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Abstract. To highlight structures such as blood vessels and tissues for
clinical diagnosis, veins are often infused with contrast agents to obtain
contrast-enhanced CT scans. In this paper, the use of a deep learning-
based framework, DyeFreeNet, to generate virtual contrast abdominal
and pelvic CT images based on the original non-contrast CT images
is presented. First, to solve the overfitting issue for a deep learning-
based method on small datasets, a pretrained model is obtained through
a novel self-supervised feature learning network, whereby the network
extracted intensity features from a large-scale, publicly available dataset
without the use of annotations and classified four transformed intensity
levels. Second, an enhanced high-resolution ”primary learning generative
adversarial network (GAN)” is then used to learn intensity variations
between contrast and non-contrast CT images as well as retain high-
resolution representations to yield virtual contrast CT images. Then, to
reduce GAN training instability, an ”intensity refinement GAN” using
a novel cascade intensity refinement strategy is applied to obtain more
detailed and accurate intensity variations to yield the final predicted
virtual contrast CT images. The generated virtual contrast CTs by the
proposed framework directly from non-contrast CTs are quite realistic
with the virtual enhancement of the major arterial structures. To the
best of our knowledge, this is the first work to synthesize virtual contrast-
enhanced abdominal and pelvic CT images from non-contrast CT scans.
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1 Introduction

The use of contrast material is essential for highlighting blood vessels, organs,
and other structures on diagnostic tests such as magnetic resonance imaging
(MRI) and computed tomography (CT) [7–9]. However, contrast material may
cause fatal allergic reactions or nephrotoxicity [1, 10]. This paper attempts to
seek a dye-free solution by automatically generating virtual contrast-enhanced
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CTs directly from non-contrast CT images. There are existing studies based on
image synthesis to assist the clinic diagnosis [6, 12, 15, 17, 19]. Recently, genera-
tive adversarial networks (GANs) [16] have shown to be promising for synthe-
sizing medical images; for example, investigators have used GANs to synthesize
3D CT images from 2D X-rays with two parallel encoder-decoder networks [18],
to synthesize MR images from non-contrast CT images, and to virtually stain
specimens [2]. The synthesis of contrast-enhanced brain MR images from non-
contrast or low contrast brain MR images has also been reported [3, 5].

In this paper, we focus on developing a new GAN-based framework to synthe-
size abdominal and pelvic contrast-enhanced CT images from non-contrast CT
images, thereby virtually enhancing the arterial structures. Compared to syn-
thesizing contrast-enhanced brain MR images, synthesizing contrast-enhanced
CT images for the abdomen and pelvis is more challenging since they contain
more feature and intensity variations. CT images are also susceptible to mis-
registration and there is a lack of multiparametric images to provide additional
soft-tissue contrast. Additionally, abdominal and pelvic CT scans usually contain
hundreds of CT slices with converging complex organs and soft tissue structures.
To predict pixel intensity variations between synthesized contrast and the orig-
inal non-contrast CTs accurately, the algorithm needs to obtain both local and
global features. Lastly, with limited medical imaging data, the algorithm needs
to account for overfitting during the training.

The contributions of this paper are summarized in the following three as-
pects. 1) Virtual Contrast CT Synthesis. To the best of our knowledge,
this is the first work to synthesize virtual contrast-enhanced CT images from
non-contrast abdominal and pelvic CT scans, which is more challenging than
synthesizing contrast-enhanced brain MR images [3, 5]. 2) Novel DyeFreeNet
Framework. This framework consists of the self-supervised learning network
to obtain a pretrained model followed by high-resolution GANs to extract con-
text features and predict intensity variations based on original non-contract CT
images. We used a cascade intensity refinement strategy to train GANs in a pro-
gressive manner starting with key texture features and coarse intensity learning,
followed by refining the intensity variations. 3) Self-supervised Learning Pre-
trained Model. To avoid overfitting and to allow the model to learn rich repre-
sentative features, we first employed a novel self-supervised learning network to
learn a pretrained model from a large-scale, publicly available dataset without
the use of human annotations through classifying four intensity categories.

