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Abstract — In this paper, we propose an effective method to recognize human actions using 3D skeleton 

joints recovered from 3D depth data of RGBD cameras. We design a new action feature descriptor for action 

recognition based on differences of skeleton joints, i.e., EigenJoints which combine action information including 

static posture, motion property, and overall dynamics. Accumulated Motion Energy (AME) is then proposed to 

perform informative frame selection, which is able to remove noisy frames and reduce computational cost. We 

employ non-parametric Naïve-Bayes-Nearest-Neighbor (NBNN) to classify multiple actions. The experimental 

results on several challenging datasets demonstrate that our approach outperforms the state-of-the-art methods. 

In addition, we investigate how many frames are necessary for our method to perform classification in the 

scenario of online action recognition. We observe that the first 30% to 40% frames are sufficient to achieve 

comparable results to that using the entire video sequences on the MSR Action3D dataset. 

Keywords — action recognition, RGBD camera, depth data, skeleton joints, 3D action feature representation 

1. Introduction 

Automatic human action recognition has been widely applied in a number of real-world applications, 

e.g., video surveillance, content-based video search, human-computer interaction, and health-care [5, 16, 18, 

27, 29, 31]. Traditional research mainly concentrates on action recognition of video sequences captured by 

RGB cameras [2, 3, 6, 9, 10, 12, 30]. In this case, a video is a sequence of 2D frames with RGB images in 

chronological order. There has been extensive research in the literature on action recognition for such 2D 

videos. The spatio-temporal volume-based methods have been extensively used by measuring the similarity 

between two action volumes. In order to enable accurate similarity measurement, a variety of spatio-

temporal volume detection and representation methods have been proposed [3, 6, 9, 10, 27]. Trajectory-

based approaches have been widely explored for recognizing human activities as well [5, 12, 22]. In these 

methods, human actions can be interpreted by a set of key joints or other interesting points. However, it is 

not trivial to quickly and reliably extract and track skeleton joints from traditional RGB videos. On the 



other hand, as imaging techniques advance, such as RGBD cameras of Microsoft Kinect and ASUS Xtion 

Pro Live, it has become practical to capture RGB sequences as well as depth maps in real time. Depth maps 

are able to provide additional body shape information to differentiate actions that have similar 2D 

projections from a single view. It has therefore motivated recent research work to investigate action 

recognition using the 3D information. Li et al. [11] sampled 3D representative points from the contours of 

depth maps of a body surface projected onto three orthogonal Cartesian planes. An action graph was then 

used to model the sampled 3D points for recognition. Their experimental results validated the superiority of 

3D silhouettes over 2D silhouettes from a single view. Xia et al. [25] mapped 3D joints to a spherical 

coordinate system and used histogram of modified 3D joint positions to achieve view-invariant posture 

representation. Sung et al. [23] made use of features extracted from RGB images, depth maps, and skeleton 

joints to recognize human activities in multiple indoor environments. Ellis et al. [14] employed a latency 

aware learning method for action recognition and studied the trade-off between recognition accuracy and 

observational latency. 

 

Figure 1: Sampled sequences of depth maps and skeleton joints in actions of (a) Tennis Serve and (b) Golf 

Swing. Each depth map includes 20 joints. The joints of each body part are encoded in corresponding colors. 

  
 

The biological observation from Johansson [13] suggested that human actions could be modeled by the 

motion of a set of skeleton joints. The MoCap system [17] was used to extract 3D joint positions by using 

markers and high precision camera array. With the release of RGBD cameras and the associated SDK, we 

are able to recover 3D positions of skeleton joints in real time and with reasonable accuracy [7, 20, 21]. In 



this paper, we focus on recognizing human actions using skeleton joints extracted from sequences of depth 

maps. Fig. 1 demonstrates the depth sequences with 20 extracted skeleton joints in each depth map of 

actions Tennis Serve and Golf Swing. As illustrated in this figure, the perception of each action can be 

reflected by the motions of individual joints (i.e., motion property) and the configuration of different joints 

(i.e., static postures). Compared to point cloud of human body in depth maps, these skeleton joints are 

much more compact.  

