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Abstract—The development of smart mobile device with 

cameras makes it possible to build wearable and portable blind 
assistant navigation systems. However, it is difficult for blind user 
to capture high-quality images and videos of surrounding 
environments without motion blur or de-focus blur. To avoid this 
blur effect in camera-based videos, this paper proposes a method 
of high-quality frame detection based on image quality 
assessment. It distinguishes blurred frames from unblurred 
frames in the videos. In this method, an image frame is divided 
into 80×70 patches, where edge and luminance information is 
modeled for high-quality frame detection. 4 types of features 
based on gradient statistic are adopted to determine whether an 
image patch is blurred or not. The classification process is carried 
out in a support vector machine (SVM) based learning model. The 
unblurred frames are used to extract essential information for 
navigation and information collection such as scene text 
information. We collect a video dataset of natural scenes 
containing blurred and unblurred frames in both indoor and 
outdoor environments. Experimental results demonstrate that our 
proposed method is able to robustly handle video motions and 
extract surrounding text and signage in wearable and portable 
blind assistant navigation systems. 
 

Index Terms— Blind assistive navigation, Way-finding, Motion 
blur, Video quality, Frame selection, Scene text extraction.  
 

I. INTRODUCTION 
ITH the development of mobile cameras in the form of 

smartphones, laptops, wearable cameras, it becomes 
very convenient to capture surrounding scenes and 

objects. Based on the camera-captured image or video, we are 
able to extract valuable information from surrounding 
environments. This information can be used in many practical 
applications, such as assistant navigation of blind or visually 
impaired people. 

According to the World Health Organization investigation in 
2010 [1], 4.24% of the world’s total population is suffering 
visual impaired and 0.58% persons are blind. This number is 
very likely to increase as the baby boomer generation gets into 
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old ages. In the daily life of blind people, one challenging task 
is to access unfamiliar environments. Most of them fell into 
trouble in finding the correct ways, and were even thrown into 
life threatening situations. If the blind or visually impaired 
people were able to access, understand, and explore unfamiliar 
environments, they would live a much better life, since this 
capability could enhance employment opportunities, foster 
independent living, and produce economic and social 
self-sufficiency.  

To help visually impaired people, the wearable and portable 
cameras are used to develop many assistant systems over the 
last fifty years, including video magnification [10], reading 
machines [18], text-to-speech (TTS) and screen readers [2], 
sonic travel guide [14, 17]. There are many camera-based aids 
such as signage recognition [39], text extraction [43], bill 
recognition [12], and navigation [7, 16, 20, 23, 24, 36]. The 
research work in [37] considered which features were 
necessary to make 3D visual worlds usable for blind or visually 
impaired persons. A haptic indicator [3] was developed to help 
visually impaired persons find their ways, by delivering simple 
navigational information. The work in [40] attempted to design 
universal auditory graphs to help visually impaired and sighted 
listeners. A multimodal video game was developed in [29] to 
train navigation skills of blind children. These technologies 
were proposed to increase quality of life for millions of 
individuals with vision loss by allowing their independent 
access into unfamiliar environments. Recent technical 
developments in computer vision, digital cameras, and portable 
computers make it possible to develop better products to assist 
blind people. Our group has worked out a number of solutions, 
including robust scene text information extraction, for assistive 
technologies to help blind people [12, 36, 42]. However, the 
proposed methods of information retrieval from surrounding 
environments mainly focus on clear static images or videos 
without blur, so it limits practical applications of blind 
assistance. 

Even though the wearable and portable cameras are available 
for people in normal vision, it is difficult for blind or visually 
impaired people to capture high-quality images that are well 
prepared for computer-vision-based object detection or 
recognition. In blind assistant systems, blind users are usually 
required to capture a video clip of surrounding environment, 
and a frame in good quality should be selected from the video 
clip for blind assistant information retrieval. In this paper, the 
quality is defined as the blurry extent of the image. The less the 
frame is blurred, the better its quality is. 