2 DyeFreeNet

The DyeFreeNet framework is proposed with the following two key aspects in
mind. First, the virtual contrast CT image will be a contrast-enhanced version
of the original non-contrast CT image whereby critical features of the original
non-contrast CT image, such as the texture information of the body, organs,
and soft tissues, will be preserved. Second, intensity variations in both local and
global features of paired pre/post-contrast CT images will be accounted for in
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Fig. 1. The DyeFreeNet framework predicts virtual contrast CT images from non-
contrast CT images by cascade intensity-learning high-resolution generative adversar-
ial networks (GANs) combining the self-supervised feature learning schema. 1) A self-
supervised learning pretrained model is trained by classifying four different intensity
levels (0.5, 1.0, 1.5, 2.0) transformed from non-contrast CT images that are available
within a large public dataset. 2) A cascade training strategy is employed, whereby
the ”primary learning generative adversarial network (GAN)” learns the key texture
features and coarse intensity variations from non-contrast CT images, and the ”inten-
sity refinement GAN” further refines contrast enhancement to yield the final predicted
virtual contrast CT images.

network design and feature extraction. Fig. 1 shows the DyeFreeNet framework
that consists of 1) A self-supervised pretrained model for rich feature extrac-
tion. 2) High-resolution intensity-learning GANs for preserving high-resolution
features and virtual contrast CT generation using a cascade of intensity refine-
ment training strategies.

2.1 Self-supervised Learning Pretrained Model

To speed up the training process and avoid overfitting for virtual contrast CT
generation on relatively small dataset, self-supervised learning is proposed to ex-
tract rich intensity features from a large-scale, publicly available NLST dataset [11]
with non-contrast CT without the use of data annotations and thereby obtain
a pretrained model. As shown at Fig. 1, for each non-contrast CT image, in-
tensity variances at four classes [0, 1, 2, 3] are applied by adjusting the intensity
coefficient [0.5, 1.0, 1.5, 2.0, respectively] to generate transformed CT images. A
self-supervised intensity classification network employs the ”high-resolution gen-
erator” from the virtual contrast CT predictor (see 2.2 below) as the backbone
network for feature extraction. Extracted features are applied for the training
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of a classifier to predict intensity level, using three fully connected layers with a
softmax layer.

The cross-entropy loss function is shown in Eq.1:

loss(cj |i) = − 1

K

(K−1)∑
I=0

log(F (G(cj , I)|i)), (1)

where the input CT slice cj is transformed into K levels of intensity I with
the coefficient i. F indicates the classification network, and G is the intensity
transformation model.

2.2 Virtual Contrast CT Predictor

The virtual contrast CT predictor consisted of cascade intensity refinement to
generate high-resolution virtual contrast CT images.

Cascade Training Strategy. Due to the complex structures of abdomen
and pelvis CT scans, cascade intensity refinement is split into two stages: 1)
The ”primary learning GAN” sketched the key texture features and coarse in-
tensity variances. 2) The ”intensity refinement GAN” focuses on refining and
generating detailed contrast enhancement. The coarse-to-fine procedure utilizes
both the spatial and temporal information of CT scans. The ”primary learning
GAN” takes three consecutive CT slices as input (mimics the RBG channels),
and down-samples images to half of the original image size. It then generates the
initial contrast CT image, with three continuous CT slices containing rich texture
features but insufficient intensity variations serving as the input. The ”intensity
refinement GAN” takes the initial contrast CT generated by the ”primary learn-
ing GAN” as the input and obtains more detailed intensity variations. Finally, an
up-sampling layer is applied to yield the final predicted high-resolution virtual
contrast CT images.

The GAN Architecture. High-resolution features are preserved using a
proposed high-resolution encoder-decoder network similar to U-Net [13]. Inspired
by High-Resolution Network (HRNet) [14], the encoder learns high-resolution
features by back-propagating all layers with current convolutions block L con-
catenated through all previous convolutional blocks Li−1. Meanwhile, the de-
coder network was constructed by skip connection, which gradually combines
high-level features with low-level features. To preserve rich texture features from
the original pre-contrast CT, the feature map from the last block was concate-
nated with the input features followed by two convolution layers for optimization.

