
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS 
 

1

  
Abstract—Action recognition with cluttered and moving 

background is a challenging problem. One main difficulty lies in 
the fact that the motion field in an action region is contaminated 
by the background motions. We propose a Hierarchical Filtered 
Motion (HFM) method to recognize actions in crowded videos by 
using Motion History Image (MHI) as basic representations of 
motion due to its robustness and efficiency. First, we detect 
interest points as the 2D Harris corners with recent motion, e.g. 
locations with high intensities in MHI. Then a global spatial 
motion smoothing filter is applied to the gradients of MHI to 
eliminate isolated unreliable or noisy motions. At each interest 
point, a local motion field filter is applied to the smoothed 
gradients of MHI by computing a structure proximity between 
any pixel in the local region and the interest point. Thus the 
motion at a pixel is enhanced or weakened based on its structure 
proximity with the interest point. To validate its effectiveness, we 
characterize the spatial and temporal features by Histograms of 
Oriented Gradient (HOG) in the intensity image and MHI 
respectively and use a Gaussian Mixture Model (GMM) based 
classifier for action recognition. The performance of the 
proposed approach achieves the state-of-the-art results on KTH 
dataset which has clean background. More importantly, we 
perform cross dataset action classification and detection 
experiments where KTH dataset is used for training while MSR 
Action Dataset II, which consists of crowded videos with people 
moving in the background, is used for testing. Our experiments 
show that the proposed hierarchical filtered motion method 
significantly outperforms existing techniques. 
 

Index Terms—Action classification, action detection, crowded 
videos, hierarchical filtered motion, Motion History Image. 
 

I. INTRODUCTION 

CTION recognition with cluttered and moving background 
is a challenging problem which captures increasing 
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interests [1-2, 4-6, 8-12, 14-28, 30-36, 42-49, 51, 53-55, 59]. 
One main difficulty lies in the fact that the motion field in an 
action region is contaminated by the background motions. The 
goal of our work is to recognize human actions in dynamic 
and crowded environments by using the action models which 
are trained on data with clean background.  To achieve the 
goal, we need to develop techniques to obtain stable and 
generalized features and feature descriptors that are able to 
characterize actions but insensitive to cluttered background 
motions. 

Recent work on action recognition in realistic videos has 
focused on approaches based on bag-of-spatio-temporal-
features [22, 32, 55], spatio-temporal shapes [14], and 
histories of tracked keypoints [32, 41]. Compared with 
classification task, action detection is more challenging. There 
are only a few works devoted to action detection task [5, 6, 11, 
18, 57, 53]. Laptev et al. [22, 28] used local spatio-temporal 
invariant points (STIPs) [21], space-time pyramids, local 
spatial-temporal descriptors (HOG/HOF) [7, 40], and 
multichannel non-linear SVMs for realistic actions in movies. 
Yuan et al. [55] employed the same features (STIPs) and 
descriptors (HOG/HOF) and proposed a discriminative 
subvolume search for efficient action detection by using a 
Nearest Neighbor based classifier. Ke et al. [18] proposed a 
method to detect event in crowded videos by combining 
spatio-temporal shapes with a flow descriptor. Sun et al. [44] 
modeled the spatio-temporal information for action 
recognition in realistic datasets at 3 levels: point-level, intra-
trajectory level, and inter-trajectory level.  The trajectories are 
extracted based on matching the SIFT salient points over 
consecutive frames. Similarly, Messing et al. [32] proposed a 
system for action recognition by using the velocity histories of 
tracked keypoints which are extracted by Kanade-Lucas-
Tomasi (KLT) feature trackers, and used a generative mixture 
model to learn and classify actions. They also augmented 
other features such as position, appearance, color, etc. to 
improve the recognition accuracy. Junejo et al. [16] attempted 
to recognize human actions under different views using 
temporal self-similarities. Yin and Meng [54] proposed a 
method to learn the shapes of space-time feature 
neighborhoods for each action category. Surveys of video 
event understanding and human motion analysis can be found 
in papers [15, 23]. While paper [15] reviews the recent 
advances in view-invariant human motion analysis, paper [23] 
summarizes the most recent methods for automatic 
interpretation of semantic occurrences in video. Despite 
promising results are achieved by the state-of-the-art work, 
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more robust methods are needed to handle cluttered 
background motions due to the following difficulties: 1) there 
is no mechanism to distinguish action motions and 
background motions in existing local spatio-temporal interest 
point detectors and descriptors, and 2) the trajectories of 
keypoints cannot be reliably tracked in crowded videos.  

In this paper, we propose an efficient hierarchical filtering 
technique to extract motion information and reduce the 
distracting motions caused by the background moving objects. 
Figure 1 shows the framework of our method for action 
recognition in crowded videos. Instead of using spatio-
temporal invariant points, we extract spatial and temporal 
information separately. The spatial information is extracted as 
2D Harris corners in original image, and the temporal 
information is obtained from Motion History Image (MHI) [4, 
8] which is based on frame differencing. Using MHI allows us 
to avoid unreliable keypoint tracking in crowded videos. The 
pixels in MHI with brighter intensities which represent the 
moving objects with more recent motion are formed as a 
template. We combine this motion template and the extracted 
2D Harris corners for interest point detection. Only those 
corners with the most recent motion are selected as interest 
points. We observe that an isolated motion direction of a pixel 
compared to its neighbor pixels is often a distracting motion or 
a noise. To remove the isolated distracting motions, we first 
apply a global spatial motion smoothing filter to the gradients 
of MHI. At each interest point, a local motion field filter is 
applied by computing a structure proximity between any pixel 
in the local region and the interest point. Thus the motion at a 
pixel is enhanced or weakened based on its structure proximity 
with the interest point. To characterize the temporal features, 
we present a new temporal feature descriptor – Histograms of 
Oriented Gradient in Motion History Image (HOG-MHI). The 
spatial features are modeled by HOG in the intensity image as 
the existing work. The feature vectors which contain both 
HOG (spatial features) and HOG-MHI (temporal features) are 
modeled by a Gaussian Mixture Model (GMM) based 
classifier for action recognition.  

