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ABSTRACT

A mobile vision-based navigation aid is capable of assisting
the visually impaired to travel independently, especially in
unfamiliar environments. Despite many effective navigation
algorithms having been developed in recent decades, accu-
rate, efficient, and reliable staircase detection in indoor nav-
igation still remains to be a challenging problem. In this pa-
per, we propose an effective indoor staircase detection algo-
rithm based on an RGB-D camera. The candidates of stair-
cases are first detected from RGB frames by extracting a set
of concurrent parallel lines based on Hough transform. The
complement depth frames are further employed to recognize
the staircase candidates as upstairs, downstairs, and nega-
tives (i.e., corridors). A support vector machine (SVM) based
multi-classifier is trained and tested for the staircase recogni-
tion with our newly collected staircase dataset. The detection
and recognition results demonstrate the effectiveness and ef-
ficiency of the proposed algorithm.

Index Terms— RGB-D Camera, Staircase Detection, In-
door Navigation, Visually Impaired

1. INTRODUCTION

There are about 25.2 million adult Americans (over 8%), who
are blind or visually impaired based on the 2008 National
Health Interview Survey1. In worldwide, 45 million are blind
of the 314 million visually impaired people2. Independent
travel in unfamiliar environments is well known to present
significant challenges for individuals with severe vision im-
pairment, therefore, it is important to address the increased
potential risk of falling for the visually impaired, especially
downstairs. Staircase detection should be an essential func-
tion for a navigation and wayfinding aid for visually impaired
people. Over recent years, many assistant technologies have
been developed to facilitate independent navigation, obstacle
detection, and wayfinding tasks [1, 2, 3], but few of them can
detect staircases.

In this paper, a robust and accurate indoor staircase de-
tection approach is proposed, which is composed of the RGB

1http://www.cdc.gov/nchs/nhis/nhis_ad.htm
2http://tinyurl.com/who-blindness

image preprocessing, staircase candidate detection and vali-
dation, and staircase recognition. Generally, the preprocess-
ing will extract edge information and then Hough transform
is applied to detect a set of parallel lines with a series of geo-
metric constraints to ensure potential staircase candidates.

The proposed algorithm can further distinguish escala-
tors from stationary stairs by applying the optical flow-based
tracking, which has not been addressed by previous methods.
The stationary staircase candidates have the average of the
lines’ midpoints used as the reference in the depth frame to
extract distance information of the staircase steps. The depth
features are then fed into an SVM-based multi-classifier to
differentiate upstairs, downstairs, and negative data.

In our prototype development and algorithm validation, a
Google Project Tango Tablet [4] mounted at the chest posi-
tion of the user is adopted due to the following advantages: 1)
capability of capturing both RGB and depth images, 2) wide
range field of view, and 3) low-cost, efficiency, and compact
size w.r.t. the Microsoft Kinect incorporated with a regular
computer. These features allow for a reliable and proficient
video acquisition and testing of the algorithm across differ-
ent indoor environments. For effectively conveying the de-
tected and recognized results to the blind user, we also in-
tegrate the Text-to-Speech (TTS) and Speech-to-Text (STT)
modules which could help the blind user perceive and inter-
act with the surrounding unfamiliar environments via voice
information.

The remainder of the paper is organized as follows: Sec-
tion 2 summarizes the related work of staircase detection.
Section 3 discusses the proposed staircase candidate detec-
tion algorithm and how to identify if the staircase candidate is
moving (potential escalators). Section 4 discusses the exper-
imental results. Section 5 concludes the paper and presents
future work.

2. RELATED WORK

Staircases widely exist in man-made environments and as
such remain a major problem in robot and human navigation.
Many different kinds of sensors, like monocular [5, 2, 6, 7]
and stereo cameras [3], or laser scanning [1] devices (e.g.,
LiDAR), have been used for detecting staircases.
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Fig. 1: Flowchart of the proposed algorithm for staircase detection and recognition

Lee and Kim [8] optimally detected the staircase in real
time through utilizing a stereo camera attached to a pair
of glasses along with a vest containing feedback effectors.
Through extracting ground floor estimation and temporal con-
sistency information from the stereo images, they obtained fa-
vorable results in detecting staircases, but only focused on de-
tecting the location of the staircase without classifying down-
stairs and upstairs. Kim et al. [9] suggested incorporating
a stereo camera into the white cane and using actuators for
guidance and distance feedback. The cane utilizes hand ges-
tures and the visual information delivery assistant (VIDA) to
identify the object and portray the distance information via
actuator feedback. It is useful in providing user-selected in-
formation, but its semi-autonomous design does not take into
account the obstacles presented in motion.