In this paper, we design a novel action feature descriptor by adopting the differences of skeleton joints in 

both temporal and spatial domains to explicitly model the dynamics of each individual joint and the 

configuration of different joints. We then apply Principal Component Analysis (PCA) to the joint 

differences to obtain EigenJoints by reducing redundancy and noise. Similar to the affect recognition in [8], 

the temporal segments of an action can be intuitively approximated by the statuses of neutral, onset, apex, 

and offset. The discriminative information is however not evenly distributed in the four statuses. We 

propose a measurement of Accumulated Motion Energy (AME) to quantize the distinctiveness of each 

frame. The less distinctive frames are then pruned to remove noise and reduce computational cost. We 

employ non-parametric Naïve-Bayes-Nearest-Neighbor (NBNN) [4] as the classifier to recognize multiple 

action categories. In accordance with the principles behind NBNN-based image classification, we avoid 

quantization of frame descriptors and compute Video-to-Class distance, instead of Video-to-Video distance. 

In addition, most existing methods perform action recognition by operating on entire video sequences. 

However, this is not practical to online systems which require as few frames as possible for recognition. So 

we further investigate how many frames are sufficient to obtain reasonably accurate action recognition in 

our framework. Experimental results on the MSR Action3D dataset [11, 32] demonstrate that a short sub-

sequence (e.g., the first 30%-40% frames) of the entire video is sufficient to perform action recognition, 

with quite limited gains as more frames are added in. This observation is important for making online 

decisions and reducing latency when humans interact with computers.  

An earlier version of this paper can be found in [26]. Compared to our previous work, there are three 

major extensions that merit being highlighted: 1) selection of informative frames based on Accumulated 

Motion Energy (AME); 2) extensive experiments on more challenging datasets including the MSR 



Action3D [11, 32], the Cornell Human Activity [23, 33], and the UCF Kinect [14, 34]; and 3) more 

comparisons with the state-of-the-art work. 

The remainder of this paper is organized as follows. Section 2 reviews existing methods for human 

action recognition. In Section 3, we provide detailed procedures of extracting EigenJoints from each frame. 

Section 4 briefly introduces NBNN classifier. Section 5 describes informative frame selection by using 

Accumulated Motion Energy (AME). A variety of experimental results and discussions are presented in 

Section 6. Finally, Section 7 summarizes the remarks of this paper. 

2. Related Work 

In traditional RGB videos, human action recognition mainly focuses on analyzing spatio-temporal 

volumes. The core of these approaches is the detection and representation of space-time volumes. Bobick 

and Davis [3] stacked foreground regions of a person to explicitly track shape changes. The stacked 

silhouettes formed Motion History Images (MHI) and Motion Energy Images (MEI), which served as 

action descriptors for template matching. In most recent work, local spatio-temporal features have been 

widely used. Similar to object recognition using sparse local features in 2D images, an action recognition 

system first detects interesting points (e.g., STIPs [10], Cuboids [6], and SURF+MHI [27]) and then 

computes descriptors (e.g., HOG/HOF [10] and HOG3D [9]) based on the detected local motion volumes. 

These local features are then combined (e.g., bag-of-words) to represent actions. The trajectory-based 

approaches are more similar to our method that model actions by the motion of a set of points of human 

body parts. Sun et al. [22] extracted trajectories through pair-wise SIFT matching between neighboring 

frames. The stationary distribution of a Markov chain model was then used to compute a velocity 

description.   