 
Fig. 1. The framework of proposed method for action recognition in crowded 
videos. The components with shadow indicate our main contributions. 

The performance of the proposed approach achieves the 
state-of-the-art results on standard KTH dataset which has 
clean background at 93.9% accuracy. In order to validate the 
efficiency, effectiveness, and generalizability of the proposed 
method to handle cluttered background, we perform action 
recognition and cross-dataset test on MSR action dataset II 
which consists of three classes of actions (handclapping, 
handwaving, and boxing as in KTH dataset) with people 
moving around or vehicles driving by in the background. We 
demonstrate that our method is of high computational 
efficiency for real-time action recognition and significantly 
outperforms existing techniques in crowded videos. 

II. HIERARCHICAL MOTION FIELD FILTERS FOR ACTION 
DETECTION 

A. Interest Point Detection 
Motion History Image (MHI): MHI is a real-time motion 
template that temporally layers consecutive image differences 
into a static image template [4, 8].  Pixel intensity is a function 
of the motion history at that location, where brighter values 
correspond to more recent motion. The directional motion 
information can be measured directly from the intensity 
gradients in the MHI. Compare to optical flow, gradients in 
the MHI are more efficient to compute. It is also more robust 
due to the fact that the motion information in MHI is mainly 
along the contours of the moving objects. Thus, unwanted 
motion in the interior regions of object contours is ignored.  

To generate a MHI, we use a simple replacement and decay 
operator as in paper [4]. At location (x, y) and time t, the 
intensity of ������� �� 	
 is calculated: 
������� �� 	
 
 

 = � �� ������ �� 	
 � �
������������� �� 	 � �
 � �
� �	������ ����(1) 

where ���� �� 	
 is a binary image of differences between 
frames and � is the maximum duration of motion. We set � as 
20 in our system based on experiments. The MHI image is 
then scaled to a grayscale image with maximum intensity 255 
for pixels with the most recent motion. 

Interest Point Detection: Sparse selection of spatio-temporal 
interest points has been successfully used for action 
recognition [6, 9, 21, 22, 30, 35, 42, 55]. Laptev et al. 
developed a nice mathematic framework to find pixels with 
significant variations in both spatial and temporal directions 
[21]. However, the interest points detected by their approach 
are in practice too sparse to characterize well the motion 
features. Dollar et al. proposed to detect the interest points by 
extracting the maximum response of Gabor filter [9].  The 
limitation of the approach in [9] is that the filtering parameters 
are sensitive in complex scenes and the detected interest points 
are heavily affected by the cluttered background and 
foreground occlusions.  

We have tested STIPs [22] for the videos with cluttered 
background by using different parameter settings of scales and 
observed that there are not enough interest points in action 
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regions (Figure 2(b)). In some sequences with large lighting 
changes, many STIPs are extracted on the background as 
shown in Figure 2(d). To overcome the above limitation, our 
interest point detection is based on detecting corners in images 
(2D Harris Corner Detection [13]) and combining the 
temporal information which are obtained from MHI. Harris 
Corner detection is stable to different scales and insensitive to 
lighting changes. Here, we use MHI as motion mask to 
remove the corners in the static background. Only the corners 
with more recent motion (intensity in MHI > threshold) are 
selected as interest points. Figure 3 shows several examples of 
interest point detection from KTH dataset. The top rows show 
the detected 2D Harris corners in the images. Bottom rows 
show the MHIs and the interest points. Examples on MSR 
Action Dataset II with cluttered background can be found in 
Figure 4. In Figure 2, we demonstrate the effectiveness and 
robustness of our interest point detection method (Figure 2(a) 
and 2(c)) by comparing with the STIP detection method 
(Figure 2(b) and 2(d)) which was developed by Laptev et al. 
[11]. Note that essential STIPs are missed on action regions 
(Figure 2(b)) and many false STIPs are detected on 
background regions due to lighting changes (Figure 2(d)). Our 
method is more robust to lighting changes. 

 

 
Fig. 2: Examples of interest point detection by our method and STIP detection 
of Laptev et al. [22] in a video with cluttered background and lighting 
changes. (a) Interest points are detected on moving people by our method; (b) 
no STIPs are detected by [22];  (c) our interest point detection is insensitive to 
lighting changes; and (d) false STIPs are detected on background regions [22]. 

B. Hierarchical Filtered Motion Field for Action Motion 
Enhancement 
The motion template based on MHI has been used for 

action recognition by assuming the action of interest is well 
segmented from the background. Bobick and Davis [4] used 
the motion template to recognize many types of aerobics 
exercises. Weinland et al. [49] extended MHI to Motion-
History Volumes for free-viewpoint action recognition in the 
setting of multiple calibrated cameras and background 
subtracted. Meng et al. [31] proposed a method for action 
recognition by using histogram of MHI and the Haar wavelet 

transform [37, 38] of MHI and achieved 71% classification 
accuracy on the KTH dataset.  

