTICAL FLOW AND PATTERN MATCHING VECTORS FROM ALL IMAGE
PAIRS OF MODIS BAND 2 DATA, FOR THE X AND Y DIRECTIONS.

Flow MCC

# vectors 1522 1522

µx –2.027 0.353
σx 5.335 12.493

µy –4.449 –3.370
σy 6.796 9.565

significantly less outliers than the latter vectors. As noticed,
the reference NSIDC vectors indicate motions mainly towards
the negative directions of the x and y axes. Optical flow
vectors (Fig. 3a and 3b) follow the same direction, in general,
although with a tendency to overestimate the reference motion
magnitude. Besides a process error, another possible explana-
tion may be that the ≈250 m high resolution MODIS vectors
can capture small extent motion, e.g., of some hundreds of
meters or few kilometers, that is undetected by the NSIDC
25 km coarse resolution data. The same tendency appears
in the pattern matching vectors (Fig. 3c and 3d). However,
several vectors estimate motion on opposite direction than the
reference vectors, as seen from the vectors on the upper left
quadrant of the scatterplot, especially for the x-axis motion
(Fig. 3c).

Fig. 4 draws the error distributions for the optical flow and
pattern matching vectors from all image pairs of MODIS band
2 data, calculated as the difference of the measured and the
NSIDC grid vectors at each axis, together with histograms of
their probability density functions (pdfs). The respective mean
and standard deviation values of the pdfs are given in Table IV.
The aforementioned outliers of the pattern matching approach
are obvious in Fig. 4b, whereas errors of the optical flow
vectors are less variant. In fact, although optical flow vectors
appear slightly more biased than the pattern matching vectors,
the standard deviation of the latter is significantly higher than
the former ones, as a result of the existing extreme errors.
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(a) (b)

(c) (d)

Fig. 2. Motion vectors generated by the optical flow (“Flow”) and the pattern matching (“MCC”) approaches, using the MODIS band 2 products from April
4 and 5, together with the respective grid data used for validation (“Grid”). The results for the entire study are shown on the top, whereas a close-up look
from the area within the black rectangle is shown on the bottom.

C. Large displacements

One of the tested image pairs is between April 6 and 12,
i.e., having a six-day interval. This proved useful in assessing
the results of the two approaches on large displacements.
Additionally, it served as indication of the potential to estimate
vectors when images from some dates are unavailable. Fig.
5 draws the motion vectors from optical flow and pattern
matching, for MODIS band 2 images. As readily seen the
magnitude of the vectors is significantly larger than one-
day interval motions (Fig. 2). Optical flow vectors seem to
correlate highly with the vectors from the reference grid data
(Fig. 5a). On the contrary, vectors of extreme differences
with the reference ones in both magnitude and direction are
generated by the pattern matching method. Such extreme
outliers are obvious mainly in the upper mid and the lower
right part of the image. In particular, the error values for the
optical flow vectors, compared with the reference data for
both axes, are significantly lower than the pattern matching
vectors. Indicatively, the RMSE for the x axis is 13.28 km for
the optical flow and 30.35 km for pattern matching, whereas
the respective RMSE values for the y axis are 18.09 km and
23.52 km, respectively. In general, both approaches seem to

overestimate the magnitude of the vectors compared with the
reference data, particularly in the mid part of the image, which
might be related up to a degree to the quantization restrictions
of the 25 km coarse resolution of the reference data. However,
the direction of the generated vectors in this part is highly
correlated with the reference vectors. Overall, the optical flow
method appears able to capture even large displacements more
accurately than the pattern matching approach, mainly assisted
by the sparse correspondences generated at the beginning of
the process.

D. Experiments With Data Variations

We further evaluate the potential of the two methods under
different variations of the MODIS input data. In particular,
filtering processes employed in previous studies are applied to
both the band 1 and 2 MODIS datasets. More specifically,
similar to the construction of the image pyramid for the
pattern matching method [20], [22], a 5×5 median filtering
is applied to the original images, followed by an optional
5×5 normal Gaussian filtering [20], [22]–[24]. Alternatively, a
5×5 Laplacian filtering is also applied to the original MODIS
images [8], [14]. The evaluation results for the entire six-pair
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(a) (b)

(c) (d)

Fig. 3. Scatterplots of the optical flow (top) and pattern matching (bottom) vectors from the MODIS band 2 data against the reference NSIDC grid vectors
at the x and y directions, for all six image pairs. The dashed line represents the ideal one-by-one correlation, whereas the solid line the estimated fitting line
through least squares linear regression.

