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Abstract 
 

A computer vision-based wayfinding and navigation 

aid can improve the mobility of blind and visually 

impaired people to travel independently. In this paper, 

we develop a new framework to detect and recognize 

stairs and pedestrian crosswalks using a RGBD 

camera. Since both stairs and pedestrian crosswalks 

are featured by a group of parallel lines, we first apply 

Hough transform to extract the concurrent parallel 

lines based on the RGB channels. Then, the Depth 

channel is employed to further recognize pedestrian 

crosswalks, upstairs, and downstairs using support 

vector machine (SVM) classifiers. Furthermore, we 

estimate the distance between the camera and stairs 

for the blind users. The detection and recognition 

results on our collected dataset demonstrate that the 

effectiveness and efficiency of our proposed 

framework. 

 

1. Introduction 

 

Independent travel and active interactions with the 

dynamic surrounding environment are well known to 

present significant challenges for individuals with 

severe vision impairment, thereby reducing quality of 

life and compromising safety. In order to improve the 

ability of people who are blind or have significant 

visual impairments to access, understand, and explore 

surrounding environments, many assistant technologies 

and devices have been developed to accomplish 

specific navigation goals, obstacle detection, or 

wayfinding tasks.  

The most popular electronic mobility assistant 

systems are those based on conversion sonar 

information into an audible signal for the visually 

impaired persons to interpret [2, 6, 11]. However, they 

are not so commonly used and only provide limited 

information. Recently, researchers focus on 

interpreting the visual information into high level 

representation before sending to the visually impaired 

persons.  Coughlan et al. [3] developed a method of 

finding crosswalks based on figure-ground 

segmentation, which they casted in a graphical model 

framework for grouping geometric features into a 

coherent structure. Ivanchenko et al. [5] further 

extended the algorithm to detect the location and 

orientation of pedestrian crosswalks for a blind or 

visually impaired person using a cell phone camera. 

The prototype of the system can run in real time on an 

off-the-shelf Nokia N95 camera phone. The cell phone 

automatically took several images per second, analyzed 

each image in a fraction of a second and sounded an 

audio tone when it detected a pedestrian crosswalk. 

Advanyi et al. [1] employed the Bionic eyeglasses to 

provide the blind or visually impaired individuals the 

navigation and orientation information based on an 

enhanced color preprocessing through mean shift 

segmentation. Then detection of pedestrian crosswalks 

was carried out via a partially adaptive Cellular 

Nanoscale Networks algorithm. Se et al. [13] proposed 

a method to detect zebra crosswalks. They first 

detected the crossing lines by looking for groups of 

concurrent lines. Edges were then partitioned using 

intensity variation information. Se et al. [14] also 

developed a Gabor filter based texture detection 

method to detect distant stair cases. When the stairs are 

close enough, stair cases were then detected by looking 

for groups of concurrent lines, where convex and 

concave edges were portioned using intensity variation 

information. The pose of stairs was also estimated by 

homograph search model. The “vOICe” system [16] is 

a commercially available vision-based travel aid that 

transfers image information to sound. The system 

contains a head-mounted camera, stereo headphones 

and a laptop. Uddin et al. [16, 17] proposed a 

bipolarity-based segmentation and projective invariant-

based method to detect zebra crosswalks. They first 

segmented the image on the basis of bipolarity and 

selected the candidates on the basis of area, then 

extracted feature points on the candidate area based on 



the fisher criterion. The authors recognized zebra 

crosswalks based on the projective invariants. 

Everingham et al. [4] developed a wearable mobility 

aid for people with low vision using scene 

classification in a Markov random field model 

framework. They segmented an outdoor scene based 

on color information and then classified the regions of 

sky, road, buildings etc.  Lausser et al. [9] introduced a 

visual zebra crossing detector based on the Viola-Jones 

approach. Shoval et al. [12] discussed the use of 

mobile robotics technology in the Guide-Cane device, 

a wheeled device pushed ahead of the user via an 

attached cane for the blind to avoid obstacles. When 

the Guide-Cane detects an obstacle, it steers around it. 