 
(a)  hand waving          (b)    running  

Fig. 3: Examples of interest point detection by applying the MHI as a motion 
mask on 2D Harris corners. The detected 2D Harris corners are displayed in 
the original images (red “+”). The detected interest points are displayed in the 
MHI (pink “+”.) 

 
Fig. 4:  Global filtered motion filed to eliminate isolated distracting motions. 
(a) Original image with 2D Harris corners (red “+”); (b) MHI with detected 
interest points (pink “+”); (c) the binary image of the intensity gradients of 
MHI (MGI); (d) smoothed gradients of MHI. 

 
In order to handle cluttered background, we propose a 

hierarchical filtered motion field technique based on Motion 
Gradient Image (MGI). The MGI is the intensity gradients of 
MHI which directly yield the motion orientation.  Note that 
the magnitudes of the MHI gradients are not meaningful. 
Although it is impossible to distinguish the action motions 
from the background motions without using high-level 
information, we still can reduce noisy motions and enhance 
the action motions based on the following observations: 1) an 
isolated motion direction of a pixel compared to its neighbor 
pixels is often a distracting motion or a noisy motion, and 2) at 
each interest point, the motion regions which are closer to the 
interest point contribute more to the object which the interest 
point belongs to. 
Global Filtered Motion Field: In our approach, we first 
apply a motion smoothing step at the MGI to remove the 
isolated motion directions by morphological operations to 

(a) Our IPs (b) STIPs

(c) Our IPs (d) STIPs

(b)(a)

(c) (d)
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obtain a global filtered motion field – smoothed gradients of 
MHI. We show one example in Figure 4. Figure 4(a) shows 
one frame of the original image with 2D Harris corners (red 
“+”). Figure 4(b) shows the MHI of the same frame with 
detected interest points (pink “+”). Figure 4(c) displays the 
binary image of the intensity gradients of MHI (MGI), and 
Figure 4(d) is the smoothed gradients of MHI which removed 
the isolated distracting motions. To be prepared for local 
filtered motion field processing, we decompose the smoothed 
gradients of MHI as a number of layers with different motion 
directions. Figure 5 illustrates an 8-bin-layer representation of 
a binary image of the smoothed gradients of MHI. As shown 
in Figure 7, for a total 8 bin HOG-MHI, the motion directions 
for each bin fall in the range of n ± 22.5° (n = 1, 2, … 8). 

 
Fig. 5:  Bin-layer representation of a binary image of the smoothed gradients 
of MHI for 8 bins HOG-MHI.  
 

 
Fig. 6.  Local motion field filtering. (a) Motion blobs in a local window of an 
interest point; (b) Plot of the structure proximity map. 
 
Local Filtered Motion Field: At each interest point, we apply 
a local filtered motion field by computing a structure 
proximity between the pixels in the local region and the 
interest point on each bin-layer of the smoothed gradients of 
MHI. Here the local region is the window for calculating 
HOG-MHI. A connect component operation is performed to 
obtain motion blobs. Figure 6(a) illustrates the blobs of bin-
layer 3, the motion blobs with shorter distances to the interest 

point in the local region are more likely to represent the 
motion of the object which the interest point belongs to. Thus 
the motions at these blobs (blobs in blue color) should be 
enhanced.  On the other hand, the blobs with longer distances 
to the interest point most likely belong to other objects (blobs 
in red and green colors). Thus the motions at those blobs 
should be weakened. Let �� denote the interest point. Let   
denote a blob. Denote  !����  
 to be the minimum distance 
between �� and all the points in  , that is, 

!��� �  
 � "#$%&' !���� �
 
Denote () �(* to be the size of the window. Then the 
maximum distance between �� and any points in the window 
is +(), -(*,./.  For any pixel � &  , we define its structure 
proximity to interest point �� as 

���
 � � � ,0�%1�'

23456375

                   (2) 

Note that ���
 is a value between 0 and 1. If a pixel does not 
belong to any blobs, we define its structure proximity to be 0. 
Figure 6(b) shows a plot of the structure proximity map where 
brighter intensity values indicate larger structure proximity 
values. The structure proximity values are used to normalize 
motion histograms in HOG-MHI calculation. 

 
Fig. 7.  HOG/HOG-MHI descriptors. (a) No directions for appearance 
features, and (b) directions are considered for motion features.  

C. HOG and HOG-MHI Feature Descriptor 
HOG feature descriptors have been widely used in human 

detection and action recognition [7, 22, 28, 40, 55]. In our 
system, the local appearance and motion features are 
characterized by grids of Histograms of Oriented Gradient 
(HOG) in the neighborhood with a window size �() �(*
 at 
each interest point in the intensity image and MHI 
respectively. The window is further subdivided into a �8) � 8*
  
grid of patches. Normalized histograms of all the patches are 
concatenated into HOG (for appearance features in the 
intensity image) and HOG-MHI (for motion features in the 
MHI) descriptor vectors as the input of the classifier for action 
recognition. As shown in Figure 7, the calculations of HOG 
and HOG-MHI are different. We compute HOG without 
considering the directions to make it more robust to 
appearance changes. However, for HOG-MHI computation, 
the performance of action recognition decreases without 
considering directions since directions are important to 
describe motion features. In our experiments, we set 8) � 8* �9 and use 6 bins for HOG in the intensity image and 8 bins for 
HOG-MHI in the MHI image). For each interest point, the 
HOG (with dimension of 54) and HOG-MHI features (with 

Bin layer 8:  
(motion direction)

Bin layer 2:  
(motion direction)
Bin layer 1:  
(motion direction)

Smoothed 
gradients
of MHI

���� ���� ���� ����

���� ���	 ���
 ����Original image

�����������

� ������

���������

���

���������������

������ ����� ����

��� � ���!�"����!��� ��

��#����

� ������

���$!�� ���

� ���������

� ����������� �

��"�����#����

%&���!��� ������

���������

B

���

������������
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�

�

�

�

(a) HOG  

�

�

�
�

�

	



(b) HOG-MHI
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dimension of 72) are concatenated into one feature vector for 
action classification.  