The existing algorithms for staircase detection are still
far from satisfactory and can be significantly improved. Re-
cently, RGB-D cameras (e.g., Microsoft Kinect) and RGB-
D mobile devices (e.g., Google Project Tango Tablet), are
widely used in the fields of computer vision and robotics,
for the capability of capturing both color and depth informa-
tion of the environment simultaneously, and generating corre-
sponding video streams. In staircase detection to assist blind
people, the depth sensor can provide distance information to
blind users. Moreover, the infrared-based depth perception is
robust to the environment textures or low illumination envi-
ronments. In paper [10], the authors modeled a stair’s tread
and rise through using cloud points, scene segmentation, and
geometry constraints. Wang et al. [11, 12] proposed an RGB-
D image-based detection approach of stairs, pedestrian cross-
walks, and traffic signs, which achieves decent detection rate
in the staircase detection, but cannot handle the escalator de-
tection.

In this paper, we present an efficient algorithm to detect
staircases and recognize the types of staircases in using RGB-
D videos. A new benchmark staircase detection dataset is
captured from the RGB-D camera mounted at the chest posi-

tion. As indicated in [13], the chest position promotes desir-
able features according to body motion and social acceptabil-
ity.

Our main contributions are, 1) an end-to-end (raw RGB-D
video frames in, staircase category, location, and orientation
out) real-time staircase detection and recognition approach is
proposed and achieves the state-of-the-art results. 2) A new
benchmark staircase detection dataset is collected which con-
sists of more than 100 staircases, including extensive staircase
shapes and appearances. 3) An optical flow-based stair track-
ing algorithm is proposed to distinguish the escalators from
the stationary staircases which have never been addressed by
previous methods.

3. RGB-D IMAGE-BASED STAIRCASE DETECTION

The staircase is defined as a set of stairs and its supporting
structures, with each having its own variety of steps. In our
design, we are inclined towards implementing the algorithm
to detect the orientation of staircases with homogeneous stair
treads and steps.

As shown in Figure 1, firstly, the edge maps of acquired
RGB images are generated using the Sobel edge detector. Af-
terward, staircase candidates with a set of concurrent parallel
lines are proposed using Hough transform, which are further
validated via the depth channel, and tracked across the frame
sequence using the average midpoint of the detected lines.
Optical Flow features extracted along the midpoint line are
introduced to identify if the staircase is moving. In a station-
ary staircase image, the 480 feature vector obtained along the
midpoint line in the depth image is fed into the SVM multi-
classifier used to categorize the staircases as either upstairs,
downstairs, or negatives, with 3-fold cross validation on ran-
domly divided subsets of the data. In addition, this feature
vector provides the distance between the user and staircase
steps.
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Fig. 2: Example of staircase candidate detection on RGB channel with a
set of parallel lines. Yellow box represents midpoint check results while the
white boxes represent overlap tests results on potential stair candidates.

3.1. Staircase Step Candidate Detection

The structure of staircases appears as a set of concurrent par-
allel lines in images. After applying the histogram equaliza-
tion and Sobel edge detection, Hough transform is employed
to the extracted edge map to detect potential staircase edge
lines. These lines are further validated if they belong to a set
of concurrent parallel lines, which prevent noises from unex-
pected lines and promote a more robust detection of the stairs.
These edge points, represented by (xi, yi), form a line repre-
sented in slope-intercept form y = ax+b, where a represents
the slope of the line while b represents the y-intercept. In our
system implementation, to better parameterize a set of lines,
the following equation is used:

r + y · sin θ + x · cos θ = 0, (1)

where θ represents the angle of the line relative to a horizon-
tal alignment, while r represents the line’s length from the
Hough edge endpoints.