The user immediately feels this steering action and can 

follow the Guide-Cane's new path. Tian et al. [15] 

developed a proof-of-concept computer vision-based 

wayfinding aid for blind people to independently 

access unfamiliar indoor environments. They mainly 

focus on indoor object detection and context 

information extraction and recognition. 

 

 
 

Figure 1. Flow chart of the proposed algorithm for stair 

and pedestrian crosswalk detection and recognition. 

 

In this paper, we propose a computer vision-based 

method to detect stair-cases and pedestrian crosswalks 

by using a commodity RGBD camera. The recent 

introduction of the cost-effective RGBD cameras eases 

the task by providing both RGB information and depth 

information of the scene. As shown in Figure 1, our 

method consists of three main steps.  First, a group of 

parallel lines are detected via Hough transform and line 

fitting with geometric constraints from RGB 

information (see details in Section 2.1). In order to 

distinguish stairs and pedestrian crosswalks, we extract 

the feature of one dimension depth information 

according to the direction of the detected longest line 

from the depth image. Then the feature of one 

dimension depth information is employed as the input 

of a SVM-based classifier to recognize stairs and 

pedestrian crosswalks. For stairs, a further detection of 

upstairs and downstairs is conducted. Furthermore, we 

estimate the distance between the camera and stairs for 

the blind users.  

The paper is organized as following: Section 2 

describes the methodology of our proposed algorithm 

including 1) detection whether the scene image 

contains stair-cases or pedestrian crosswalks based on 

RGB image analysis; 2) since both stairs and 

pedestrian crosswalks are featured by a group of 

parallel lines in RGB images, we further employ depth 

information to distinguish stairs from pedestrian 

crosswalks, then stairs will be further recognized as 

upstairs and downstairs. Section 3 displays the 

evaluation effectiveness and efficiency of proposed 

method and summarizes the experiment results. 

Section 4 concludes the paper and our future work. 

 

2. Methodology of RGBD Camera based 

Stair and Pedestrian Crosswalk Detection 
 

2.1. Detecting Candidates of Pedestrian Crosswalks 

and Stairs from RGB images 

 

There are various kinds of stair-cases and pedestrian 

crosswalks. In this paper, we focus on stair cases with 

uniform trend and steps, and pedestrian crosswalks of 

the most regular zebra crosswalks with alternating 

white bands. In our application of blind navigation and 

wayfinding, we focus on detecting stairs or pedestrian 

crosswalks in a close distance. 

Stairs consists of a sequence of steps which can be 

regarded as a group of consecutive curb edges, and 

pedestrian crosswalks can be characterized as an 

alternating pattern of black and white stripes. To 

extract these features, we start with an edge detection 

to obtain the edge map from RGB image of the scene 

and then perform a Hough transform to extract the 

lines in the extracted edge map image. These lines for 

are parallel for both stairs and pedestrian crosswalks. 

Therefore, a group of concurrent parallel lines will 

most likely represent the structure of stairs and 

pedestrian crosswalks. In order to eliminate the noise 



from unrelated lines, we add constraints including the 

number of concurrent lines,  line length, etc.  

 

Extracting Parallel Lines based on Hough 

Transform: We apply Hough transform to detect 

straight lines based on the edge points. A number of 

edge points (xi, yi) in an image that form a line can be 

expressed in the slope-intercept form: y=ax+b, where 

a is the slope of the line and b is the y-intercept. The 

main idea here is to consider the characteristics of a 

straight line not as image points (x1, y1), (x2, y2), etc., 

but instead, in terms of its parameters. Based on that 

fact, the straight line y=ax+b can be represented as a 

point (a, b) in the parameter space. However, we face 

the problem that vertical lines give rise to unbounded 

values of the parameters a and b. Considering the 

unbounded values of the parameters a and b, it is better 

to use the Polar coordinates, denoted r and , for the 

lines in the Hough transform (as shown in Figure 2). 