To handle scale variations, a multi-scale process at each 
interest point can be applied by using different patch sizes or 
by using same patch size on different scale images. However, 
the multi-scale process will heavily increase the size of the 
feature vector for training and testing. For example, the size of 
the feature vector will be tripled for three scales. Thus, instead 
of performing a multi-scale process at each interest point, we 
use randomly selected window sizes between (: ;< and (: =). 
The size of each window is calculated by () � >8) and 
(* � �>8*  where k is randomly chosen to make sure the 
values of () �(* are in between (: ;< (minimum window 
size) and (: =) (maximum window size). In our experiments, 
we set (: ;< � /?, (: =) � ?@, and 8)� 8* � 9. Our 
experiments demonstrate that using randomly selected 
window sizes handles scale variations very well and achieves 
better results than using fixed set of scales.  

As we mentioned in Section II-B, the magnitude of the 
intensity gradients of the MHI is not meaningful. To 
normalize the histograms of MGI, we use the structure 
proximity values instead of the magnitudes at each patch. 

III. GAUSSIAN MIXTURE MODEL (GMM) FOR ACTION 
CLASSIFICATION  

The simplest model to model the feature descriptor is 
normal distribution. However, a single normal distribution is 
not enough to characterize the complex nature of rich 
descriptors. We employ a Gaussian Mixture Model (GMM), 
which is known to have the ability to model any given 
probability distribution function when the number of mixture 
component is large. Given a K component GMM, the 
probability of a patch x is 

1

Pr( | ) ( ; , )
K

k k k
k

x w x µ
=

Ω = Σ� N  
 
(3) 

where ( ; , )k kx µ ΣN denotes the normal distribution with 

mean kµ  and variance kΣ : 

11
( (

2
/2 1/2

) ( ) )1
( ; , ) e

(2 ) | |

T
k k kx x

k k d
k

x
µ µ

µ
π

−− − Σ −
Σ =

Σ
N

 

 

where � & A0, BC & A0, and DC & A0 E�A0 . The mixture 
weight kw  satisfies the constraint 

1

1
K

k
k

w
=

=�  
 

The set of all the parameters of GMM model is denoted as 

{ , , }k k kw µ ΣΩ = , 1 k K≤ ≤ . 

Although the general mode in equation (3) supports full 
covariance matrices, in practice a diagonal covariance matrix 
is enough for most of the tasks. Furthermore, diagonal matrix 
GMMs are more computational efficient and robust compared 
with full matrix GMM.  

The advantages of using a GMM are that it is 
computationally inexpensive, and it is based on a well-
understood statistical model. With GMM, we can clearly 
estimate the probability that each patch belongs to the 
background or the action of interests, which can be used to 
distinguish patches of actions of different categories and the 
background. Suppose there are C  categories of actions with 

the parameter of 1Ω , 2Ω , …, CΩ . Each category 
corresponds to a GMM with K  components

,{ , }c c c c
k k kw µΩ = Σ .  

The parameters can be estimated using maximum likelihood 
estimation. For example, for the c th category, we first collect 

all the patches cX associated with action c , and then estimate 
cΩ via the maximum estimation of 

max max log Pr( | )c c
ic c cx Xi

L x
Ω Ω ∈

= Ω�   

This can be solved by EM algorithm, which is an iterative 
method alternating between performing an expectation step 
(E-step) and a maximization step (M-step). In the E-step, we 
estimate the posterior probability for each sample. In the M-

step, we update { , , }k k kw µ Σ  based on the posterior 

probability. The E-step and M-step are repeated until 
converge.  

A straightforward way to train these models is to train 1Ω ,
2Ω ,…, CΩ separately.  However, Reynolds et al. [41] 

showed it is more effective to obtain 1Ω , 2Ω , …, CΩ  
coherently by the use of a universal background model. This 
observation has also been validated by Yan et al. [52]. 
Following this approach, we first train an action-independent 

background model 0Ω based on all the patch features 
allx X∈ .  Then we adapt 1Ω , 2Ω , …, CΩ from 0Ω  by 

changing the { }c
kµ in the following way 

0 0

0 0
' ' '

' 1

( ; , )

( ; , )

c k i k k
ik K

k i k k
k

w x
p

w x

µ

µ
=

Σ=
Σ�

N

N
 for c

ix X∈   

1
c

i

c c
k ik ic

x X

p x
n

µ
∈

= �  

 
(4) 
 
 
 
 
 

Theoretically we could update c
kw and c

kΣ as well as c
kµ . 

However, in practice we force them to be the same as the 
background model. Compared with the approach which trains 
action model separately, the use of background model is more 
computational efficient and leads to a good alignment of 
different action models over different components, which 
makes the recognition more accurate. 