The availability of 3D sensors has recently made it possible to capture depth maps in real time, which 

has facilitated a variety of visual recognition tasks, such as human pose estimation and human action 

recognition. Shotton et al. [20] proposed an object recognition method to predict 3D positions of body 

joints from a single depth image. This scheme was further extended in [7] and [21] by aggregating votes 

from a regression forest and incorporating dependency relationships between body part locations, 

respectively. With the release of RGBD cameras and associated SDK, research of action recognition based 



on depth information and skeleton joints has also been explored as well. Li et al. [11] proposed a Bag-of-

3D-Points model for action recognition. They sampled a set of 3D points from a body surface to 

characterize the posture being performed in each frame. In order to select the representative 3D points, they 

first sampled 2D points at equal distance along the contours of projections formed by mapping the depth 

map onto three orthogonal Cartesian planes, i.e., XY, XZ, and YZ planes. The 3D points were then 

retrieved in the point cloud of depth maps. Their experiments on the MSR Action3D dataset [11] showed 

that this approach considerably outperformed the methods only using 2D silhouette and were more robust 

to occlusion. However, in their experiments sampling of 3D points incurred a great amount of data which 

resulted in expensive computations in clustering training samples of all classes. In [25] Xia et al. used 

Histogram of 3D Joint Locations (HOJ3D) to represent posture. They transferred skeleton joints into a 

spherical coordinate to achieve view-invariance. The temporal information was then coded by discrete 

Hidden Markov Models (HMM). Sung et al. [23] employed both visual (RGB) and depth (D) channels to 

recognize human daily activities. The skeleton joints were used to model body pose, hand position, and 

motion information. They also extracted Histogram of Oriented Gradients (HOG) features from region of 

interest in gray images and depth maps to characterize the appearance information. A hierarchical 

Maximum Entropy Markov Model (MEMM) was then used to decompose an activity to a set of sub-

activities and perform action recognition on the Cornell Human Activity dataset [23]. Yang et al. [28] 

projected 3D depth maps onto three 2D orthogonal planes that were stacked as Depth Motion Maps 

(DMM). HOG was then computed from DMM as a global representation of human action. An actionlet 

mining algorithm was proposed in [24] to perform selection of skeleton joints. In addition to joint-based 

feature, they also made use of depth maps to characterize object shape and appearance.   

Most of the above systems relied on entire video sequences (RGB or RGBD) to perform action 

recognition. As for an online scenario, a system is however supposed to require as few observations as 

possible. Schindler and Gool [19] first investigated how many frames were required to enable action 

classification in RGB videos. They found that short action snippets with a few frames (e.g., 1 – 7 frames) 

were almost as informative as the entire video. In order to reduce the observational latency that is the time a 

system takes to observe sufficient information for a good classification, Ellis et al. [14] proposed to 

recognize actions based upon an individual canonical pose from a sequence of postures. The canonical pose 



covered the information of posture, motion, and overall variance by using skeleton joints. They used a 

classifier based on logistic regression to minimize observational latency and classify actions on the UCF 

Kinect dataset [14].   

Motivated by the robust extraction of skeleton joints using RGBD cameras and the associated SDK, we 

propose a new action feature descriptor, EigenJoints, for action recognition. In contrast to traditional 

trajectory-based methods, EigenJoints are able to model actions through more informative and more 

accurate body joints without background or noisy points. Compared to the state-of-the-art features using 

skeleton joints or depth maps, EigenJoints are more discriminative, more compact, and easier to compute. 

3. Representation of EigenJoints 

The proposed framework to compute EigenJoints is demonstrated in Fig. 2. We employ 3D position 

differences of skeleton joints to characterize action information including static posture feature    , 

consecutive motion feature    , and overall dynamics feature     in each frame- . We then concatenate the 

three features channels as                 . According to different experimental settings (e.g., cross 

subject test or non-cross subject test), two normalization schemes are introduced to obtain      . In the end, 

PCA is applied to       to generate EigenJoints. 

 

 

 

Figure 2: The framework of representing EigenJoints. In each frame, we compute three feature channels of 

   ,    , and     to capture the information of offset, posture, and motion. The normalization and PCA are 

then applied to obtain EigenJoints descriptor for each frame. 