 

 
Figure 2. Illustration of polar coordinates of a line. 

 

The parameter r represents the distance between the 

line and the origin, while  is the angle of the vector 

from the origin to the closest point, then the equation 

of a line can be represented as: 

 

sin cosr y x                      (1) 

 

The algorithm of Hough transform line fitting is 

summarized as following: 

Step1: Detect edge maps from the RGB image by 

edge detection. 

Step2: Compute the Hough transform of the RGB 

image to obtain r and θ. 

Step3: Calculate the peaks in the Hough transform 

matrix. 

Step4: Extract lines in the RGB image. 

Step5: Detect a group of parallel lines based on 

constraints such as the length and total number of 

detected lines of stairs and pedestrian crosswalks. 

 

As shown in Figures 3(c), 4(c), and 5(c), the 

detected parallel lines of stairs and pedestrian 

crosswalks are marked as green, while yellow dots and 

red dots represent the beginning and the end of the 

lines respectively. However, these lines are often 

separated with small gaps caused by noises, so we 

group the line fragments as the same line if the gap less 

than a threshold. In general, stairs and pedestrian 

crosswalks contain multiple parallel lines with a 

reasonable length. If the length of a line  ≤  , then the 

line is not belong to the line group. And if the number 

of parallel lines less than  , the scene image is a 

negative image which does not contain stairs and 

pedestrian crosswalks. In our experiment, we set the 

line length as 60 pixels in the acquired images and 

the number parallel lines   as 5. 

  
Figure 3. An example of upstairs. (a) Original image; (b) 

edge detection; (c) line detection; (d) concurrent parallel 

lines detection (yellow dots represent the beginnings, red 

dots represent the ends of the lines, and green lines 

represent the detected lines.) 

 

 
Figure 4. An example of downstairs. (a) Original image; 

(b) edge detection; (c) line detection; (d) concurrent 

parallel lines detection (yellow dots represent the 

beginnings, red dots represent the ends of the lines, and 

green lines represent the detected lines.) 



 

 
Figure 5. An example of Pedestrian crosswalks. (a) 

Original image; (b) edge detection; (c) line detection; (d) 

concurrent parallel lines detection (yellow dots represent 

the beginnings, red dots represent the ends of the lines, 

and green lines represent the detected lines.) 

 

2.2. Recognizing Pedestrian Crosswalks and Stairs 

from Depth Images 

 

Based on the above algorithm, we can detect the 

candidates of stairs or pedestrian crosswalks by 

detecting parallel lines with constraint condition in a 

scene image captured by a RGBD camera. From the 

depth images, we observe that upstairs have rising 

steps and downstairs have decreasing step, and 

pedestrian crosswalks are flat with smooth depth 

change as shown in Figure 6. Considering the safeness 

for the visually impaired people, and the further 

application for the robotic, it is necessary to classify 

the different stairs and pedestrian crosswalks into the 

correct categories.  

 

 
Figure 6. Depth images of (a) pedestrian crosswalks, (b) 

downstairs, and (c) upstairs. 

 

In order to distinguish stairs and pedestrian 

crosswalks, we first calculate the orientation and 

position for extract the one-dimensional based feature 

from depth information. As shown in Figure 7, the 

orientation is perpendicular to the parallel lines 

detected from RGB images. The position will be 

determined by the middle point of the longest line of 

the parallel lines.  In Figure 7, the blue square indicates 

the middle point of the longest line and the red line 

shows the orientation to calculate the one-dimensional 

depth features. The typical one-dimensional depth 

feature for upstairs, downstairs, and pedestrian 

crosswalks are demonstrated in Figure 8. 

 

 
Figure 7. Orientation and position to calculate one-

dimensional depth features from edge image. The blue 

square indicates the middle point of the longest line and 

the red line shows the orientation which is perpendicular 

to the detected parallel lines. 

 

 
Figure 8. One-dimensional depth feature for upstairs 

(green), downstairs (blue), and pedestrian crosswalks 

(red). The horizontal axis indicates the distance from the 

camera in centimeters. The vertical axis represents the 

intensity of the depth image. 