As a ”high-resolution generator” extracts the feature representatives, it is
essential to map pre-contrast and contrast images in training accurately. We
observed that traditional loss functions such as MSE and L1 losses easily over-
smoothed the generated images. In comparison, GAN solves the issue by apply-
ing convolutional networks as discriminator distinguishing the real or generated
images. By treating the virtual contrast CT as the result of a gradual approach
from the pre-contrast CT to the virtual contrast CT, the virtual contrast CT
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can be considered a regression task. The discriminator evaluated MSE and
BCEwithlogits losses for the following two sets of feature maps: 1) the feature
map extracted from input CT concatenated with the real contrast CT, with the
labels as ones; 2) the feature map extracted from input CT concatenated with
the virtual CT, with the labels as zeros.

Objective Functions. The ”high-resolution generator” learns the mapping
between the pre-contrast image x and generated contrast image c to the real
contrast image y. The generator G generates virtual contrast CT images, while
the discriminator D is trained to distinguish the real and virtual contrast CT
image. The objective of the proposed network DyeFreeNet (DFN) is shown as
Eq. (2):

LDFN (G,D) = Ey[LogD(x, y)] + Ex,c[log(1−D(G(x, c)))], (2)

where G aims at minimizing the objective while D maximizes it. An additional
MSE loss is appended with the objective to measure the distance between the
virtual contrast image with the true image, shown as Eq. (3):

LMSE(G) = Ex,y,c||y −G(x, c)||22. (3)

To generate the virtual CT image similar to the real contrast CT image, MSE
loss is conducted to optimize the intensity level close to real contrast CT grad-
ually. The loss function of the discriminator is as Eq. (4):

LDFN (D) = DMSE(G(x, c)) +DBCE(G(x, c)). (4)

Furthermore, perceptual loss [4] is applied for feature level comparison of
generated and real virtual contrast CT images in between all the convolutional
blocks. Therefore, the total objective of DyeFreeNet is:

G∗ = argmin
G

max
D
LDFN + λLMSE(G) +

j∑
`φ,jfeat(y

′, y), (5)

where λ adjusts the weight of MSE loss which set as 0.01, and y′, y are the
virtual and real features from the jth convolutional layer.

3 Experiments

Training and Validation Dataset. We assembled a retrospective CT dataset
for examinations. All CT examinations were obtained using a dual-source multi-
detector CT scanner. Patients were positioned supine on the table. Pre-contrast
imaging of the abdomen was acquired from the dome of the liver to the iliac crest
in an inspiratory breath hold by using a detector configuration of 192× 0.6 mm,
a tube current of 90 kVp, and a quality reference of 277 mAs. After intravenous
injection of a 350 mg/ml non-ionic contrast agent (1.5 mL per kg of body weight
at a flow rate of 4 ml/s), bolus tracking was started in the abdominal aorta at
the level of the celiac trunk with a threshold of 100 HU. Scans were acquired
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Fig. 2. A: The PSNR and SSIM results of the baseline models (U-Net and U-
Net+Pix2Pix GAN) and the proposed DyeFreeNet on the comparison between virtual
contrast CT images and the real contrast CT images. B: The evaluation scores from
the assessments of two radiologists in three aspects: overall image quality, image quality
of the organs, and the image quality of the vascular structures. Using a 5-point Likert
scale from ”1” = poor to ”5” = excellent, the average evaluation score for virtual con-
trast CT images is ”3” (acceptable). In particular, the image quality of the vascular
structures was scored highest as the model was trained with early-stage arterial phase
CT images.

using attenuation-based tube current modulation (CARE Dose 4D, Siemens).
We focused on synthesizing the early-stage post-contrast CTs (vascular/arterial
phase) from pre-contrast CTs. A total of 4, 481 CT slices were used for training
and validation while 489 CT slices were used for image quality evaluation.