 



 

As shown in Fig. 2, the 3D coordinates of   joints can be obtained from human pose estimation [20] in 

each frame:               ,       . To characterize the static posture information of current frame-

 , we compute pair-wise joints differences within the current frame: 

                              (1) 

  

To capture the motion property of current frame- , the joint differences are computed between the current 

frame-  and its preceding frame- : 

       
    

    
         

 
     (2) 

 

To represent the offset feature or the overall dynamics of the current frame-  with respect to the initial 

frame- , we calculate the joint differences between frame-  and frame- : 

       
    

    
         

      (3) 

 

The initial frame tends to approximate the neutral posture. The combination of the three feature channels 

forms the preliminary feature representation of each frame:                 . 

In Eq. (1-3) the orders of joints are in accordance to the specified joint indices. However, the three 

elements         of a joint   might be of inconsistent coordinates, e.g.,       are in screen coordinates 

and   is in world coordinate. So normalization is then applied to    to avoid elements in greater numeric 

ranges dominating those in smaller numeric ranges. We use linear normalization scheme to scale each 

element in    to the range        . The other benefit of normalization is to reduce intra-class variations of 

the same action performed by different subjects. In our experiments, we normalize    based on a single 

video for cross-subject test and based on entire training videos for non-cross-subject test.  

As illustrated in Fig. 1, in each frame we use   joints which might result in a huge feature dimension. 

   ,    , and     contain         ,   , and    pair-wise comparisons, respectively. Each comparison 

generates 3 elements           . In the end,       is with the dimension of                 

   . For example, in our method we extract 20 skeleton joints in each frame,       is with the dimension 

of     . As skeleton joints are already high level information recovered from depth maps, this large 



dimension might be redundant and include noise, which can be illustrated in Fig. 5. We therefore apply 

PCA to reduce redundancy and noise in the centralized      . The final compact representation is 

EigenJoints, which is the action descriptor of each frame. In the experimental results of Section 6.2, we 

observe that most eigenvalues are covered by the first few leading eigenvectors, e.g., the leading 128 

eigenvalues weight over 95% on the MSR Action3D dataset. 

4. Naïve-Bayes-Nearest-Neighbor Classifier 

We employ the Naïve-Bayes-Nearest-Neighbor (NBNN) [4] as the classifier for action recognition. 

The Nearest-Neighbor (NN) is a non-parametric classifier which has several advantages over most 

learning-based classifiers: 1) naturally deal with a large number of classes; 2) avoid the overfitting 

problem; and 3) require no learning process. Boiman et al. [4] argued that the effectiveness of NN was 

largely undervalued by the quantization of local image descriptors and the computation of Image-to-Image 

distance. Their experiments showed that frequent descriptors had low quantization error but rare descriptors 

had high quantization error. However, most discriminative descriptors tend to be rare. So the quantization 

used in Bag-of-Words scheme significantly degrades the discriminative power of descriptors. In addition, 

kernel matrix used by SVM computes Image-to-Image distance. But they observed that the distance 

computation of Image-to-Class that made use of descriptor distributions over entire class provided better 

generalization than the Image-to-Image distance. 

We follow these concepts of NBNN-based image classification to NBNN-based video classification 

(i.e., action recognition). We directly use frame descriptors of EigenJoints without quantization, and 

compute Video-to-Class distance rather than Video-to-Video distance. In the context of NBNN, the action 

recognition is performed by: 

         
 

             
 

 

   

 (4) 

 

where              is an EigenJoints descriptor of frame-  in a testing video;   is the number of 

frames;         is the nearest neighbor of    in class- . The experiments in Section 6.2 show that the 

recognition accuracy based on NBNN outperforms that based on SVM. The approximate- -nearest-



neighbour algorithm,  -d tree [1], and local NBNN [15] can be used to reduce the computational cost in 

NBNN classification. 