 

As shown in Figure 6, the resolution of depth 

images is 480*640 pixels. The effective depth range of 

the RGBD camera is about 0.15 to 4.0 meters. The 

intensity value range of the depth images is [0, 255]. 

Therefore, as shown in Figure 8, the intensities of all 

the curves of the one dimension depth features are 

between 50 and 220 but are 0 if the distance is out of 

the depth range of a RGBD camera.  



In order to classify upstairs, downstairs, and 

pedestrian crosswalks, we propose a hierarchical SVM 

structure by using the extracted one-dimensional depth 

features. The SVM builds a set of hyper-planes in an 

infinite-dimensional space, which can be used for 

classification, regression, or other tasks. The high 

classification accuracy can be achieved by the hyper-

plane that has the largest distance to the nearest 

training data point of any class. In the classification 

section, we will have two steps, first classify pedestrian 

crosswalks from stairs, and then we further classify 

upstairs and downstairs.  

 

2.3 Estimating Distance between Stairs and the 

Camera 

 

When walking on stairs, we should adjust our foot 

height as the stairs has a steep rising or decreasing. For 

blind users, stairs, in particular downstairs, may cause 

injury if they fall. Therefore, it is essential to provide 

the distance information to the blind or visually 

impaired individuals how far is the first step of the 

stairs away from the camera position to remind them 

when they should adjust their foot height. In our 

method, the distance information between the first step 

of the stairs and the camera position will be calculated 

by detecting the first turning point from the one-

dimension depth information as shown in Figure 9 

marked as the red dots. 

 

 
 

Figure 9. Detecting the first turning points (red points) of 

the one-dimensional depth features of upstairs and 

downstairs. 

 

From the near distance to far distance (e.g., from 

left side to the right side as the blue line with arrow 

shown in Figure 9) along the one-dimensional depth 

features, a point x satisfies the following two 

conditions is considered as a turning point: 

( ) ( 1)f x f x     (1) 

or 

'( ) '( 1)f x f x     (2) 

where f(x) is the intensity value of the depth 

information, λ and  are the thresholds. In our 

experiment, we set λ =8 and  =50.  

After we obtain the position of the turning point 

which indicates the first step of the stairs, the distance 

information from the camera and the first step of the 

stairs can be read from the original RGBD depth data. 

This distance will be provided to the blind traveler by 

speech. 

 

3. Experiments and Discussion 

 

3.1 Database 

 

To evaluate the effectiveness and efficiency of the 

proposed method, we collect two databases: a testing 

database and a training database. The testing database 

contains 106 stairs including 56 upstairs and 50 

downstairs, 52 pedestrian crosswalks, and 70 negative 

images which contain neither stairs nor pedestrian 

crosswalks. Some of negative images contain objects 

structured with a group of parallel lines such as 

bookshelves. The training database contains 30 images 

for each category to train the SVM classifiers. The 

images in the databases include small changes of 

camera view angels [ 30 ,30 ]o o  because the visually 

impaired people pay more attention to the area in front 

of them. The experiment example used in our 

algorithm is shown in Figure 10. The first row displays 

examples of upstairs with different camera angels and 

the second row shows the corresponding depth images. 

Similarly, the third and fourth rows are the RGB depth 

images for examples of downstairs, and the fifth and 

sixth rows are the examples of pedestrian crosswalks. 

 

3.2 Experimental Results 

We evaluate the accuracy of the detection and the 

classification of our proposed method. The proposed 

algorithm achieves an accuracy of detection rate at 

91.14% among the positive image samples and 0% 

false positive rate as shown in Table 1. For the 

detection step, we correctly detect 103 stairs from 106 

images, and 41 pedestrian crosswalks from 52 images 

of pedestrian crosswalks. Here, positive image samples 

indicate images containing either stairs or pedestrian 

crosswalks, and negative image samples indicates 

images containing neither stairs nor pedestrian 

crosswalks.   