Blur effect, including motion blur and de-focus blur, is a 
common problem which is usually encountered by the users of 
mobile cameras. They are mainly caused by the improper 
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camera motion, camera shake or inaccurate camera shooting 
direction, all of which are unavoidable when a blind or visually 
impaired user wears the camera. People in normal vision can 
accurately aim at the target within the camera view and take the 
image while keep the camera static, but blind people cannot see 
the target and they are not able to keep the camera stable while 
taking images. This blur will significantly decrease the 
performance of surrounding information retrieval.  

No existing blind assistant systems can handle motion blur 
and extract surrounding text and signage for Way-finding. To 
address this issue, we proposed a method to detect good quality 
frames from video clip [36] and then detect text information 
from surrounding signage [42]. This paper will combine the 
two techniques to generate a novel blind assistant system 
working in practical applications. Figure 1 shows our prototype 
system for blind-assistant navigation in unfamiliar 
environment, including a wearable camera mounted on a sun 
glasses, a mini computer for data processing, a microphone for 
speech command, and a Bluetooth ear piece for providing 
feedback to the blind user. Some example images captured by a 
wearable camera, as shown in Figure 2, are blurred due to 
improper camera motion and camera shake. 
 

 
Figure 1. Testing our prototype system with a wearable camera for blind 
navigation.  
 

In [36], we proposed a method to detect good quality frames 
from blurred frames in videos captured by wearable cameras 
while the blind users are moving. Our method was able to 
handle both indoor and outdoor environments. It combined 
gradient features and statistical features of frequency, entropy, 
etc. Then the SVM learning model was applied to distinguish 
the frames in good quality (unblurred) from those in low quality 
(blurred) frames. This process of image quality assessment is 
defined as high-quality frame detection in this paper. The 
unblurred frames would be further processed to extract 
essential information such as sign and text from surrounding 
environment. In this paper, our previous method is improved by 
dividing the whole frame into a group of patches and 
performing high-quality frame detection in each patch. This 
novel method can not only speed up the calculation time, but 
also increase the accuracy of high-quality frame detection. 
More details can be found in Section 4.  

This rest of this paper is organized as follows. In Section 2, 
we describe the related work of image quality assessment. 
Section 3 provides an overview of the proposed method. 
Section 4 explains the features and classification to identify 
blurred and unblurred frames from video sequences. The 
experimental results and evaluation are presented in Section 5. 
Section 6 demonstrates some results of the text detection from 

blurred and unblurred images. Section 7 concludes the paper 
and discusses our future work.  

 

 
Figure 2. Low-quality images captured by a wearable camera and they are 
blurred. It will be difficult to extract necessary information from these blurred 
images for navigation such as text and signage etc. 

II. RELATED WORK 
There are three types of methods for the image quality 

assessment including full-reference based [5, 30], 
reduced-reference based [19] and no-reference based methods 
[6, 8, 9, 11, 22, 26, 34, 41]. For the full-reference based 
algorithms, the original sharp image with good quality was 
used as the reference image to compare with the test images for 
the quality difference. In reduced-reference methods, instead of 
using the whole image, part of information in original image 
was used as reference information. Recently, researchers have 
developed no-reference algorithms without using any 
knowledge of the original high quality images. Our task is to 
detect blur frames in video, and there is no original high quality 
frames available. Therefore our method belongs to no-reference 
method. 

The most popular features for non-reference image quality 
assessment are the edge features [9, 26]. Usually, the edge 
width of blurred images is larger than the edge width from clear 
images with good quality. In addition to edge width, gradient 
and slopes are also used for image quality assessment [8]. 
Furthermore, frequent space, transform-based and hybrid 
metrics are investigated by some researchers [13, 28, 38]. 
Considering the human visual perception system for edge 
changes, Ferzli and Karam proposed an algorithm based on 
cumulative probability of blur detection (CPBD) by 
introducing a measurement called "just noticeable blur (JNB)" 
to indicate the tolerance of human visual system for edge width 
changes [9]. Mittal et al. demonstrated that the statistics of all 
pixels illumination in an image can be applied for the image 
quality assessment [22]. Ruderman proposed mean subtracted 
contrast normalized (MSCN) coefficients for image 
representation that is the other form of normalized luminance 
coefficients [27]. The image quality distortion affects the 
MSCN coefficients distribution function, which will be 
quantized with the parameter change in a distribution function. 
This blind and reference-less image spatial quality evaluator 
(BRISQUE) is efficient enough to be applied to the real-time 
image quality assessment. 

