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Abstract 

Robust visual classification can be applied to numerous practical 

applications, such as augmented reality, personal robotics and medical image 

analysis. The main challenges for visual classification are accuracy and 

efficiency in terms of both computation and memory. This dissertation will 

present efforts to address these challenges.  

To improve accuracy, we propose a new feature representation, i.e. 

EigenMap, and a novel multiple-kernel learning framework, i.e. margin-

constrained multiple-kernel learning. The EigenMap utilizes kernel density 

estimation to approximate the location probability of features in an image. 

Hence, the proposed feature representation incorporates both appearance and 

spatial information of local regions. 

A popular methodology is to utilize the complementarity of multiple 

feature types, by either a simple concatenation or multiple-kernel learning 

(MKL). The method of the simple concatenation of feature vectors from 

different feature types requires manual feature selection and careful 

parameter tuning. On the other hand, MKL can automatically combine 
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different feature types to achieve better performance. However, the MKL 

tends to only select the most discriminative feature type and ignore other 

less discriminative feature types, which may provide complementary 

information for visual classification. 

In order to better utilize complementary features with less 

discriminative power, we propose a margin-constrained multiple-kernel 

learning (MCMKL) method by extending MKL with margin constraints and 

dimensionally normalized kernel. The proposed MCMKL method learns 

weights of different feature types, i.e., base features, according to their 

discriminative power. Unlike the conventional MKL, MCMKL incorporates 

less discriminative base features by assigning smaller weights when 

constructing the optimal combined kernel, so that we can fully take the 

advantages of complementary multiple features to improve the accuracy of 

visual classification. 

To improve efficiency of visual classification, especially on a large-

scale classification with a large number of categories, a typical approach is 

to use one-vs-all linear Support Vector Machine (SVM). However, it has 

been criticized that the complexity increases linearly with the number of 

categories. On the other hand, nearest-neighbor (NN) based classifiers can 

naturally handle large numbers of categories and do not have learning step. 

But the inferior performance, as compared with learning based classifiers, as 

well as expensive computation and memory costs have hindered these 

classifiers on large numbers of classification categories.  

We propose a novel classifier scheme, i.e., the Discriminative 

Hierarchical K-Means Tree (D-HKTree), which combines the advantages of 

both NN-based and learning-based classifiers for large-scale classification. It 

incorporates learning-based classifier into NN-based classifier, and extends 
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the NN-based classifier to large-scale dataset with significantly lower 

computational cost and memory usage. At the same time, the D-HKTree can 

still achieve the state-of-the-art classification accuracies on several 

challenging datasets. 

The main contributions of this dissertation include a new spatially 

encoded object representation and novel classifier frameworks to improve 

both accuracy and efficiency of visual classification. The proposed 

EigenMap object representation incorporates spatial context into the popular 

bag of words model without manually partitioning an image into a set of 

sub-regions. We also extend the multiple-kernel learning framework, with 

margin constraints and dimensionally normalized kernel, in order to 

maximize joint discriminative power of multiple complementary features. 

Finally, we propose a novel classifier scheme, i.e., Discriminative 

Hierarchical K-Means Tree (D-HKTree), to take advantages of both learning 

based and nearest neighbor based classifiers for large-scale visual 

classification. 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 



� ��

Acknowledgment  

I would like to express my deepest appreciations to my advisor, 

Professor YingLi Tian, for her guidance, patience and understanding. She 

not only teaches me to become a good researcher in computer vision field, 

but also encourages me to apply the research to benefit our society and help 

people with special needs. This dissertation would not have been possible 

without her consistent support and encouragements. 

I would like to thank my dissertation committee members, Professor 

Zhigang Zhu, Professor Fred Moshary and Dr. Rogerio Schmidt Feris for 

their valuable comments and suggestions on revising the final dissertation. 

I would also like to thank my colleagues and friends in the CCNY 

Media Lab, including Xiaodong Yang, Chucai Yi, Chenyang Zhang, Yang 

Xian, Carol Mazuera, Ze Ye, Hangrong Pan, Long Tian, Baiyu Xi, Shuai 

Yuan, Shuihua Wang, Michael Quintian, Faiz Hasanuzzaman, and many 

others for their friendship and supports. Special thanks go to Xiaodong and 

Chucai for the discussions of many research topics and their constructive 

comments on revising this dissertation. I also enjoy the collaboration with 

Xiaodong for the large scale learning part of this dissertation. 