The negative samples include some objects such 

as bookshelves, which are constructed similar edges as 

stairs and pedestrian crosswalks as shown in Figure 11. 



With the current camera configuration, in general, only 

one to two shelves can be captured. The detected 

parallel lines will not meet the constraint conditions as 

described in Section 2.1. Therefore, the bookshelves 

will not be detected as candidates of stairs and 

pedestrian crosswalks. 

 

 
 

Figure 10. Examples of RGB and depth images for 

upstairs (1st and 2nd rows), downstairs (3rd and 4th rows), 

and pedestrian crosswalks (5th and 6th rows) in our 

database.   

 

 
Figure 11. Negative examples of a bookshelf which has 

similar edge lines to stairs and pedestrian crosswalks. 

 

In order to classify stairs and pedestrian 

crosswalks, the detected positive images are input into 

a SVM-based classifier. As shown in Table 2, our 

method achieves a classification rate for the stairs and 

pedestrian crosswalks at 95.8% which correctly 

classified 138 images from 144 detected candidates. 

Total of 6 images of stairs are wrongly classified as 

pedestrian crosswalks.  

For stairs, we further classify they are upstairs or 

downstairs by inputting the one-dimensional depth 

features into a different SVM classifier. We achieve an 

accuracy rate of 90.2%. More details of the 

classification of upstairs and downstairs are listed in 

Table 3. 

 

Table 1. Detection accuracy of stairs and pedestrian 

crosswalks 

 

Classes 
No. of  

Samples 

Correctly  

Detected 
Detection  

Accuracy 

Stairs 106 103 97.2% 

Crosswalks 52 41 78.9% 

Negative 

samples 
70 70 100% 

Average 228 214 93.9% 

 

Table 2. Accuracy of classification between stairs 

and pedestrian crosswalks 

 

 Stairs Crosswalks 

Stairs 97 0 

 Crosswalks 6 41 

 

Table 3. Accuracy of classification between upstairs 

and downstairs 

 

 Upstairs Downstairs 

Upstairs 48 5 

Downstairs 5 45 

 

In database capture, we observe that it is hard to 

capture good quality depth images of pedestrian 

crosswalks compared to capture images of stairs. The 

main reason is the current RGBD cameras cannot 

obtain good depth information for outdoor scenes if the 

sunshine is too bright. Therefore, the field of view of 

the obtained depth maps is restricted compared to the 

RGB images. Some of the images our method cannot 

handle are shown in Figure 12. For example, the depth 

information of some parts of the images (see the 2
nd

 

and 4
th

 columns of the 6th row of Figure 12) is missing. 

Furthermore, the white band patterns of pedestrian 

crosswalks are often disappeared caused by the long 

time exposure and no well maintained as shown in 



Figure 11(c). In this case, it will be hard to extract 

parallel lines to satisfy the candidate detection 

constraints we described in Section 2.1. In our method, 

stairs with less than 3 steps will not be able to detected, 

as shown in Figure 12 (a) and (d). 

 

 
 
Figure 12. Examples of our proposed method fails. (a) 

Downstairs with poor illumination; (b) Upstairs with less 

detected lines caused by noise; (c) Pedestrian crosswalks 

with missing white patterns; and (d) Stairs with less steps.  

 

4. Conclusion and Future Work 

 

We have developed a novel method for automatic 

detection of pedestrian crosswalks, upstairs, and 

downstairs by using a RGBD camera to improve the 

travel safeness of the blind and visually impaired 

people. The proposed method can run in real time. Our 

method has been evaluated on the database of stairs 

and pedestrian crosswalks, and achieved accuracy rates 

of 91.1% for detection stairs and pedestrian crosswalks 

from scene images, 95.8% for classification of stairs 

and pedestrian crosswalks, and 90.3% for classification 

of upstairs and downstairs,      

Our further research will focus on enhancing our 

algorithm to handle stairs and pedestrian crosswalks 

with large perspective projections, more types of 

objects, user interface study with evaluation by blind 

subjects. 
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