Although many methods have been developed, the accuracy 
of the existing methods is not sufficiently high for our 
high-quality frame detection task in blind navigation 
application. In this paper, we propose a new method for 
high-quality frame detection by combining the edge, luminance 
and statistical information. 
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Figure 3. The flowchart of the proposed method for detecting good quality 
frames from blurred frames from videos captured by a wearable camera. 

III.  OVERVIEW OF THE PROPOSED HIGH-QUALITY FRAME 
DETECTION METHOD  

The flowchart of our proposed method is shown in Figure 3. 
It demonstrates the process from camera-based video frames to 
quality identification. As we observe, the edges in blurred 
frames are always wider than the edges in sharp frames. 
Therefore, edge information is employed to generate features to 
detect blurred frames and unblurred frames. For each frame, we 
first extract edge and statistic features. Then an SVM-based 
classifier is employed to determine if the frame is blurred or 
not. If the frame is unblurred, the essential information (text 
signage) in this frame is extracted and provided to blind users as 
feedback in speech. If all the frames in a short period time are 
blurred, a deblur process based on maximum a posterior and 
blind deconvolution framework will be applied to restore the 
frames and the essential information will then be extracted from 
the deblurred image. The deblur method is beyond the topic of 
this paper. 

In the process of high-quality frame detection, specific 
patches are cropped from image for feature extraction, instead 
of the whole image. The specific patches will be less 
computationally expensive and the work in [15] pointed out 
that the blank background and no-edge patch could adversely 
affect the accuracy of high-quality frame detection. Taking 
Figure 4 (a) for example, the blank background contains no 
information on blur, and these parts would unexpectedly reduce 
the average edge width if we adopt the whole image for 
high-quality frame detection. 

In our experiments, the image patch is defined to be 80×70 
sizes, and it moves all over the image. The edge and luminance 
information of each patch will be calculated. Then, the patch 
containing the largest number of edges will be selected for the 
edge processing. Next, the patch that contains the highest 

luminance value will be chosen for the luminance processing 
later.  

According to our daily life experience, the central part of an 
image catches our much more attention than the margin of the 
image, as shown in Figure 4 (b). Therefore, a weight is set in 
each position according to its distance from image center, and 
this weight is applied to the edge score for each patch in image. 
In our definition, the central patch weight will be 1 and the 
margin weight will be 0.01, while the weights of other parts are 
set along with position linearly. 

IV. BLURRED AND UNBLURRED IMAGE CLASSIFICATION  

A. Features for Blurred and Unblurred Image 
Classification  

Unblurred frames are distinguished from blurred frames in 
the video clips captured by wearable cameras. In this process of 
high-quality frame detection, we adopt 4 types of features on 
the basis of edge and luminance information: (1) average edge 
width, (2) average luminance, (3) cumulative edge blur 
probability, and (4) MSCN distribution [22]. This section will 
present the 4 types of features in detail. 
 

 
Figure 4. The weak factor from blank patches from blurred frame (a), and (b) 
non-central patch in unblurred frame. 
          
