
AUTOMATIC COUNTING OF INTERACTING PEOPLE BY USING A SINGLE
UNCALIBRATED CAMERA

Senem Velipasalar ∗

Princeton University, Electrical Engineering Dept.
Princeton, NJ, 08544

svelipas@princeton.edu

Ying-Li Tian, Arun Hampapur

IBM T.J. Watson Research Center
Hawthorne, NY, 10532

yltian, arunh@us.ibm.com

ABSTRACT
Automatic counting of people, entering or exiting a region
of interest, is very important for both business and security
applications. This paper introduces an automatic and robust
people counting system which can count multiple people who
interact in the region of interest, by using only one camera.
Two-level hierarchical tracking is employed. For cases not in-
volving merges or splits, a fast blob tracking method is used.
In order to deal with interactions among people in a more
thorough and reliable way, the system uses the mean shift
tracking algorithm. Using the first-level blob tracker in gen-
eral, and employing the mean shift tracking only in the case of
merges and splits saves power and makes the system compu-
tationally efficient. The system setup parameter can be auto-
matically learned in a new environment from a 3 to 5 minute-
video with people going in or out of the target region one at
a time. With a 2GHz Pentium machine, the system runs at
about 33fps on 320x240 images without code optimization.
Average accuracy rates of 98.5% and 95% are achieved on
videos with normal traffic flow and videos with many cases
of merges and splits, respectively.

1. INTRODUCTION

There is an increasing need and demand for automatic, effi-
cient and reliable counting of people entering or exiting a tar-
get region. Shopping malls and supermarkets can use this in-
formation to identify hourly traffic patterns, to optimize labor
scheduling, and to monitor the effectiveness of promotional
events. The counting of people is also very important for se-
curity purposes. It helps assign accurate number of security
people at key places, and design efficient evacuation plans.

The existing approaches can be classified into three broad
categories: Systems using contact-type counters; systems us-
ing sensors; and vision-based systems using cameras.

Systems using contact-type counters, such as turnstiles,
obstruct the passage way, and can cause congestion if there is
high-density traffic as they count people only one at a time. In
addition, they have the limitation of possible undercounting.
Systems using infrared beams or heat sensors do not block the
doorways, but suffer from the same undercounting problem.

∗This work was done when the author was at IBM T.J. Watson Research
Center.

The earlier attempts in image-based systems were suc-
cessful for scarce traffic of people. An overhead stereo cam-
era is used in [1] and [2]. Multiple people can be dealt with
in [1] as long as they move separately. The system in [2] has
the advantage of estimating object heights, but this requires a
calibrated stereo camera head and eliminates the flexibility of
using a single ordinary camera.

Multiple cameras are used in [3] and [4]. It is stated in
[3] that people walking together can cause problems as they
cannot be resolved. The method in [4] gives an idea about the
number of people in the scene, but does not track them indi-
vidually. A single camera system is introduced in [5]. Two
virtual base lines are used for direction detection. These lines
cannot be too close in the proposed scheme and interactions
that occur on or around them can cause problems.

To the best of our knowledge, the existing systems can-
not handle challenging people interactions in the region of
interest (ROI), especially in the vicinity of the baselines. We
introduce an automatic method to count interacting people.
We tested the proposed method with sequences which con-
tain many interactions (such as merges/splits, shaking hands,
and hugging) between people in the ROI. Most of these inter-
actions occur right in the vicinity of the entry/exit line, thus
successfully resolving them is essential to determine direction
and perform counting accurately. Instead of stereo or multi-
ple cameras, the proposed system uses a single inexpensive
camera mounted overhead. It also eliminates the need for cal-
ibration, and thus creates a low-cost system which is easy to
install and maintain, and more efficient. The main novelties of
the method include (1) learning the size interval for a single
person automatically, (2) using a single virtual entry/exit line,
and thus detecting the entry/exit events in shorter time and
minimizing the effects of appearance changes, and (3) using
an efficient, two-level hierarchical tracking structure and suc-
cessfully handling challenging interactions in the ROI.

2. THE AUTOMATIC PEOPLE COUNTING SYSTEM

The proposed system uses only one camera that is mounted
overhead to avoid the occlusions. The person-size bounds
defining the interval for the size of a single person are the
inputs to the system, which are learned in an automatic way.

The graphical interface lets the user define a ROI in the

12651­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

camera view so that only the people who pass through the
ROI are counted. The region marked with blue lines in Fig.1
is the ROI defined by the user. Then the user needs to mark
an entry/exit line (the red line in Fig.1), and click on the side
of this line where the door is located. The door side infor-
mation is used to determine the direction of the moving blob.
As seen in Fig. 1, the system has two separate counters for
entering and exiting people, whose numbers are displayed in
green and red respectively. Moreover, each time a person en-
ters or exits the ROI, a message is displayed on the image of
the camera view. When a blob crosses the entry/exit line, its
size is used to find the number of people forming that blob.
Then, depending on the direction, the corresponding counter
will be incremented by the number of people.