As seen in Figure 1, the staircases have been recorded in
the RGB and Depth channel. In order to promote more effec-
tive detection, a set of rules and constraints has been applied
on the channels to screen for potential staircase candidates.

• Line length r should be between 100 and 500 pixels.

• Number of unfiltered Hough Transform lines in each
RGB frame, hline ≥ 2

• Angle range should be between θ ∈ [85◦, 90◦] ∪
[−85◦,−90◦] respectively.

• The average midpoint horizontal direction range limit
uses xlower and xupper as constant pixel bounds for
the candidates’ midpoint xmid in the xmid − xlower ≤
xmid ≤ xmid + xupper bounds

• Dynamic vertical direction line limit utilizes the up-
per and lower bound decreasing coefficients, α and β,
and the growing number of lines fitting the limit, nline,
to decrease the bounds and prevent overlapping of
lines. yupperlimit − (α ∗ nline) ≥ |yavgi − yavgi−1

| ≥
ylowerlimit − (β ∗ nline).

• Depth distance limit is to maintain distance detection
range, |Dlocal| ≤ |Dlimit|. Dlocal denotes the distance

difference from each independent line with the closest
line to user in the current frame, while Dlimit repre-
sents the depth distance difference limit measured in
the initial frames.

These rules are applied on all parallel lines (the green lines
while the blue line is the longest), with the average midpoint
line represented by the red line in Figure 2. If the candidate
satisfies the depth distance constraint, then it will manifest
in the depth image as a blue point. All constraints are used
in the initial detection of the staircase orientation. However,
the depth distance, line, and vertical direction constraints are
exempted during the user’s movement towards the staircase.

3.2. Escalator and Stationary Staircase Identification

During the staircase candidate detection, sparse optical flow
is applied to the RGB images to track the candidates along
the midpoint line. The Horn-Schunck method is adopted for
the optical flow estimation. The gradient of the optical flow
measured from the user initially standing still is utilized to de-
termine the user’s movement and then filter it from the stair-
cases’ movement. Similar to the depth distance constraint
mentioned before, the optical flow relies on the video frames
to obtain the optical flow vector and the derivatives of the im-
age intensities. Using these values, the method can fabricate
flow vectors along the red midpoint line, represented by white
markers in Figure 5.

In addition to the optical flow, the Kanade-Lucas-Tomasi
(KLT) point tracking algorithm is employed [14], which uses
the Shi-Tomasi corner detection system to compute eigenfea-
tures of a Region of Interest (ROI). Through using an image
patch area denoted by (u, v) and shifting it by (x, y), the
weighted sum of square distances χ(x, y) between the im-
age patches is approximated in matrix form by the equation
below, where w(u, v) denotes the weights used, A represents
the Harris tensor matrix, and I represents the image used.

χ(x, y) ≈ w(u, v)A

(
x

y

)
(2)

A is determined by:

A ≈

[
〈I2x〉 〈IxIy〉
〈IxIy〉 〈I2y 〉

]
(3)

The eigenfeatures are established from the minimum of
the eigenvalues, min (λ1, λ2), of the A matrix as it allows
for faster computation. Using these corner features as input,
the point tracking algorithm determines the KLT optical flow
path. The 150 × 50 pixel rectangular ROI is selected around
a single staircase step candidate in the first frame, and the
KLT point tracker will continue to track these feature points
across the video frames. Using the position of features from
the last frame, the class of staircase can be deduced based on
the relationship below,

|
∑

(ylast(i)− yfirst(i))
n× features

| ≥ ythresh, (4)
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where y(i) denotes the vertical direction of the feature and
n denotes the total number of features present. If the equa-
tion is satisfied, then the staircase is potentially an escalator.
If it is not, the staircase is stationary and will have the 480
feature midpoint vector used in the SVM classification. The
purpose of this check is to notify the user of the different risks
in climbing either staircase. An example of escalator detec-
tion and feature displacement is demonstrated in Figure 3.

Fig. 3: Montage of Tracking Feature implemented on an upstairs escalator.
The yellow box represents the region of interest selected while the red mark-
ers represent the eigenfeatures extracted from the stair.