Average Edge Width: As shown in Figure 5, although the 
edges in blurred frames are much less than the unblurred frames, 
the width of edges in blurred frames are usually wider than that 
from frames with good quality. Therefore, edge width can be 
used to measure the image quality. To calculate the average 
edge width, we first apply a Sobel edge detector to the image. 
Then, in the perpendicular direction of the edge gradient angle, 
the edge width for each edge pixel is calculated by the distance 
between the start and end positions of the edge pixel, which are 
defined as the local extreme locations closest to the edge pixel 
[25]. At last, the average value of width of each edge pixel for 
the whole frame is calculated as the average edge width feature. 
As shown in the top-right images of Figure 5(a) and 5(b), the 
maps of edge width distribution demonstrate that the maximum 
edge width for the blurred image (Figure 5(a)) is about 30 
pixels, while the edge width for the unblurred image (Figure 
5(b)) for most pixels is smaller than 15 pixels. Therefore, the 
average edge width is a good feature to classify unblurred and 
blurred images. 
Average Luminance: Edge-based features are necessary but 
not sufficient conditions to distinguish high-quality sharp 
images from blurred images. Given two images, one from 
indoor environment with sharp edges and the other from 
outdoor environment with blur, it is very possible that 
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edge-based features always predict that the outdoor image has 
higher quality, because it should contain much more edge 
pixels than the indoor one. To eliminate the edge-based 
difference of indoor and outdoor environments, average 
luminance is modelled to differentiate them in the estimate of 
image quality. Generally, the average luminance of video 
frames for an outdoor environment in day time is larger than an 
indoor environment, because the distance between the camera 
and objects in outdoor environments is normally larger than 
that in indoor environments. Therefore, the feature of average 
luminance is applied in our method to model the environment 
luminance situation. 

 
 
Figure 5. The edge width and MSCN distribution for the blurred (left column) 
and unblurred (right column) frames. In the two examples, from top to bottom, 
there are original images; edge width distributions, edge images, and MSCN 
distributions. 

Cumulative Edge Blur Probability: In addition to the global 
edge and luminance information, the distribution of edge pixels 
in an image also plays an important role in the human 
perception of image quality. Thus we divide an image into 
patches and assign them different weights according to their 
edge densities in the estimate of image quality. At first, the 
image will be uniformly divided into patches (the patch size is 
selected as 64×64 in our implementation). If the patch contains 
enough number of edges pixel (0.2% of the total pixels in 
patch), we will label it as ‘edge patch’ and process it in later 
steps. Then, the probability that models the blur extent at each 
edge in ‘edge patch’ is calculated. At last the edge values of the 
whole image are pooled by the calculating the cumulative edges 
blur probability of image for high-quality frame detection. 
More details of the calculation for the cumulative edge blur 
probability can be found in [26]. 

The Mean Subtracted Contrast Normalized (MSCN) 
Luminance Distribution: Ruderman’s work [27] 

demonstrates that the distribution of MSCN coefficients for an 
image is close to a generalized Gaussian distribution model 
(GGD). For the diagonal neighboring pixels in MSCN 
luminance image, the distribution follows an asymmetric 
generalized Gaussian distribution (AGGD) model [22]. In the 
bottom-right images of Figure 5(a) and 5(b), it is observed that 
the distributions of MSCN have very different distributions 
between blurred and unblurred frames. As shown in the 
following section, the parameters of GGD and AGGD are 
employed to measure the blur level of images. 

B. Computation of MSCN Distributions  

The mean subtracted contrast normalized (MSCN) 
luminance for pixel (𝑖, 𝑗) is 𝐼(𝑖, 𝑗) which was defined in [22] as 
Eq. (1) 

𝐼(𝑖, 𝑗) =
𝐼(𝑖, 𝑗) − 𝜇(𝑖, 𝑗)
𝜎(𝑖, 𝑗) + 𝐶

 , (1) 

where 𝜇(𝑖, 𝑗)  is the local mean of position (𝑖, 𝑗) , calculated 
from a 3 × 3 neighborhood around it, and 𝜎(𝑖, 𝑗) denotes the 
standard deviation of 𝐼(𝑖, 𝑗)within the block. 