Experimental Set Up and Parameter Settings.

Self-supervised Learning Pretrained Model. 41, 589 CT slices of low-dose spiral
CT scans were selected from the large public national lung screening trial (NLST)
dataset [11] for the training of self-supervised pretrained model. The learning rate
is set to 1e−6 and decreased by 0.1 after 5 epochs updated by Adam optimizer.
The total training included 10 epochs with a batch size of 8.

Virtual Contrast CT Predictor. Three consecutive CT slices are fed as in-
puts to learn essential features in each image as well as between different CT
slices. The ”primary learning GAN” is initialized using the weights of the self-
supervised pretrained model. The learning rate is set to 1e−5 and decreased by
0.1 after 20 epochs for 25 epochs training with a batch size of 4. The weight
decay is 5e−4 with the Adam optimizer. The speed of virtual contrast image
generation is 0.19 sec/slice on average with one GeForce GTX 1080 GPU using
Pytorch 2.7.

The ”intensity refinement GAN” is initialized using the weights of the trained
primary learning model. The learning rate is 5e−5 and decreased by 0.1 after 17
epochs for 20 epochs training with a batch size of 4. The weight decay is 5e−4

using Adam optimizer. The speed of virtual contrast image generation is 0.24
sec/slice on a GeForce GTX 1080 GPU using Pytorch 2.7.

Quantitative Evaluation. Quantitative evaluation was performed between
paired synthesized virtual contrast CT images and real contrast CT images that
served as the ground truth for baseline models (U-Net and U-Net+Pix2Pix)
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Fig. 3. A: The virtual contrast CT images generated from non-contrast CT images
by the proposed DyeFreeNet compared with the baseline models of U-Net and U-
Net+Pix2Pix GAN. a) Pre-contrast CT images. b) True contrast CT images as the
ground truth. c) Virtual contrast CT images generated by U-Net. d) Virtual contrast
CT images synthesized by U-Net+Pix2Pix GAN. e) Virtual contrast CT images syn-
thesized by ”primary learning GAN.” f) Virtual contrast CT images predicted by ”in-
tensity refinement GAN.” The illustration shows that our proposed framework could ef-
fectively synthesize high-resolution virtual contrast CT images similar to ground truth
contrast CT images. B: The illustration of the contributions of the self-supervised
learning-based pretrained model. (a) Pre-contrast CT image. (b) Real contrast CT im-
age. (c) Virtual contrast CT image without the self-supervised pretrained model. (d)
Virtual contrast CT with the self-supervised pretrained model. The red arrow indicates
the intensity enhancement of the thoracic aorta region.

as well as our proposed DyeFreeNet. Voxel-wise difference and error assess-
ment were conducted using Peak Signal to Noise Ratio (PSNR) while non-
local structural similarity was assessed using Structural Similarity Index (SSIM).
Fig. 2A shows that DyeFreeNet outperformed baseline models of U-Net and U-
Net+Pix2Pix on PSNR (by 2.16 and 1.02, respectively), and also on SSIM (by
0.26 and 0.07, respectively).

Qualitative Evaluation by Radiologists. Blind reviews of paired pre-
contrast CT images with real contrast CT images and paired pre-contrast CT
images and virtual contrast CT images were conducted. Two radiologists inde-
pendently assessed a total of 489 pairs of real and synthesized images on the
following three aspects: overall image quality, image quality of the organs, and
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image quality of the vascular structures. Qualitative scores were based on a 5-
point Likert scale, with scores ranging from ”1” = poor, ”2” = sub-optimal,
”3” = acceptable, ”4” = good, and ”5” = excellent. Fig. 2B shows that the
radiologists gave an average score of ”3” (acceptable) for overall image quality,
image quality of the organs, and image quality of the vascular structures for the
virtual contrast images compared with an average score of ”5” (excellent) for
the real contrast images. The average score for the image quality of the vascular
structures was slightly higher than the overall image quality and image quality
of the organs. In contrast, the average score was slightly lower for the image
quality of the organs, likely because the virtual contrast images were generated
from the network trained with vascular (arterial) phase images.