(a) (b)

Fig. 4. Error distributions for the optical flow and pattern matching vectors from all image pairs of MODIS band 2 data, calculated as the difference of the
measured and the NSIDC grid vectors at each axis, together with histograms of the error probability density functions.
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(a) (b)

Fig. 5. Motion vectors generated by the optical flow (“Flow”) and the pattern matching (“MCC”) approaches, using the MODIS band 2 products from April
6 and 12, together with the respective grid data used for validation (“Grid”).

datasets of each data version are reported in Table V. For
brevity, instead of the motions in each direction individually,
the accuracy on the estimated motion magnitude is provided.
We observe that the optical flow method outperforms pattern
matching for almost all data inputs consistently, i.e., under all
accuracy measures. The only exception occurs when Laplacian
filtering is first applied in the MODIS images. Laplacian
filtering tends to highlight or create artificial edges in the
images, often over-segmenting sea ice objects, which create
confusion to the sparse correspondences generated and prop-
agated to the optical flow core approach. Experiments with
restricting the search space in a close neighborhood during
the sparse correspondence matching significantly improve the
results; these are not reported here, though, for the sake of
consistency. About the pre-processing methods, the vectors
generated from the original images (“B1” and “B2”) correlate
with the reference data better than the vectors from the pre-
processed data. In general, the band 2 data versions provide
more accurate results overall, although the band 1 versions
seem to slightly outperform the band 2 ones specifically for
optical flow. As a side note, the different number of vectors
among the versions is due to the generation by the pattern
matching method of motion vectors that end at templates
where more than 10% of the pixels are non-ocean or of bad
quality and they are considered as missing.

VI. DISCUSSION

In the experiments described in this study, the sea ice
motion vectors from the proposed optical flow framework
highly correlate with the reference vectors. Our framework
consistently outperforms the state-of-the-art pattern matching
approach used for comparison in all image pairs, of both
single-day and multi-day intervals, as well as in most versions
of input data. Contrary to the common notion in previous
studies [20], aided by the coarse matching step, the optical
flow method can capture both small and large displacements
more accurately than the pattern matching approach. Fig. 6
draws an example of the sparse correspondences generated

TABLE V
EVALUATION OF OPTICAL FLOW AND PATTERN MATCHING VECTORS WITH
DIFFERENT VERSIONS OF THE MODIS INPUT DATA, FOR ALL SIX IMAGE
DATE PAIRS. IN PARTICULAR, USING THE ORIGINAL BAND 1 (“B1”) AND
BAND 2 (“B2”) IMAGES, OR APPLYING MEDIAN (“MED”), MEDIAN AND

GAUSSIAN (“MED+GAUSS”), OR LAPLACIAN (“LAPL”) FILTERING.

Versions # vectors RSE RMSE MAE P

Flow

B1 1512 0.68 9.42 5.42 0.88
B1+Med 1514 0.66 9.25 5.30 0.87
B1+Med+Gauss 1518 0.67 9.36 5.37 0.87
B1+Lapl 1511 20.99 51.34 49.57 -0.27

B2 1522 0.69 9.49 5.47 0.88
B2+Med 1524 0.74 9.77 5.54 0.87
B2+Med+Gauss 1522 0.72 9.71 5.53 0.87
B2+Lapl 1522 103.51 114.40 84.10 0.57

MCC

B1 1512 3.52 21.41 8.96 0.77
B1+Med 1514 4.18 23.27 9.60 0.76
B1+Med+Gauss 1518 7.48 31.17 11.56 0.73
B1+Lapl 1511 1.08 11.63 6.14 0.67
B2 1522 0.87 10.69 5.87 0.71
B2+Med 1524 1.18 12.36 6.34 0.74
B2+Med+Gauss 1522 1.78 15.31 6.97 0.76
B2+Lapl 1522 1.07 11.61 6.18 0.69

at the beginning of the optical flow framework. As observed
in Fig. 6b, where all pairwise correspondences are shown,
their number is rather high, covering the largest part of the
images. These quasi-dense matches seem to provide a par-
ticularly beneficial initialization to the optical flow approach.
Although specific matching pairs cannot be distinguished in
Fig. 6b, the color distribution of the cross marks—each hue
and saturation value representing a pairwise correspondence
in the two images—appears very similar in the two images.
This indicates that pixel matches are spatially consistent and
supports that the pyramid structure of the match searching
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(a)

(b)

(c)

Fig. 6. Sparse correspondences between images from April 4 (left) and
5 (right), 2015. (a) The original MODIS band 2 images. (b) All sparse
correspondences from the 5×5 median filtered MODIS band 2 images. Cross
marks of the same color indicate corresponding pixels between the two
images. (c) Close-up look of the correspondences in (b) from the area within
the black rectangle shown in (a). Only 1% of the total correspondences are
shown to make the cross marks visually distinct.

algorithm enhances the smoothness of the estimated motion.
Fig. 6c offers a close-up look of a selected area, where
specific pixel correspondences can be observed (only 1% of
the correspondences in the area is shown). It is noteworthy
that matches are found not only in distinct edges, but also in
positions with less intense image gradients.