Fig. 1. A portion of the user interface. As soon as a person crossed
the entry/exit line in exit direction, the exit counter was incremented
by one and also “1 person(s) exited” message was displayed.

2.1. Automatic Learning of System Setup Parameters

The only parameters that depend on the new environment
and setup are the person-size bounds – the upper and lower
bounds for the size of a single person. For new deployments,
these bounds are automatically learned in our system. After
the camera is placed, a video sequence of about 3 to 5-minute
length is captured in which different people go in and out of
the monitoring region one person at a time. For each frame,
the areas of the improved blobs are saved to determine the
lowest, the highest, and the mean value of the single person
size from the video. The improved blobs are obtained as ex-
plained in Section 3. If there is enough deviation, the lowest
and highest values are set to be the person-size bounds. Oth-
erwise, the lower and higher values are determined so that
they will have equal distance from the mean and the devia-
tion will be 0.4 (after normalization of the values by the mean
value). By learning the bounds from this video sequence, we
can have the necessary tolerance for different effects, such as
clothing, carried items or different-height people, in our per-
son size interval.

If this interval is denoted by PSI = [LB UB], then
the mean will be M = LB+UB

2
. Let D = M − LB =

UB − M . Given that the area of a foreground blob is N
pixels, the decision about the number of people, P , forming
that blob is currently made as follows:

P = 1, if M − D ≤ N ≤ M + D

P = 2, if M + D < N ≤ 2M + 0.5D

P = 3, if 2M + 0.5D < N ≤ 3M + 0.8D

P = 4, if 3M + 0.8D < N ≤ 4M + D

P = 5, if 4M + D < N ≤ 5M + 1.2D

(1)

This scheme is based on experimental studies, and gives reli-
able results. However, to increase robustness and to remove
the assumption that every moving object is a person, we will
incorporate a people segmentation scheme to our system, and
then cross check the decisions resulting from the intervals in
(1). As we learn the person-size bounds automatically for
different environments, intervals in (1) provide valuable in-
formation, and will help the people segmentation step.

3. THE COUNTING ALGORITHM

One of the challenges in people counting problem is deal-
ing with merge and split cases. Due to background subtrac-
tion (BGS), sometimes a merge can happen even if people do
not touch but only get close to each other. The proposed al-
gorithm performs automatic, bi-directional counting of peo-
ple, and can handle many challenging interactions, such as
merges/splits, shaking hands etc., between people in the ROI,
even in the vicinity of the entry/exit line. The direction of the
moving people can be determined in shorter time and without
needing two base-lines, which is a popular strategy in the art.

We employ a hierarchical tracking structure, where a fast
and efficient blob tracking method is used as the first level. If
a tracker cannot find its object, this signals the occurrence of a
merge or split, and only in this case the mean shift tracker [7]
is activated to resolve it. This strategy brings the following
advantages: a) it is less error-prone compared to using mean
shift all the way through, as in the long run mean shift can
be distracted by similar colored background objects; b) the
model distribution and object size are updated more reliably
which is harder to perform if mean shift is used all the time;
c) it is much faster and more efficient. In the experiments, it
was observed that this hierarchical structure performs 5 to 6
times faster compared to using mean shift all the way.

First, people in the current video frame are segmented
from background by using a BGS algorithm [6]. This step
yields a foreground (FG) mask image which has bounding
boxes around each FG blob. In order to fill the possible holes
(which may occur due to BGS) in the FG mask, and to learn a
more reliable color distribution for the FG blobs, a new mask
is built which will henceforth be called the improved mask.
First the improved mask is set to be equal to the original mask.
Then an ellipse is fit to the FG pixel locations in each bound-
ing box and the ellipse pixels are OR’ed with the correspond-
ing FG pixels in the original mask. If the total number of filled
pixels is less than half of the area of the ellipse, the improved
mask is set to be the output of the OR operation. Otherwise,
it is left unchanged. This area check is made to avoid joining
a large background region into the mask. Fig. 2 shows how
the holes in the FG blob are filled in the improved mask.

The overhead view of moving people can be modeled well
with an ellipse, and with this method, compared to using mor-

1266

phological operations, the holes and missing parts can be filled
successfully regardless of their area. This is a preprocessing
step and for real-time performance another computationally
more expensive method is not preferable.

(a) (b) (c)
Fig. 2. Fitting an ellipse and using the OR operation fills the holes
in the original mask (b), resulting in the improved mask (c).