3.3. Staircase Distance Estimation

In order to estimate the distance between the user, staircase,
and the size of each stair step, the depth channel is employed.
The resolution of the depth images is 640 × 480 pixels with
the effective distance range from 0.8 meters to 3.5 meters ac-
cording to [15]. Each depth image is represented as an image
with intensities [0, 255] as seen in the depth images in Fig-
ure 4. The darker intensities indicate farther distances while
the brighter intensities indicate closer distances.

The distance of each potential stair step from the user is
calculated using a linear correlation between a step’s midpoint
depth intensity and the effective camera distance range. The
stair steps have been plotted as star points in the image along
the red midpoint line. The intensities from the star points ren-
der the distance in centimeters and are plotted accordingly in
Figure 4. The red triangles on the blue dash line plot describe
the staircase steps detected in the upstairs while the black pen-
tagons on the green line denote the downstairs. As shown in
Figure 4, the upstairs demonstrate a larger distance change
between steps compared to the downstairs. The upstair steps
are also more distinguishable than downstair steps.

In consideration of these particular characteristics, the
depth distance constraint balances the overall stair step detec-
tion distance range. The difference in distance between the
nearest and farthest step is evaluated across an initial number
of frames. The overall average difference is used as a control
value for detection in future frames.

By utilizing this control value, the detection can be fur-
ther improved by reducing any noise produced from outside
the distance range of the staircase. In our implementation, the
overall control value range of the different staircases varies
from 100 cm to 300 cm but never exceeds the threshold of
330 cm. For the stationary staircase classification, the inten-
sity values along the red midpoint line are extracted. The di-
mensions of the derived depth feature vector are 480× 1 and

the corresponding distances of the vector are input into the
SVM multi-classifier.

(a) Depth Image of Upstairs (b) Depth Image of Downstairs

(c) Depth Image Distance Graph

Fig. 4: Examples of depth images for upstairs, downstairs, and the distance
calculation.

3.4. Recognizing Directions of Staircases

Some of the detected staircase candidates may be negative
samples (i.e. non-staircases.) To recognize upstairs, down-
stairs, and negatives, we train a Support Vector Machine
(SVM) based classifier with a radial basis function (RBF) ker-
nel [16]. The depth feature vector is fed into the SVM clas-
sifier as input. We implement the SVM as a multi-classifier
for 3 classes: upstairs, downstairs, and negatives. For each
class, one classifier is trained by considering the samples of
this class as positives while the rest are as negatives. Cross-
validation among 3 subsets of the training data is conducted
to prevent the biasing of the dataset and possible over-fitting.

3.5. Speech-based User Interaction

After completing the staircase detection and recognition pro-
cess, we further implement the Text-to-Speech (TTS) module
to convey the results to blind users, including the informa-
tion of the step distance, staircase direction, the number of
remaining steps, and etc. The Android built-in speech syn-
thesis engine is adopted in our system to transform the pre-
defined phrases and processing results to the voice output,
which provides adaptive navigation support to the blind users.
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The CMU Sphinx [17] speech recognition engine is further
employed to receive the voice commands from the user, in-
cluding but not limited to, pausing, resuming, stopping, and
restarting the staircase detection processing. The effective-
ness of the TTS and STT modules has been validated in the
experiments, and proven to significantly boost the practicabil-
ity of our proposed algorithm and system.

4. EXPERIMENTAL RESULTS

4.1. RGB-D Camera Data Collection

To evaluate the proposed algorithm, we collect a database of
staircases including upstairs, downstairs, and negatives by us-
ing an RGB-D camera in a variety of indoor environments.
In our system, the camera is mounted in the chest position-
facing front. The videos of RGB and depth data are simul-
taneously captured at 30 FPS of staircases. The staircases of
the database are captured in a variety of indoor environments
including office buildings and homes. For each staircase, a
video for approximately 10 seconds is recorded for stair de-
tection and classification. The video is partitioned into frames
at 10 frames per second to be used for analysis. The videos
without staircases are collected at negative data including ob-
jects such as corridors, bookcases or ladders. Examples are
displayed in Figure 5. Our database contains frames captured
from 115 upstairs, 111 downstairs, and 120 negative data.