After obtaining the GMM parameters 1Ω , 
2Ω , …, CΩ , 

we can easily classify a new video clip according to the action 
category. Let V denote the collection of patch descriptors in a 
video clip, we can estimate the action category by 
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* arg max log Pr( | )c

c x V

c x
∈

= Ω�  (5) 

IV. EXPERIMENTS AND DISCUSSION 

A. Databases  
The KTH dataset [41] was used as a standard benchmark 

for action recognition. It was recorded in four controlled 
environments with clean background (indoors, outdoors, 
outdoors with scale variation, outdoors with different clothes.) 
The dataset contains about 600 video sequences of 25 subjects 
performing six categories of actions: boxing, hand clapping, 
hand waving, jogging, walking, and running. The video 
resolution is 160x120.  

To validate the efficiency and robustness of our method in 
crowded videos, we perform cross dataset testing on MSR 
Action Dataset II [60] which contains three types of actions 
selected from KTH: boxing, hand clapping, and hand waving. 
There are in total 54 video sequences with cluttered 
background in different environments such as cafeterias, 
home, and street. The dataset includes in total 81 boxing, 51 
hand clapping, and 71 hand waving actions. Some actions are 
simultaneously performed by multiple people.  The video 
resolution is 320x240. 

B. Action Classification Results on KTH dataset 
To make the results comparable, we apply exactly the same 

experimental setting of KTH dataset as in [9, 22, 33, 55]. 
Among the 25 persons, we use16 persons (1528 sequences) 
for training and the other 9 persons (863 sequences) for 
testing.  

In the experiments, we investigated the effects of 1) the 
motion duration for MHI calculation, 2) use only HOG, HOG-
MHI, and both of them, 3) the number of bins for appearance 
(HOG) and motion (HOG-MHI). Our method is insensitive to 
the parameter of motion duration. For the 6 categories of 
actions, the results are relatively stable when the motion 
duration changes from 10 – 25 frames. As shown in Table III, 
the recognition accuracy changes from 89.2% to 93.9%. The 
best results are achieved when we use both HOG (with 6 bins 
without orientation) and HOG-MHI (with 8 bins with 
orientation) with the motion duration at 20 frames. The 
confusion matrix of the action recognition for the KTH dataset 
is presented in Table I.  The average accuracy is 93.9%. Most 
of the mis-recognitions are from the confusion between 
jogging and running.  

Table II shows that our method achieves the state-of-the-art 
results by comparing with previous work on the KTH dataset 
[9, 17, 19, 22, 33, 54, 55].  To understand the effects of the 
features and the classifier, we perform the experiment by 
using the same features (STIPs) and descriptors (HOG/HOF) 
as in paper [22, 55] but using GMM as the classifier, and a 
slightly better accuracy is achieved than using the proposed 
Hierarchical Filtered Motion features and descriptors on the 
KTH dataset. This shows that Hierarchical Filtered Motion 
features and feature descriptors are comparable with the state 
of the art methods. Further, to understand the effects of 

different classification methods, we also applied STIP based 
features with GMM-based classifier. We observe that the 
GMM based classier is slightly better than SVM [22] and 
NBMIM [55] classifiers. We also test the proposed 
hierarchical filtered motion field on KTH dataset, and there is 
no obvious difference between with (93.6%) and without 
(93.9%) using the hierarchical filtered motion. This is not 
surprising since the background of KTH dataset is clean. 

 

TABLE I 
CONFUSION MATRIX OF ACTION RECOGNITION ON THE KTH ACTION 

DATASET (6 ACTIONS WITH CLEAN BACKGROUND)  
 

 
TABLE II 

COMPARISON WITH THE STATE-OF-THE ART RESULTS ON THE KTH ACTION 
DATASET (6 ACTIONS WITH CLEAN BACKGROUND) 

 
Method Accuracy 

Dollar et al. [9] 80.7% 

Yin et al. [54] 82% 

Kaaniche et al. [17] 90.57% 

Laptev et al. [22] 91.8% 

Mikolajczyk et al. [33] 93.2% 

Yuan et al. [55] 93.3% 

Kovashka et al.[19] 94.53% 

STIP + HOG/HOF + GMM 94.5% 

2D corners + IP Detection + 
HOG/HOG-MHI + GMM 

93.9% 

2D corners + IP Detection +  
Hierarchical motion filter + 
HOG/HOG-MHI + GMM 

93.6% 

TABLE III 
RESULTS OF USING DIFFERENT MHI DURATIONS FOR OUR METHOD (2D 

CORNERS + IP DETECTION + HOG/HOG-MHI + GMM) 

MHI duration (frames) Accuracy 
10 89.2% 
15 93.1% 
20 93.9% 
25 92.5% 

boxing

boxing

handclapping

handclapping

handwaving

handw
aving

jogging

jogging

running

running

walking

w
alking

134.0 4.0 2.0 4.0

3.0 138.0 3.0

1.0 143.0

134.0 10.0

20.0 124.0

6.0 138.0
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C. Cross-dataset Action Classification Results
Cross-dataset classification and detection for actions is 

important for real surveillance applications. Conventional 
classifier and detector usually are trained from labeled 
examples and assume the testing samples are generated from 
the same distribution. For a new dataset with a different 
distribution from the training dataset, a new training process is 
needed, which requires large amount of training labels from 
the new dataset. Here, we perform cross-dataset for action 
classification to demonstrate the robustness and 
generalizability of the proposed Hierarchical
features.  