Besides the advantage of accuracy, two additional properties
of the proposed optical flow framework favor its use in sea
ice motion estimation over the pattern matching framework.
Optical flow produces a dense motion vector field, where
a vector is calculated for each pixel of the original image,
i.e., the vector field has the same resolution as the original
image. This is important for local scale applications, such as
navigation, as well as modeling and prediction applications
where multiple observation data are desirable. On the contrary,
pattern matching approaches face the templates as regions
with homogeneous motions, and besides failing to capture
local non-rigid deformations, they usually provide a single
motion vector for the entire template, thus the motion vector
field has coarser resolution than the employed data. A second
advantageous property of the optical flow framework, in line
with the expectations from previous studies [18], is that it
is more computationally efficient than the pattern matching
approach. In particular, on a four-core Intelr Xeonr CPU
E5506 at 2.13 GHz used in this study, the generation of the

motion vectors for a single image pair takes less than six
minutes with the optical flow framework, among which the
edge detection, sparse matching, and optical flow interpolation
and minimization parts take ≈19 sec, 5 min 13 sec, and 18 sec,
respectively. On the other side, the pattern matching method
requires approximately 28 min to process an image pair,
although the multi-resolution approach and the use of phase
correlation pre-selection are specifically included to decrease
its computational cost.

In combination with the optical flow framework, MODIS
data showed potential in generating motion vectors that com-
bine a spatial resolution similar to SAR data and a daily
frequency equal to passive microwave data. The MODIS data
are subject to the optical sensor limitations, as AVHRR,
requiring clear-sky conditions and sun illumination of the
study area. This may heavily restrict their availability in the
Arctic due to intense cloud presence throughout the year, and
even more in areas close to the North Pole during the winter
months due to the lack of sun illumination. However, as shown
in the experiment results, the motion is effectively estimated
even for a six-day interval MODIS image pair. This result
demonstrates the potential of the MODIS data and optical
flow framework to overcome the unavailability of images
from a certain number of days between two non-consecutive
available dates, even if some large displacements and non-
rigid transformations are present during this period. A properly
selected interpolation method could be applied in such cases
to estimate the motion during the non-available dates. This
study does not necessarily promote the use of MODIS data
as alternative to widely employed passive microwave and
SAR. Instead, it aims at highlighting the high potential of
MODIS data in providing large extent motion vector fields at
high spatial resolution and even in non-consecutive days. This
potential has been underestimated by previous studies. MODIS
can be used in tandem with other sensors to improve the spatial
and/or temporal resolution of research or operational products.

It is worth noting that the 25 km coarse resolution NSIDC
operational motion vector products are mainly used to assess
the consistency of the generated vectors throughout the data
grid. In fact, as demonstrated in a close-up look example of
the generated motion vectors from the April 4–5 pair shown
in Fig. 7, several real motions are underestimated by the
coarse resolution NSIDC data. The figure draws the same
vectors using the April 4 (Fig. 7a) and 5 (Fig. 7b) image
as background, to show the real starting and ending positions
of the motion vectors. The ice drift from the NSIDC data is
calculated by multiplying the average velocity between April
4 and 5, given by NSIDC, by this one-day time interval. As
seen, motion vectors generated by the optical flow framework
capture the true displacements in higher accuracy than the
reference NSIDC data, possibly due to the higher resolution of
the MODIS data. Thus, this observation may suggest that the
true error from the optical flow—and similarly from the pattern
matching method—is less than reported in the experiments.
However, for the majority of the vectors, the magnitude, and
even more, the direction of the vectors align well with the
visually inspected image displacements. This suggests the
suitability of the NSIDC grid to assess the consistency, and
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(a) (b)

Fig. 7. Close-up look from the optical flow and NSIDC grid motion vectors for the MODIS band 2 image pair between April 4 and 5. The same vectors are
drawn, with the images from (a) April 4 and (b) April 5 as background. The vectors are drawn in the scale of the image.

up to a degree, the accuracy of the motion vectors generated
in this study, under the lack of buoy observations.

VII. CONCLUSION

In this study, a framework based on optical flow is proposed
for sea ice motion estimation using high resolution MODIS
daily reflectance data. The framework is compared with
a state-of-the-art multi-resolution pattern matching method
based on normalized cross-correlation and phase correlation.
Six image pairs are employed in the experiments, includ-
ing both single- and multi-day interval imagery. The optical
flow method consistently outperforms the pattern matching
approach, showing higher correlation with a coarse resolution
operational motion vector product used for reference. The
optical flow method provides a dense motion vector field,
contrary to the sparse vector field by the pattern matching
approach. Optical flow proves more able to capture accurately
both small and large displacements, more robust to input data
variations, and more computationally efficient than its pattern
matching counterpart. The results make the wider applicability
of optical flow in sea ice motion studies promising. In addition,
MODIS optical data proves effective in motion estimation at
high spatial resolution, both with daily and multi-day-interval
images. This suggests MODIS potential for research and
operational use, either alone or in fusion with other satellite
sensors.
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