3.1. First-level Blob Tracking

For a FG blob, which is in the ROI and whose size is larger
than LB, the distance of its centroid to the entry/exit line is
calculated. If this distance is lower than a predefined thresh-
old (i.e. the person has come close enough to the entry/exit
line), and the number of trackers is 0, the color distribution of
this blob is learned, and a new tracker is created for it.

The system has two containers for trackers. One container
holds the trackers which track the people who are still in the
process of crossing the entry/exit line, and is called the tracker
container. The other container is for the trackers that keep the
color distribution of the already counted people, and is called
the already-counted tracker container. The reason for having
the second container is the fact that a blob, which is close to
the entry/exit line, can merge with an already counted blob
before its color distribution can be learned. Then, the color
distribution of the counted blob, which is saved in the already-
counted tracker container, is used to resolve this merge.

A new tracker, created for a new blob, is stored in the
tracker container. In addition, a label is given to the blob,
and the centroid of it is stored as the initial centroid. If a
blob is close enough to the entry/exit line and the number
of trackers is not 0, then it is checked if this blob can be
matched with any of the existing trackers. At this stage, a fast
tracking algorithm is used. First, the trackers whose bound-
ing boxes intersect with the bounding box of the FG blob are
found. Then for those trackers the Bhattacharya coefficient
ρ(y) [7] is calculated. ρ(y) is defined by ρ(y) ≡ ρ[p(y), q] =∫ √

pz(y)qzdz, where z is the feature representing the color
of the target model and is assumed to have a density function
qz while pz(y) represents the feature distribution of the im-
proved mask centered at location y. The blob is assigned to
the tracker which results in the highest Bhattacharya coeffi-
cient greater than a predefined threshold, and gets the label
of that tracker. We used a threshold of 0.7 in all the exper-
iments. Then, it is checked if this blob has crossed the line
by inserting the centroid of the blob, and the initial centroid
of its tracker into the equation of the enty/exit line. If the ob-
tained signs are different and the number of pixels on the side
of the current centroid is larger than the number of pixels on
the other side, this means the blob has crossed the line. If the
sign obtained for the initial centroid of the blob is equal to the
sign obtained for the door-side point then the entry counter,

if not, the exit counter is incremented. Then the tracker of
this blob is removed from the tracker container and placed
into the already-counted tracker container. This way, the en-
try/exit event is detected in a very short period of time, i.e.
the tracking starts when the blob is close to the entry/exit line
and the direction of the movement can be determined as soon
as the blob crosses the line. If the blob has not crossed the
line yet, its model distribution is updated. Already counted
FG blobs in the ROI are tracked the same way.

3.2. Second-level Tracking to Resolve Merges and Splits
If a blob cannot be matched to any of the trackers in the
tracker container, then either a merge or split has occurred; or
a new person/persons entered in the ROI. First, it is checked
if all the existing trackers have found their matches. This is
done by using the first-level tracker. If every tracker has not
found its match, this means that either a merge or split has
occurred. We activate the mean shift tracker [7], only when
we need to resolve these cases.
Dealing with Splits: Splits present a greater challenge than
merges. Because, when a split occurs, we need to find the
location of the blob, formed after the split, in the previous
frames to be able to decide if it is entering or exiting the ROI.

The proposed method keeps a buffer of the last 10 frames
to resolve the split cases. For every tracker in the tracker con-
tainer that could not find its match, it is checked if the area of
the model mask of that tracker is greater than the area of the
unmatched FG blob plus LB/3 (adding LB/3 saves time and
power by avoiding a split check each time the model mask
area of the tracker is slightly larger than the area of the un-
matched blob). Let’s denote the tracker satisfying this check
by Tc. The color distribution of the unmatched FG blob is
learned and the optimal location of this blob is found in the
previous frame by using mean shift. The boundary box of
the unmatched FG blob is moved to this location in the previ-
ous frame, and is denoted by BBf−1, where f is the current
frame number. If the Bhattacharya coefficient obtained from
the mean shift step is larger than a threshold of 0.7 and if
BBf−1 and the model mask of Tc overlap, this signals a split,
and it is said that BBf−1 claims its part in the model mask of
Tc. Then the location of the FG blob is found in frame f −10
by mean shift. By using the current centroid of the blob and
its centroid at f − 10, it is determined if this blob has already
crossed the line. Similarly, another FG blob, which can not be
matched to any of the trackers, will claim the remaining part
of the model mask of Tc. After new trackers are created for
the smaller blobs, Tc is removed from the tracker container.
Fig. 3 shows a split case being resolved successfully.
Dealing with Merges: With merges, there will be no need
to track back through previous frames. If the area of the un-
matched FG blob is greater than 2×LB, this will be a candi-
date case for a merge. For every unmatched tracker Tc in the
tracker container, its optimal location in the current frame is
found by using mean shift. If the Bhattacharya coefficient ob-
tained is greater than a threshold of 0.7, and if mask of the

1267

Fig. 3. Split occurs at frame 598. (b) and (d) show the improved
masks (e) shows how the system successfully deals with the split.
Light green, dark green and brown colors show the locations of the
blob at the current, previous and 10th previous frames respectively.