Fig. 8. Examples of action recognition results on MSR Action Dataset II
type of actions is coded by different colors: yellow – hand waving
clapping, and green – boxing.  For each action, the inner box shows th
extracted action subvolume obtained from ground truth and the outer box 
shows the action recognition results based on the classification scores in the 
action subvolume. The action is correctly recognized if the colors of the inner 
and outer boxes are identical. 

MSR Action Dataset II contains 3 action categories: 
boxing, hand clapping, and hand waving, which are the same 
types as the KTH dataset. We test Hierarchical Filtered 
Motion features for action classification in the cross
scenarios. In order to directly use the GMM model trained 
from the KTH dataset for 6 actions to recognize the actions on 
MSR Action Dataset II, we first downsample
sequences to the same resolution as the KTH dataset 
(160x120). Then the exact same set parameters are used to 
extract interest points and calculate HOG and HOG
action recognition is performed on the extracted action 
subvolumes based on the ground truth labels. Some examples 
of action recognition are shown in Figure 8

, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS 

dataset Action Classification Results 
dataset classification and detection for actions is 

important for real surveillance applications. Conventional 
classifier and detector usually are trained from labeled 
examples and assume the testing samples are generated from 
the same distribution. For a new dataset with a different 

raining dataset, a new training process is 
needed, which requires large amount of training labels from 

dataset for action 
robustness and 

generalizability of the proposed Hierarchical Filtered Motion 

 
MSR Action Dataset II. The 

hand waving, red – hand 
boxing.  For each action, the inner box shows the 

extracted action subvolume obtained from ground truth and the outer box 
shows the action recognition results based on the classification scores in the 
action subvolume. The action is correctly recognized if the colors of the inner 

MSR Action Dataset II contains 3 action categories: 
boxing, hand clapping, and hand waving, which are the same 

We test Hierarchical Filtered 
Motion features for action classification in the cross-dataset 

In order to directly use the GMM model trained 
from the KTH dataset for 6 actions to recognize the actions on 

, we first downsample the video 
sequences to the same resolution as the KTH dataset 
(160x120). Then the exact same set parameters are used to 
extract interest points and calculate HOG and HOG-MHI. The 
action recognition is performed on the extracted action 

the ground truth labels. Some examples 
n are shown in Figure 8. Note that the 

extracted action subvolumes contain background motions. As 
shown in the left image of the second row
correctly recognized even with short time 
last row displays two examples of the actions which are not 
correctly classified due to different actions are performed in 
the same region for the whole action period.

The detailed results are presented in Table IV
203 actions, we achieve 78.8% recognition rate. Although we 
directly use the classifier trained on the KTH dataset with 6 
types of actions, for the testing on MSR Action Dataset II
the errors are from the mis-classification between the 3 actions 
of upper body. There is no confusion between the upper body 
actions and the whole body actions (jogging, walking, and 
running.) 

TABLE IV 
CONFUSION MATRIX OF ACTION RECOGNITION

DATASET II (OUR METHOD
 

 boxing  clapping

boxing 61 

clapping 2 

waving 10 

 
TABLE V 

CONFUSION MATRIX OF ACTION RECOGNITION
DATASET II (METHOD OF Y

 
 boxing  clapping

boxing 40 

clapping 2 

waving 11 

 
We further compare our results to the state

in [55] and validate the effectiveness of the proposed 
hierarchical filtered motion field. Yuan 
exactly the same STIP feature extraction and HOG/HOF 
descriptors as Laptev et al. [22] but a naïve
mutual information maximization (NBMIM) for action 
classification. For method of Yuan 
classifier is trained on KTH dataset for 4 action classes 
(boxing, hand clapping, hand waving, and others) and tested 
on MSR Action Dataset II for 3 classes: boxing, ha
clapping, and hand waving. The action recognition rate on 
MSR Action Dataset II is 59.6%. The confusio
displayed in Table V. 

TABLE VI 
COMPARISON WITH THE STATE-OF-THE ART RESULTS 
DATASET II (3 ACTIONS WITH MOVING BACKGROUND
CLASSIFIER TRAINED ON 6 CLASSES FOR 

NBMIM ON KTH DATASET

Method 

2D corners + IP Detection +  Hierarchical motion 
filter + HOG/HOG-MHI + GMM  
2D corners + IP Detection + HOG/HOG
GMM 
STIP + HOG/HOF + NBMIM (Yuan 

7

extracted action subvolumes contain background motions. As 
the left image of the second row, the action is 

correctly recognized even with short time full occlusion. The 
last row displays two examples of the actions which are not 
correctly classified due to different actions are performed in 
the same region for the whole action period. 

esults are presented in Table IV. Among the 
s, we achieve 78.8% recognition rate. Although we 

directly use the classifier trained on the KTH dataset with 6 
MSR Action Dataset II, all 

classification between the 3 actions 
There is no confusion between the upper body 

actions and the whole body actions (jogging, walking, and 

 
CTION RECOGNITION ON MSR ACTION 

OUR METHOD) 

clapping waving 

8 12 

38 11 

0 61 

 
CTION RECOGNITION ON MSR ACTION 

YUAN ET AL. [55]) 

clapping waving 

0 41 

21 28 

0 60 

We further compare our results to the state-of-the-art results 
] and validate the effectiveness of the proposed 

filtered motion field. Yuan et al. [55] applied 
exactly the same STIP feature extraction and HOG/HOF 