 

Figure 3: Computation of Accumulated Motion Energy (AME). (a) Motion energy maps associated with 

each projection view. (b) Normalized AME and selected informative frames.   

5. Informative Frame Selection 

As in the affect recognition [8], temporal segments of an action can be intuitively approximated by the 

statuses of neutral, onset, apex, and offset. The discriminative information is not evenly distributed in the 

four statuses, but concentrates more on the frames from onset and apex statuses. On the other hand, 

motions of neutral and offset statuses are usually similar across different action categories. So informative 

frame selection corresponds to extract frames from onset and apex but discard frames from neutral and 

offset. This process enables us to remove confusing frames and reduce computational cost in the nearest 

neighbor searching. We propose to use Accumulated Motion Energy (AME) to measure the distinctiveness 

of each frame: 
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For a frame- , its 3D depth map is first projected onto three orthogonal planes which generate three 

projected frames             .        is then computed as the summation of motion energy maps. The 

motion energy maps of each frame are obtained by thresholding and accumulating differences between two 

consecutive projected frames, as shown in Fig. 3(a). AME vector is then normalized by L1-norm. Fig. 3(b) 

illustrates a normalized AME of action Tennis Serve from the MSR Action3D dataset. As we can see, when 

normalized AME is less than 0.1 or larger than 0.9, it increases very slowly as motions in these frames are 

weak. It is observed that most of these frames correspond to the statuses of neutral and offset. As for the 

frames whose normalized AME are between 0.1 and 0.9, they present significant motions and make the 

curve increase dramatically. Accordingly, these frames come from the statuses of onset and apex and cover 

more discriminative information. In our experiment, we therefore choose frames with normalized AME 

between 0.1 and 0.9 as the informative frames.     

6. Experiments and Discussions 

We evaluate our proposed method on three challenging datasets including the MSR Action3D [11], the 

Cornell Human Activity [23], and the UCF Kinect [14]. We extensively compare the state-of-the-art 

methods to our approach under a variety of experimental settings.  

6.1. Experiments on the MSR Action3D Dataset 

The MSR Action3D [11] is a benchmark dataset for 3D action recognition that provides sequences of 

depth maps and skeleton joints captured by a RGBD camera. It includes 20 actions performed by 10 

subjects facing the camera during performance. Each subject performed each action 2 or 3 times. The depth 

maps are with the resolution of        . For each skeleton joint, the horizontal and vertical locations are 

stored in screen coordinates, and depth position is stored in world coordinates. The 20 actions are chosen in 

the context of interactions with game consoles. As shown in Fig. 4, actions in this dataset reasonably 

capture a variety of motions related to arms, legs, torso, and their combinations. 

 

 

 

 



 

Table 1: Three action subsets used in our experiments. 
 

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3) 

Horizontal Wave (HoW) 

Hammer (H) 

Forward Punch (FP) 

High Throw (HT) 

Hand Clap (HC) 

Bend (B) 

Tennis Serve (TSr) 

Pickup Throw (PT) 

High Wave (HiW) 

Hand Catch (HC) 

Draw X (DX) 

Draw Tick (DT) 

Draw Circle (DC) 

Hands Wave (HW) 

Forward Kick (FK) 

Side Boxing (SB) 

High Throw (HT) 

Forward Kick (FK) 

Side Kick (SK) 

Jogging (J) 

Tennis Swing (TSw) 

Tennis Serve (TSr) 

Golf Swing (GS) 

Pickup Throw (PT) 

 

In order to facilitate a fair comparison with the state-of-the-arts, we follow the same experimental 

settings as [11, 25, 26] to split 20 actions into three subsets as listed in Table 1. In each subset, there are 

further three different tests: Test One (One), Test Two (Two), and Cross Subject Test (CrSub). In Test One, 

1/3 of the subset is used as training and the rest as testing; in Test Two, 2/3 of the subset is used as training 

and the rest as testing. Both of them are non-cross-subject tests. In Cross Subject Test, 1/2 of subjects are 

used for training and the rest ones used for testing. 