4.2. Experimental Results

The constraint values were preselected before applying the se-
ries of candidate tests. For the average midpoint constraints,
the xlower and xupper bounds were set to 100 pixels. In
the dynamic vertical line limit, the optimal α coefficient is
set to 12 pixels per line and β to 2 pixels per line with the
yupperlimit assigned 120 pixels and ylowerlimit assigned 30
pixels. The depth distance constraint |Dlimit| is set by the
initial frames, but has a default value of 210 pixels, in case no
candidates are detected, while |Dlocal| is set in each individ-
ual frame.

In the training set, there are 66 downstairs, 70 upstairs,
and 73 negative training samples. These samples were ran-
domized when selected for the subset classification of the
cross-validation phase, but each sample was used only once
to prevent any biasing in the dataset. The testing set has 45
downstairs, 45 upstairs, and 47 negative samples, resulting
in 137 samples total for the classification stage. As demon-
strated in Table 1, our system achieves an average accuracy at
92.70% for staircase recognition with accuracies of 95.56%
for upstairs, 88.89% for downstairs, and 93.62% for negatives
respectively.

The algorithm actively processes RGB-D images to detect
potential step candidates and notifies user throughout naviga-
tion. Once the SVM multi-class model classifies either an up
or down staircase, the algorithm implements the additional
features such as optical flow and KLT stair tracker. The al-
gorithm uses an auditory feedback system to relay the stair
distance in centimeters and estimated the amount of steps.

(a) Upstairs RGB Image (b) Upstairs Depth Image

(c) Downstairs RGB Image (d) Downstairs Depth Image

(e) Negative RGB Image (f) Negative Depth Image

(g) Negative RGB Spiral Im-
age

(h) Negative Depth Spiral Im-
age

Fig. 5: Examples of staircase images of our database.

Without optimization, the current algorithm implemented
in Matlab can process 2 frames per second, on a single core
of an Intel Dual-Core 2.9 GHz processor without GPU ac-
celeration. This computation can be speeded up when fur-
ther optimized with C++. The proposed staircase detection
and recognition algorithm doesn’t rely on any dataset-specific
tuning, therefore could be easily incorporated to improve the
performance and user friendliness of current existing blind
navigation systems.

Table 1: Experimental Results of Staircase Recognition

Class Upstairs Downstairs Negative Accuracy
Upstairs 43 0 2 95.56%

Downstairs 3 40 2 88.89%
Negative 3 0 44 93.62%
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4.3. Limitations

The proposed pipeline effectively promotes uniformity be-
tween consecutive frames with histogram equalization, and
enhances the performance of horizontal edge detection via
edge filters fusion on RGB-D channels. However, it is in-
sufficient to prevent certain potential limitations. Since the
proposed staircase detection algorithm is based on both of the
RGB and depth images captured by an RGB-D camera, the
algorithm will fail if the environment is too dark (inadequate
RGB data) or too bright (inadequate infrared data). For very
dark environments, good quality edge maps cannot be ex-
tracted from RGB frames. For very bright environments, the
distance cannot be correctly estimated due to the overexposed
depth frames. Figure 6 illustrates one corrupted RGB-D im-
age pair captured under very bright sunlight. The proposed
algorithm handles the problem of extreme illumination by
introducing parallel planes generation via inverse depth and
accelerometer data [18], or depth image reconstruction [19].
The Hough transform also fails to recognize the spiral stairs
due to its change in step orientation. Using the Horn-Schunck
optical flow and calculating the average degree of the vector
angles, the image can be rotated accordingly for better line
detection.

(a) Corrupt RGB Image (b) Corrupt Depth Image

Fig. 6: Escalator with corrupted depth image due to excessive brightness.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a staircase detection algo-
rithm to assist visually impaired people in unfamiliar envi-
ronments. The proposed algorithm is evaluated with our col-
lected staircase dataset and achieves recognition accuracies of
88.89% for upstairs, 95.56% for downstairs, and 93.62% for
negatives. Further improvement of the algorithm will focus
on expanding current dataset, user interface study, and evalu-
ation by blind subjects.
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