𝜇(𝑖, 𝑗) = � � 𝑤𝑘,𝑙  𝐼𝑘,𝑙(𝑖, 𝑗)
1

𝑙=−1

1

𝑘=−1

 , (2) 

 

𝜎(𝑖, 𝑗) = �� � 𝑤𝑘,𝑙  �𝐼𝑘,𝑙(𝑖, 𝑗) − 𝜇(𝑖, 𝑗)�
2

1

𝑙=−1

1

𝑘=−1

 ,    (3) 

where 𝑤𝑘,𝑙  is a 2D circularly-symmetric Gaussian weighting 
function sampled out to 3 standard deviations and rescaled to 
unit volume. The GGD model with zero mean is 

𝑓(𝑥;𝛼1;𝜎2) =
𝛼1

2𝛽𝛽 � 1
𝛼1
�
𝑒𝑒𝑒 �−�

|𝑥|
𝛽
�
𝛼1

� , (4) 

 

where 𝛽 = 𝜎�𝛤(1 𝛼1⁄ )
𝛤(3 𝛼1⁄ )

 and 𝛤(∙)  is the gamma function. For 

neighbouring MSCN coefficients, the AGGD model is:  
 
𝑓(𝑥;𝛼2;𝜎𝑙2;𝜎𝑟2)

=

⎩
⎪
⎨

⎪
⎧

𝛼2

(𝛽𝑙 + 𝛽𝑟)𝛤 � 1
𝛼2
�
𝑒𝑒𝑒 �− �

−𝑥
𝛽𝑙
�
𝛼2
� 𝑥 < 0

𝛼2

(𝛽𝑙 + 𝛽𝑟)𝛤 � 1
𝛼2
�
𝑒𝑒𝑒 �−�

−𝑥
𝛽𝑟
�
𝛼2
� 𝑥 ≥ 0 ,

       (5) 

 

where 𝛽𝑙 = 𝜎𝑙�𝛤 �
1
𝛼2
� 𝛤 � 3

𝛼2
��  and 𝛽𝑟 = 𝜎𝑟�𝛤 �

1
𝛼2
� 𝛤 � 3

𝛼2
�� . 

 
The parameter 𝜎  indicates the GGD variance and 𝛼1 

controls the GGD shape. We employ (𝜎,𝛼1) and (𝜎𝑙 ,𝜎𝑟 ,𝛼2) as 
our features, where σl indicates the left side AGGD variance, 
σr respects the right side AGGD variance and 𝛼2 controls the 
AGGD shape. 
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C. SVM-based Blurred and Unblurred Image 
Classification  

There are 4 types of features involved in our method of 
high-quality frame detection, and each of them has a specific 
range. For example, the average edge width value is from 5 to 
30, while the average luminance is around 50. To ensure each 
feature to make equivalent contribution to the learning process, 
we normalize them into the range from 0 to 1. 

SVM-based learning model is adopted to classify blurred 
from unblurred image. The training dataset contains samples 
represented by the features and labels (xi, yi) where xi denotes 
the designed features and yi ∈ {−1,1}  denotes the label of 
categories. In this paper, the C-SVM classification is applied 
and it should complete the solution for the optimization 
problem. 

𝑚𝑚𝑚
𝑤,𝑏,𝜉

1
2
𝑤𝑇𝑤 + 𝐶�𝜉𝑖

𝑖

 , (6) 

subject to  
 

𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 , and 𝜉𝑖 ≥ 0 , (7) 
 
where  ξi is non-negative slack variables, which measure the 
degree of misclassification of the data xi , w  is the weight 
vector, b is the bias and C is per-chosen parameter which will 
affect the accuracy performance of SVM. 

The kernel function is 𝐾�𝑥𝑖 , 𝑥𝑗� = 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑗), where 𝜙 
is the function to map training vectors xi  into a high 
dimensional space. The radial basis function (RBF) is applied 
as kernel function because it was found to be the most effective 
function. 
 

𝐾�𝑥𝑖 , 𝑥𝑗� = 𝑒𝑒𝑒 �−𝛾�𝑥𝑖 − 𝑥𝑗�
2� . (8) 

 
The SVM classifier needs RBF kernel function with two 

parameters (𝐶, 𝛾), which needs to be adjusted for the small 
number of support vectors that will reduce the calculating time. 