Tc, after it has been moved to its found location in current
frame, and the unmatched FG blob overlap, then Tc claims
that part of the bigger blob. It is checked whether or not a
blob have crossed the line by tracking through the merge us-
ing mean shift. Fig. 4 shows a merge case which is resolved
successfully.

(a) Frame 803 (c) Frame 804 (e) Frame 808

(b) Frame 803 (d) Frame 804 (f) Frame 808
Fig. 4. Merge occurs at frame 804. The blob labeled 4010 claims
its region in the bigger blob, a new distribution is learned for the
remaining part of the bigger blob in (d) and is labeled as 2010.

The system empties both tracker containers when there is
no one in the ROI. Thus, unless people tend to accumulate in
the ROI, which is very unlikely, the number of trackers will
not be large, making the matching process fast and efficient.

4. EXPERIMENTAL RESULTS

First, the proposed system has been tested for normal traffic
flow i.e. people walking in and out without too many inter-
actions around the door. The system achieved a very high
accuracy rate of 98.5%. The errors are caused by BGS when
the person wears clothes with similar color to the floor, and
when a FG blob is divided into smaller blobs. Then, to eval-
uate the performance of the system in dealing with merges
and splits, we captured different video sequences with vari-
ous levels of difficulty. There are many interactions (such as
merges, splits, shaking hands, and walking very closely) be-
tween people in the ROI. The evaluation results obtained from
these sequences are summarized in Table 1, where the aver-
age accuracy rate is 95%. The experiments were performed
with a 2GHz Pentium machine and the system runs at about
33fps on 320x240 images without code optimization.

OF # OF # OF # OF
ENTRIES EXITS MERGES SPLITS

GT 16 17 4 3
VID.1 Output 16 16 4 3

Accr. 100% 94% 100% 100%

GT 14 16 3 3
VID.2 Output 13 16 2 3

Accr. 93% 100% 66.7% 100%

GT 9 9 4 2
VID.3 Output 9 10 3 2

Accr. 100% 89% 75% 100%

GT 12 12 − 2
VID.4 Output 11 12 − 2

Accr. 92% 100% − 100%

GT 11 8 2 −

VID.5 Output 12 8 2 −

Accr. 91% 100% 100% −

GT 7 7 5 2
VID.6 Output 7 6 5 2

Accr. 100% 86% 100% 100%

Table 1. Experimental results obtained after evaluating our system on dif-

ferent videos. GT and Accr. denote Ground Truth and Accuracy respectively.

5. SUMMARY AND CONCLUSIONS

Considering the effort expended during the capture of the se-
quences to make them especially challenging, the proposed
method performed very reliably and achieved high accuracy
rates. The next goal is to differentiate people from other mov-
ing objects such as shopping carts. If merging people have
similar colored outfits, this can be problematic for mean shift.
Thus, we would like to incorporate people segmentation to
strengthen the decisions made in merge/split cases and in fig-
uring out the number of people forming a blob. We designed
our system as a counting module built upon a BGS module.
The performance of the algorithm is evaluated assuming that
BGS performs reliably, because different state of the art ap-
proaches such as shadow removal can be used to improve the
output of BGS.

6. REFERENCES
[1] K. Terada, D. Yoshida, S. Oe, J. Yamaguchi, “A method of

counting the passing people by using the stereo images,” Proc.
of IEEE ICIP, vol. 2, pp. 338-342, Oct. 1999.

[2] D. Beymer, “Person counting using stereo,” Proc. of Workshop
on Human Motion, pp. 127-133, December 2000.

[3] V. Kettnaker, R. Zabih, “Counting people from multiple cam-
eras,” IEEE Int’l Conf. on Multimedia Computing and Systems,
vol. 2, pp. 267-271, June 1999.

[4] D.B. Yang, H.H. González-Banos, L.J. Guibas, “Counting peo-
ple in crowds with a real-time network of simple image sen-
sors,” Proc. of IEEE ICCV, pp. 122-129, October 2003.

[5] T.-H. Chen, and C.-W. Hsu, “An automatic bi-directional
passing-people counting method based on color image process-
ing,” IEEE Int’l Carnahan Conf. on Security Technology, 2003.

[6] Y. -L. Tian, M. Lu, and A. Hampapur, “Robust and Efficient
Foreground Analysis for Real-time Video Surveillance,” Proc.
of IEEE CVPR, June 2005.

[7] D. Comaniciu, V. Ramesh, and P. Meer, “Real-Time Tracking
of Non-Rigid Objects using Mean Shift,” Proc. of CVPR, vol. 2,
pp. 142-149, 2000.

1268