 

Figure 4: Examples of depth maps and skeleton joints associated with each frame of twenty actions in the 

MSR Action3D dataset. 



6.1.1. Evaluations of EigenJoints and NBNN 

We first evaluate energy distributions of joint differences to determine the dimensionality of 

EigenJoints. Fig. 5(a) shows ratios between the sum of first few leading eigenvalues and the sum of all 

eigenvalues of       under different test sets. As demonstrated in this figure, the first 128 eigenvalues (out 

of 2970) occupy over 95% energy for all experimental settings. The distributions concentrate more in the 

first few leading eigenvalues for Test One and Test Two, where the first 32 eigenvalues have already 

weighted over 95%. The distribution scatters relatively more for Cross Subject Test, where the leading 32 

eigenvalues cover about 85% of overall energy. 

Fig. 5(b) shows recognition accuracies of EigenJoints-based NBNN with different dimensions under 

various test sets. It’s interesting to observe that the overall recognition rates under a variety of test sets are 

stable across different dimensions. For each dimensionality, our method performs well for Test One and 

Test Two which are non-cross-subject tests. While the performance in AS3CrSub is promising, the 

accuracies in AS1CrSub and AS2CrSub are relatively low. This is probably because actions in AS1 and 

AS2 are with similar motions, but AS3 groups complex but pretty distinct actions. For example, in AS1 

Hammer tends to be confused with Forward Punch, and Pickup Throw consists of Bend and High Throw. 

In Cross Subject Test, different subjects also perform actions with considerable variations but the number 

of subjects is limited. For example, some subjects perform action of Pickup Throw using only one hand 

whereas others using two hands, which result in great intra-class variations. The cross subject performance 

can be improved by adding in more subjects.  

 

Figure 5: (a) Ratios (%) between the sum of the first few (8, 16, 32, 64, 128, and 256) leading eigenvalues 

and the sum of all eigenvalues of       under different test sets. (b) Recognition accuracies (%) of NBNN-

based EigenJoints with different dimensions under various test sets. 

 



 

 
 

Figure 6: Confusion matrix of EigenJoints-based NBNN in different action sets under Cross Subject Test. 

Each row corresponds to ground truth label and each column denotes the recognition results. 

 

 

Considering recognition accuracy and computational cost in NBNN classification, we choose 32 as the 

dimensionality for EigenJoints in all of our experiments. As high accuracies of Test One and Test Two 

(over 95%, see Fig. 5), we only show the confusion matrix of our method under Cross Subject Test in Fig. 

6. Because of the considerable variations in the same actions performed by different subjects, cross subjects 

generate much larger intra-class variance than non-cross subjects. In AS1CrSub, most actions are confused 

with Pickup Throw, especially for Bend and High Throw. In AS2CrSub, Draw X, Draw Tick, and Draw 

Circle are mutually confused, as they contain highly similar motions. Although actions in AS3 are 

complex, they are with significant differences. So the recognition results are greatly improved in 

AS3CrSub. 

6.1.2. Comparisons with the State-of-the-arts 

SVM has been extensively used in computer vision to achieve the state-of-the-art performances in 

image and video classifications. We employ bag-of-words to represent an action video by quantizing 

EigenJoints of each frame. K-means clustering is employed to build the codebook. We empirically choose 

K = 500 and RBF kernels to perform classification. The optimal parameters of RBF kernels are obtained by 

5-fold cross-validation. Fig. 7(a) compares the recognition accuracies based on NBNN and SVM. As 

shown in this figure, NBNN outperforms SVM in most testing sets. This observation also validates the 

superiority of the two schemes used in NBNN, i.e., non-quantization of EigenJoints and computation of 

Video-to-Class distance. 