Comparison with Baseline Models. Additional results are illustrated in
Fig. 3A. Pre-contrast and real contrast CT images are shown in Fig. 3A(a)
and (b), respectively; enhanced regions on the real contrast CT images de-
pict the arterial structures. Virtual contrast CT images generated by U-Net,
U-Net+Pix2Pix GAN, ”primary learning GAN” of DyeFreeNet, and ”intensity
refinement GAN” of DyeFreeNet are shown in Fig. 3A(c-f). Although U-Net
partially learned the intensity variations, the virtual contrast CT is very blurry
and includes artifacts. While traditional MSE or L1 loss functions can be ap-
plied, they easily oversmooth the predicted image which is problematic as high-
resolution images are required for diagnosis. By using the ”primary learning
GAN,” texture features are successfully preserved from the pre-contrast images.
However, although the resolution is increased, the intensity variance learning is
decreased. Using a pretrained model with ”primary learning GAN” results in bet-
ter feature extraction but the intensity variations still need to be improved. With
the ”intensity refinement GAN,” the DyeFreeNet accurately enhances the vascu-
lar structures. The intensity variations and texture features are both learned and
preserved in this framework with contributions by the self-supervised learning
pre-trained model and the cascade framework.

Comparison with Self-supervised Pre-trained Model. Fig. 3B illus-
trates the results with and without using the self-supervised intensity pretrained
model. Pre-contrast and real post-contrast CT images are shown in Fig. 3B(a)
and (b). Although the thoracic aorta region (red arrow) is enhanced without
using the pretrained model as shown in Fig. 3B(c), with rich feature extraction
from the pretrained model, the intensity variations are significantly enhanced as
shown in Fig. 3B(d).

Remaining Challenges and Future Work In this paper, the performance
of the model is evaluated at the arterial stage. Our future work will seek to
extend the DyeFreeNet network for multi-stage virtual contrast generation (i.e.,
portal and delayed phases). Its potential limitation is that the misalignment be-
tween pre-contrast CT and contrast CT (as the training data) might be more
significant than the arterial phase, resulting in generating the artifacts that af-
fect the enhancement accuracy. It is essential to tackle the misalignment issue.
Furthermore, to validate the possibility of clinical practice, a downstream task
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assessment will be developed in future work, such as nodule detection, blood
vessel segmentation, and organ segmentation.

4 Conclusion

We developed a self-supervised intensity feature learning-based framework, Dye-
FreeNet, to automatically generate virtual contrast-enhanced CT images from
non-contrast CT images. The rich features extracted by the self-supervised pre-
trained model and a coarse-to-fine cascade intensity refinement training schema
significantly contributed to high-resolution contrast CT image synthesis. The
promising results show high potential to generate virtual contrast CTs for clinic
diagnosis.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under award number IIS-1400802 and Memorial Sloan Kettering Cancer Center
Support Grant/Core Grant P30 CA008748.

References

1. Andreucci, M., Solomon, R., Tasanarong, A.: Side effects of radiographic contrast
media: pathogenesis, risk factors, and prevention. BioMed research international
2014 (2014)

2. Bayramoglu, N., Kaakinen, M., Eklund, L., Heikkila, J.: Towards virtual h&e stain-
ing of hyperspectral lung histology images using conditional generative adversarial
networks. In: Proceedings of the IEEE International Conference on Computer Vi-
sion. pp. 64–71 (2017)

3. Gong, E., Pauly, J.M., Wintermark, M., Zaharchuk, G.: Deep learning enables
reduced gadolinium dose for contrast-enhanced brain mri. Journal of Magnetic
Resonance Imaging 48(2), 330–340 (2018)

4. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: European conference on computer vision. pp. 694–711.
Springer (2016)

5. Kleesiek, J., Morshuis, J.N., Isensee, F., Deike-Hofmann, K., Paech, D., Kickin-
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