] but a naïve-Bayes based 
ximization (NBMIM) for action 

classification. For method of Yuan et al. [55], the NBMIM 
classifier is trained on KTH dataset for 4 action classes 
(boxing, hand clapping, hand waving, and others) and tested 

for 3 classes: boxing, hand 
clapping, and hand waving. The action recognition rate on 

is 59.6%. The confusion matrix is 

 
THE ART RESULTS ON MSR ACTION 

BACKGROUND) BY USING THE 
CLASSES FOR GMM AND 4 CLASSES FOR 

DATASET  

Accuracy 

2D corners + IP Detection +  Hierarchical motion 78.8% 

2D corners + IP Detection + HOG/HOG-MHI + 71.4% 

et al. [55]) 59.6% 
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To validate the effectiveness of the proposed h
filtered motion field in  handling crowded videos, we compare 
the results of with/without using it. As we described in 
previous sections, we extract the 2D corners with recent 
motion as interest points and represent the features as 
HOG/HOG-MHI at each interest point. As shown in Table VI, 
we achieve 71.4% recognition rate on MSR Action Dataset II
without using the hierarchical filtered motion field. The 
recognition rate is improved to 78.8% with using the 
hierarchical motion filter.  

D. Cross-dataset Action Detection Results 
We further perform cross-dataset test for action detection, 

which not only detect the category of action
spatio-temporal locations of action instances in a video 
sequence.  For action detection, we use a 3D subvolume 
represent a cuboid in the 3D video space [x1, x
that contains an action instance. The spatial locations of the 
subvolume [x1, x2, y1, y2] identify where the action happens, 
while the temporal locations of the subvolume [
when the action happens. In order to find the 
subvolumes FG�containing the action of interests
video sequence, the score of each interest point is computed 
by employing background model as following equation [

���
 � �H�I JK��)LMN
JK��MN

JK��)LMO
JK��MO
                      

Where PQ  and PRare the GMM models for the interested 
action and the background with the corresponding prior 
distributions ST��PQ
 and ST�PR
 respectively.
subvolumes FG can be represented as: 

���UTV"UWX D ���
)YZ �                        

For each action type, after the score of each interest point is
computed, a spatio-temporal branch-and-bound 
[55]55] is used to find all the subvolumes whose total scores 
are above a threshold (By varying the threshold, we obtain the 
precision-recall curve as we will show later)
temporal branch-and-bound code is downloaded from their 
website [60][60]. 

Again, we use KTH dataset for training and MSR Action 
Dataset II for testing. We find that the detection results of 
using Hierarchical Filtered Motion features 
better than those of using STIP features [22]
some examples when STIP feature fails while Hierarchical 
Filtered Motion feature works well.  

To provide a quantitative evaluation, we measure the 
precision and recall of our detection results. The precision and 
recall are defined as:  

A�[�HH� �8\�]������!�	�[	�!�I��\8!	�\	8\�]������I��\8!	�\	
^��[��8 

��8\�]������[����[	H��!�	�[	�!�]�\8!8\�]������!�	�[	�!�]�\8!8I
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To validate the effectiveness of the proposed hierarchical 
crowded videos, we compare 

the results of with/without using it. As we described in 
previous sections, we extract the 2D corners with recent 
motion as interest points and represent the features as 

As shown in Table VI, 
MSR Action Dataset II 

filtered motion field. The 
recognition rate is improved to 78.8% with using the 

  
dataset test for action detection, 

actions, but also the 
of action instances in a video 

For action detection, we use a 3D subvolume C to 
, x2, y1, y2, t1, t2] 

The spatial locations of the 
] identify where the action happens, 

while the temporal locations of the subvolume [t1, t2] denote 
find the optimal 

containing the action of interests for a given 
the score of each interest point is computed 

following equation [5]: 

                      (8) 

are the GMM models for the interested 
action and the background with the corresponding prior 

respectively. The best 

                        (9) 

For each action type, after the score of each interest point is 
bound algorithm 

is used to find all the subvolumes whose total scores 
By varying the threshold, we obtain the 
as we will show later). The spatio-

bound code is downloaded from their 

Again, we use KTH dataset for training and MSR Action 
that the detection results of 

 are significantly 
[22]. Figure 9 shows 

some examples when STIP feature fails while Hierarchical 

evaluation, we measure the 
detection results. The precision and 

I��\8!	�\	�
I��\8!	�\	�  

]�\8!8I�]����
]�\8!8I�]����  

We vary the detection threshold to obtain the precision
recall curves one for each action type
It can be seen that our Hierarchical Filtered Motion
significantly better than STIP feature

 

(a) Hierarchical Filtered Motion                        

Fig. 9. Examples where Hierarchical Filtered Motion
detect the action of interests while STIP features fail. For each example, the 
left picture illustrates the detection results of using 
Motion features, while the right shows the results of using 
three colors denote different kinds of actions: red for clapping, green for 
waving, and blue for boxing. 

E. Algorithm Efficiency Analysis 
The proposed Hierarchical Filtered Motion

extraction is programmed in C++ without optimization. The 
speed of Hierarchical Filtered Motion
images at resolution of 160x120 of MSR dataset is 
approximately 46 frames per second.
feature extraction is 10 frames per second
performed on a computer with 
1.18GHz) with 3.49GB memory for
include loading video, displaying features and saving the 
extracted features to a file. 
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We vary the detection threshold to obtain the precision-
one for each action type, as shown in Figure 10. 

Hierarchical Filtered Motion feature is 
feature for all three action types. 