V. IMPROVEMENT OF BLIND NAVIGATION AND WAY-FINDING 
BY BLUR DETECTION  

Signage with text is the most reliable labels for destination 
recognition in the application of blind navigation. Text 
information in natural scene is generally surrounded by all 
kinds of background outliers. To help blind users find their 
destinations through surrounding text information in an 
unfamiliar environment, we have proposed several text 
detection algorithms to find the text from scene images [42]. In 
this text detention algorithms, color uniformity and linear 
alignment of text characters and strings are regarded as two 
significant layout conditions of scene text. They are used for 
building layout and structural models of scene text, and 
separating text characters and strings from background outliers 
that do not satisfy the two conditions.  

Although our proposed algorithm of scene text extraction is 
able to handle text strings in different fonts, sizes, and colors, 
they cannot obtain good performance from low-resolution text 
signage in blurred images. It means that the quality of captured 

images is a bottleneck of scene text extraction in vision-based 
blind assistance. 
 

 
Figure 6. Example results of text information extraction from blurred images 
(left column) and unblurred images (right column). It shows that the scene text 
extraction results are more reliable on high-quality frames without blur effect. 

The method described in this paper can be used as a 
pre-processing component for assistive blind navigation 
system. To demonstrate the benefits of our proposed method in 
image-based information retrieval, we apply scene text 
detection to the low-quality blurred images and the good 
quality images selected by the proposed method. Some results 
are shown in Figure 6. The localized text regions are marked by 
blue rectangle boxes, which will be further processed for text 
recognition. We observe that more true positive text regions are 
successfully detected in the good quality images. 

To build a wearable and portable blind assistant system, we 
have transplanted our method of scene text extraction into 
Android platform for a prototype demo system of blind 
assistance. As shown in Figure 7, the demo system runs on a 
Samsung Galaxy smart phone with Android platform and 
proves the feasibility of our wearable and portable 
blind-assistant navigation system. It also provides us some 
insights into algorithm design and performance improvement 
of blind-assistant navigation. First, blur detection plays an 
important role in scene text extraction in wearable/mobile 
devices which is very likely to generate low-quality image 
frame. Second, in scene text extraction, we focus only on text 
strings in approximately horizontal orientation, because most 
text strings in natural scene are horizontal and the wearable 
cameras can be adaptively rotated to fit the horizontal strings 
from different view angles. Third, in blind-assistant systems, 
we can simultaneously perform video capture and information 
retrieval in two independent modules to accelerate the 
processing speed. 
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Figure 7. The demo system of text extraction runs on a smart phone with 
Android platform. 

VI. EXPERIMENTS  

A. Database  

To evaluate the proposed method as shown in Figure 3, we 
develop a blind assistant prototype system including a Logitech 
HD webcam mounted on a pair of sunglasses and a mini laptop 
for data analysis. Videos are captured from both outdoor and 
indoor environments while the user is moving around. Then it is 
decomposed into a sequence of frames. Among these frames, 
we can obtain both blurred frames and unblurred frames. 

We totally capture 22 videos including 10 outdoor videos 
and 12 indoor videos, where the resolution is 1240×1024 pixels. 
The blurred and unblurred frames are manually labeled for the 
algorithm evaluation based on human visual perception. The 
frames we selected from these videos for training and testing 
mainly consist of the meaningful information, such as entrances, 
characters, text and signage information which could be 
valuable for blind person. Table I shows that the total number 
of frames selected from all the captured videos as blurred and 
unblurred group. The total number of frames for our method is 
3138, including 1802 blurred frames and 1336 unblurred 
frames. For the training group, 1652 frames are selected, and 
the testing group contains 1486 frames.  
 