 



 

Figure 7: (a) Comparisons of recognition accuracy (%) between SVM and NBNN based on EigenJoints. (b) 

Recognition accuracies (%) of our method and the state-of-the-arts under a variety of testing sets. 

 

 

We further compare our approach with the state-of-the-art methods including Bag-of-3D-Points [11] 

and HOJ3D [25] under different testing sets in Fig. 7(b). The overall accuracies are shown in Table 2. The 

results of Bag-of-3D-Points and HOJ3D are obtained from [11, 25]. As shown in Fig. 7(b), HOJ3D and our 

method significantly outperform Bag-of-3D-Points in most cases. The performances of our method are 

comparable to that of HOJ3D in non-cross-subject tests. However, under cross subject tests, HOJ3D and 

our method behave quite differently. Our method performs much better than HOJ3D in AS3CrSub, but is 

inferior to HOJ3D in AS1CrSub and AS2CrSub. This is probably because AS1 and AS2 group similar 

actions which are more sensitive to the larger intra-class variations generated in cross subject tests. So the 

leading factors computed by PCA might be biased by the large intra-class variations. But complex actions 

in AS3 present considerable inter-class variations which overweight intra-class variations. So the leading 

factors of PCA still correspond to variations of different action classes. As for overall accuracies in Table 2, 

our method and HOJ3D achieve comparable results in Test One and Test Two. But our method 

significantly outperforms HOJ3D under Cross Subject Test, which is more desirable in real applications. In 

addition to recognition accuracy, our method is more compact than Bag-of-3D-Points and HOJ3D. We 

further perform a more challenging experiment by combining subsets AS1-3 and obtain the accuracy of 

74.5%. Wang et al. [24] achieved 88.2% accuracy by using multiple feature channels (skeleton joints and 

depth maps) and an actionlet mining algorithm. They observed the actionlet mining method was effective 

to handle noises and errors in skeleton joint positions when sever occlusion occurred. However, the 

multiple feature fusion and skeleton joint selection task are out of scope of this paper.    

 



 

Table 2: Overall recognition accuracies of our method  

and the state-of-the-arts under three test sets. 

 

Methods Test One Test Two Cross Subject Test 

Bag-of-3D-Points [11] 91.6 94.2 74.7 

HOJ3D [25] 96.2 97.2 79.0 

Ours 95.8 97.8 83.3 

6.1.3. How Many Frames Are Sufficient 

Both Bag-of-3D-Points [11] and HOJ3D [25] recognized actions using entire video sequences. We 

perform another experiment to investigate how many frames are sufficient to enable accurate action 

recognition in our framework. The recognition accuracies using different number of first few frames under 

a variety of test sets are illustrated in Fig. 8. The sub-sequences are extracted from the first   frames of a 

given video. As shown in this figure, in most cases 15-20 frames, i.e., the first 30% to 40% frames are 

sufficient to achieve comparable recognition accuracies to the ones using entire video sequences. There are 

rapid diminishing gains as more frames are added in. These results are highly relevant for action 

recognition systems where decisions have to be made on line. An online system generally requires short 

latency that is mainly affected by two factors, i.e., 1) the time a system takes to observe sufficient frames 

for making a reasonable prediction and 2) the time a system takes to compute on the observations. 

Therefore cutting down the number of frames an online system reads in helps to reduce the costs in both of 

the two factors.  

 

 

Figure 8: The recognition accuracies using different number of first few frames in Test One (left), Test 

Two (middle), and Cross Subject Test (right).  

 

 



6.2. Experiments on the Cornell Human Activity Dataset 

The Cornell Human Activity [23] is a public dataset that provides sequences of RGB images with 

aligned depth maps captured by a Microsoft Kinect camera. In each frame, 15 skeleton joints in world 

coordinates are available. Action videos are with the resolution of         and at the frame rate of    

Hz. This dataset includes 12 activities and 1 random action performed by 4 subjects in 5 different 

environments (i.e., office, kitchen, bedroom, bathroom, and living room). The 12 actions are chosen in the 

context of human daily activities. As we can see in Fig. 9, activities in this dataset are captured in 

uncontrolled environments with cluttered households and involve extensive human-object interactions.  