 

 

 

 
                    (b)   STIP 

Hierarchical Filtered Motion features successfully 
features fail. For each example, the 

left picture illustrates the detection results of using Hierarchical Filtered 
t shows the results of using STIP features. The 

three colors denote different kinds of actions: red for clapping, green for 

 
Hierarchical Filtered Motion feature 

extraction is programmed in C++ without optimization. The 
erarchical Filtered Motion feature extraction in 

images at resolution of 160x120 of MSR dataset is 
approximately 46 frames per second. In comparison, STIP 
feature extraction is 10 frames per second. The testing is 
performed on a computer with Duo CPU (2.2GHz and 
1.18GHz) with 3.49GB memory for both algorithms which 
include loading video, displaying features and saving the 
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(a) Boxing 

(b) Handclapping 

(c) Hand waving 

Fig. 10. The precision-recall curves of action detection using 
Filtered Motion (red color) and STIP (green color) features.
hand clapping; (c) hand waving. 

 
We further extensively investigate the efficiency 

Hierarchical Filtered Motion feature extraction
following steps: 1) interest point detection including 
Corner Detection, MHI calculation, and removing the corners 
in the static background using MHI as the motion mask
hierarchical motion filter feature extraction

, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS 

 

 

 

detection using Hierarchical 
features. (a) boxing; (b) 

he efficiency of the 
feature extraction of the 

including 2D Harris 
Corner Detection, MHI calculation, and removing the corners 
in the static background using MHI as the motion mask; 2) 

extraction including 

processing of both global and local motion filter
calculation of HOG and MHI-HOG
computation time of step 1 and 2. We use MSR dataset with 
crowded background motions. One example of the t
is displayed in Figure 11. The average number 
interest points is about 30 per image for the tested sequence. 
The details of the efficiency of the proposed 
Filtered Motion feature extraction are listed in Table VII.
the sequence with resolution of 160x120, the speed of inte
point detection (step 1) is 216 frames per second. The speed 
for Hierarchical Filtered Motion feature extraction (step 2)
98 frames per second. The speech of the whole core algorithm 
(step 1 + step 2) is 68 frames per second (without 
video, displaying features and saving the extracted features to 
a file). The above speeds decrease to 90, 45, and 30 frames per 
second for sequence in resolution of 320x240.
keep the same amount of Harris corners in both 
we double the minimum distance between corners in 2D 
Harris corner detection for 320x240 images.

TABLE VII

EFFICIENCY ANALYSIS FOR HIERARCHICAL FILTERE
FEATURE EXTRACTION ON MSR DATASET WITH CROWDED

BACKGROUND

Image 
resolution 
(MSR 
dataset) 

Efficiency 

IP detection Hierarchical
filter feature extraction

160x120 216 

320x240 90 

Fig. 11. Example images from MSR dataset for efficiency analysis.

V. CONCLUSION

We have presented a new feature for action recognition in
crowded videos without tracking objects or key
novel technique, called Hierarchical Filtered Motion
proposed to reduce distracting motions caused by the 
background moving objects near an interest point.  We 
performed action classification and detection 
videos with cluttered and moving background, and 
demonstrated its superior performance over existing 
techniques. In addition, our approach is very fast thus suitable 
for real-time action recognition.  

The proposed Hierarchical Filtered Motion is 
than STIP features for action recognition in crowded videos
The reasons are summarized as the following: 1) the 2D Harris 
corner detection is less sensitive to lighting changes than STIP 
features; 2) MHI filtered interest points can 
the motion features than STIP (too sparse)

9

f both global and local motion filters and 
HOG; and 3) the total 

. We use MSR dataset with 
crowded background motions. One example of the testing data 

The average number of detected 
interest points is about 30 per image for the tested sequence. 

the proposed Hierarchical 
feature extraction are listed in Table VII. For 

the sequence with resolution of 160x120, the speed of interest 
point detection (step 1) is 216 frames per second. The speed 

feature extraction (step 2) is 
98 frames per second. The speech of the whole core algorithm 

8 frames per second (without loading 
displaying features and saving the extracted features to 

a file). The above speeds decrease to 90, 45, and 30 frames per 
second for sequence in resolution of 320x240. Note that to 

amount of Harris corners in both resolutions, 
inimum distance between corners in 2D 

Harris corner detection for 320x240 images. 

VII 

HIERARCHICAL FILTERED MOTION 
DATASET WITH CROWDED 

BACKGROUND 

Efficiency (frame/second) 

Hierarchical motion 
feature extraction 

Total 

98 68 

45 30 

 

Example images from MSR dataset for efficiency analysis. 

ONCLUSION 

presented a new feature for action recognition in 
crowded videos without tracking objects or key points. A 

erarchical Filtered Motion, was 
proposed to reduce distracting motions caused by the 
background moving objects near an interest point.  We have 

classification and detection experiments on 
videos with cluttered and moving background, and 
demonstrated its superior performance over existing 

In addition, our approach is very fast thus suitable 

Hierarchical Filtered Motion is more robust 
than STIP features for action recognition in crowded videos. 
The reasons are summarized as the following: 1) the 2D Harris 
corner detection is less sensitive to lighting changes than STIP 

red interest points can better characterize 
the motion features than STIP (too sparse); 3) The directional 
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motion information is measured directly from the intensity 
gradients in the MHI. It is also more robust because the 
motion information in MHI is mainly along the contours of the 
moving objects. Thus, unwanted motion in the interior regions 
of object contours is ignored; and 4) the Hierarchical Filtered 
Motion computes a structure proximity between any pixel in 
the local region and the interest point and can reduce 
distracting motions caused by the background moving objects 
near an interest point. Our future work will focus on 
recognizing more types of actions in crowded videos. 
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