TABLE I: NUMBER OF FRAMES OF BLURRED AND UNBLURRED FOR TRAINING 
AND TESTING  

Data 
Training Group Testing Group 

Blurred Unblurred Blurred Unblurred 
Indoor 469 332 491 496 

Outdoor 421 430 421 258 
 

TABLE II: PERFORMANCE COMPARISON OF OUR METHOD AND PREVIOUS 
METHODS OVER BLURRED AND UNBLURRED IMAGES 

 Blurred Unblurred Total 
CPBD 69.40% 78.30% 74.80% 

BRISUE 61.50% 78.30% 69.40% 
Method in 

[36] 82.30% 90.50% 86.20% 

Our Method 91.10% 88.70% 89.70% 

B. Experimental Results and Analysis 

As mentioned in Section IV.A., 4 types of features are 
extracted from each frame, which are average edge width, 
average luminance, cumulative edge blur probability, and 
MSCN luminance distributions. The CPBD [9], BRISQUE [27] 
algorithms and our previous method in [36] are adopted in our 
experiments for performance comparisons. CPBD method has 
the best performance among the non-SVM high-quality frame 
detection in videos, BRISQUE could perform high-quality 
frame detection with SVM in real time and our previous 
method has the best performance with SVM. The method 
presented in [44] is able to extract unblurred regions from 
out-of-focus outdoor images, but does not work as well on 
indoor images with motion blur as out-of-focus images. 
 

 
Figure 8. The blurred detection accuracy in outdoor and indoor environment. 

 

TABLE III: PERFORMANCE COMPARISON OF OUR METHOD AND PREVIOUS 
METHODS OVER INDOOR AND OUTDOOR IMAGES. 

  Blurred Unblurred Total 
CPBD 73.10% 80.60% 76.60% 

BRISUE 58.30% 69.40% 65.30% 
Method in [36] 85.30% 88.10% 86.20% 

Our Method 88.90% 90.60% 89.70% 
 

The performance comparison of our method with the 
state-of-the-art methods is displayed in Table II. The C-SVM is 
applied as Eq. (6) and Eq. (7), and the parameters C and γ are 
set as 30 and 1/7 respectively. Our method outperforms both 
CPBD and BRISQUE algorithms. In comparison with the 
CPBD method, the average accuracy of our method is about 
15%  higher accuracy, and the accuracy for the unblurred 
detection (good quality) frames is 22%  higher while the 
accuracy in blurred frame detection is around 11% better, and 
there are around 4% higher result when it is compared with our 
previous method (SVM with whole frame information).  

According to our results, the accuracy of detecting blurred 
frames is 2.4% higher than that of detecting unblurred frames. 
We infer that this is caused by the different sensitive of human 
visual system for blurred and unblurred frames. Usually, 
human visual system is more sensitive to the variance of 
blurred level, but it is hard to tell the different of two unblurred 
frames. Thus it is easier to detect blurred frames based on the 
pre-labeled dataset by human vision. In our method, the patch 
that contains the highest edge number is chosen for the SVM 
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processing. In this case, the distraction effect of blank patches 
could be reduced. On the other hand, selecting good quality 
(unblurred) frames is the main focus on our application to 
directly extract text information directly from them. 

We further evaluate our method for indoor and outdoor 
environments respectively. The evaluation results are shown in 
Figure 8 and Table III. Compared with previous methods, our 
experimental results achieve the best performance in both the 
indoor environment (around 14%  higher than CPBD, 30% 
higher than BRISQUE and 3% higher than SVM), and in the 
outdoor environment. For the outdoor environment, our method 
achieves the best performance that is 10% higher than CPBD, 
22% higher than BRISQUE and 3% higher than SVM. For the 
indoor situation, the background luminance is relatively low, 
which could affect the contrast just notable blur judgment in 
CPBD algorithm. Our method combines the luminance features 
in our system that is able to overcome the limitations of CPBD 
method. On the other hand, we pick up the highest luminance 
patch for the SVM, which also improves our result. 

VII. CONCLUSION 
    In this paper, we have proposed a robust method to handle the 
motion blur in blind navigation and way-finding systems by 
selecting good quality frames in videos. To improve the 
accuracy and robustness of high-quality frame detection, we 
extract features by combing edge information, average 
luminance, and luminance distributions in patch that contain 
useful information. The proposed method has been evaluated 
by the self-collected database and a primary navigation 
prototype system. The evaluation results demonstrate that our 
method outperforms the state-of-the-art methods. Our future 
work will focus on improving the accuracy, robustness, and 
efficiency of the proposed method, as well as the human 
interface study for blind users. 
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