 

Table 3: Activities in five different environments. 

 

Bathroom Bedroom Kitchen Living Room Office 

Rinsing Mouth 

Brushing Teeth 

Wearing Contact Lens 

Random   

Talking on Phone 

Drinking Water 

Opening Container 

Random 

Chopping 

Stirring 

Drinking Water 

Opening Container 

Random 

Talking on Phone 

Drinking Water 

Talking on Couch 

Relaxing on Couch 

Random 

Talking on Phone 

Writing on Whiteboard 

Drinking Water 

Working on Computer 

Random 

 

 

Figure 9: Examples of the depth maps and skeleton joints associated with each frame for twelve activities 

in the Cornell Human Activity dataset. 

 

 



 

Figure 10: Precisions (%) and Recalls (%) of MEMM and our method under a variety of test sets. 

 

Since neutral postures are removed in this dataset, we only employ     and     in Eq. (1-2) to compute 

EigenJoints. We follow the same experimental settings (subject independent test) as [23] to split the 

thirteen activities into five different environments under cross subject tests, as listed in Table 3. 

Experimental results are reported as average accuracies of leave-one-out tests, as shown in Fig. 10. The 

features used in hierarchical MEMM include visual (RGB) frames, depth (D) maps, and skeleton joints, 

which are much more complex than EigenJoints that only employs joints. However EigenJoints still 

significantly outperforms hierarchical MEMM, e.g., the overall precision and recall of our method are 

71.9% and 66.6% which improves hierarchical MEMM’s by 4.0% and 11.1%. 

 

 

Figure 11: Sixteen actions and skeleton joints associated with each frame in the UCF Kinect dataset. 

 



 
Figure 12: Comparisons of recognition accuracies (%) of LAL and our method. 

6.3. Experiments on the UCF Kinect Dataset 

We also evaluate our proposed method on the UCF Kinect dataset [14]. This dataset was collected by 

Microsoft Kinect and OpenNI platform. In each frame only 15 skeleton joints are available, RGB images 

and depth maps are not stored. It includes 16 actions performed by 16 subjects, as shown in Fig. 11. The 

comparisons of recognition accuracies of our method and the Latency Aware Learning (LAL) method [14] 

are shown in Fig. 12. Since depth maps are not available in this dataset, we do not perform frame selection 

but operate on entire video sequences. In order to reduce observational latency, the LAL method [14] 

aimed to search a single canonical posture for recognition. But to facilitate a fair comparison, we only 

compare to their results computed on full video sequences. It can be seen from Fig. 12 that our method 

achieves better or equal accuracies in 12 out of 16 action categories. The average accuracy of all the sixteen 

activities of our method is 97.1% which outperforms LAL by 1.2%.  

7. Conclusion 

In this paper, we have proposed an EigenJoints-based action recognition method using NBNN classifier. 

The compact and discriminative frame representation of EigenJoints is effective to capture the properties of 

static posture, motion between consecutive frames, and overall dynamics with respect to the neutral status. 

The proposed measurement of Accumulated Motion Energy (AME) quantizes the distinctiveness of each 

frame. By using AME to prune less discriminative frames, we can remove noisy frames and reduce 

computational cost. The comparisons between NBNN and SVM show that non-quantization of descriptors 



and computation of Video-to-Class distance are more effective for action recognition. In addition, we 

observe that the first 30%-40% frames are sufficient to enable action recognition with reasonably accurate 

results. This observation is highly relevant to the systems where action recognition has to be made online. 

The experimental results on three challenging datasets of the MSR Action3D, the Cornell Human Activity, 

and the UCF Kinect demonstrate that our approach significantly outperforms the state-of-the-art methods.  
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