Furthermore, I would like to acknowledge NOAA CREST with much 

appreciation, which has been providing financial support for my Phd study.  

Finally, I cannot make it so far without the unbound love and 

continuous support from my family. I would like to express my deepest 

gratitude to my parents for their dedication and love. I also want to say thank 

you to my wife, Man Ting Wong, for her patience and understanding over 

the Phd study. I appreciate my wonderful children, Shuyi Chen and Shuhui 

Chen. They have given me so much fun and the experience as a parent. 



���

List of Figures 

Figure 1: Some sample images for objects and scenes      .  .  .  .  .  .  .  .     15 

Figure 2: Box filter approximation of Gaussian function    .  .  .  .  .  .  .     25 

Figure 3: Interest points detected by SURF    .  .  .  .  .  .  .  .  .  .  .  .  .  .     27 

Figure 4: Construct SIFT descriptor       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     29 

Figure 5: Haar wavelet filters     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     29 

Figure 6: Reprentation of an image     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     31 

Figure 7: Bag of Words representation for visual classification      .  .  .     32 

Figure 8: Construction of Bag of Words model       .  .  .  .  .  .  .  .  .  .  .     33 

Figure 9: Spatial layout of Spatial Pyramid Matching         .  .  .  .  .  .  .     37 

Figure 10:  Hyper-plane of linear SVM          .  .  .  .  .  .  .  .  .  .  .  .  .  .     43 

Figure 11: One-vs.-all SVM and hierarchical SVM       .  .  .  .  .  .  .  .  .     53 

Figure 12: Class taxonomy with four levels      .  .  .  .  .  .  .  .  .  .  .  .  .     54 

Figure 13: Relaxed hierarchy for four class data        .  .  .  .  .  .  .  .  .  .      56 

Figure 14: Concept of image-to-class distance     .  .  .  .  .  .  .  .  .  .  .  .     63 



� ��

Figure 15: Difference between NBNN and local NBNN       .  .  .  .  .  .      66 

Figure 16: EigenMap representation for visual classification   .  .  .  .  .      71 

Figure 17: Segmentation example       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     73 

Figure 18: EigenMap Generation        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     75 

Figure 19: Location likelihood using kernel density estimation      .  .  .     76 

Figure 20: Sample images of UIUC Sport Scene Database    .  .  .  .  .  .     77 

Figure 21: Sample images of the Natural Scene database       .  .  .  .  .  .     78 

Figure 22: EigenMap result on scene databases      .  .  .  .  .  .  .  .  .  .  .      79 

Figure 23: Five-fold cross validation result of EigenMap      .  .  .  .  .  .      81 

Figure 24: Sample confusion matrices of EigenMap     .  .  .  .  .  .  .  .  .     82 

Figure 25: Compare EigenMap with state of the arts        .  .  .  .  .  .  .  .     83 

Figure 26: The effect of number of eigenvectors    .  .  .  .  .  .  .  .  .  .  .      84 

Figure 27: Feature discrimination from SVM margin   .  .  .  .  .  .  .  .  .      89 

Figure 28: Multi-modal fusion for affect recognition   .  .  .  .  .  .  .  .  .      93 

Figure 29:  Facial features      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      94 



�	�

Figure 30: Body gesture features     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      94 

Figure 31: Temporal segmentation     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      96 

Figure 32: Sample video in FABO database     .  .  .  .  .  .  .  .  .  .  .  .  .      98 

Figure 33: The top 12 performances over fusion algorithms    .  .  .  .  .      98 

Figure 34: Best performance of fusion algorithms      .  .   .  .  .   .  .  .   .   100 

Figure 35: Feature weight distribution over base features    .  .   .  .  .   .   101 

Figure 36: Optimal kernel parameter � vs. feature dimension     .  .  .   .   102 

Figure 37: Contamination from noisy feature       .  .  .  .   .  .  .   .  .  .   .   104 

Figure 38: Labeled Hierarchical K-means Tree (L-HKTree)       .  .  .   .   107 

Figure 39: The framework of D-HKTree framework         .  .  .   .  .  .   .   108 

Figure 40: Illustration of unit step function           .  .  .  .   .  .  .   .  .  .   .   111 

Figure 41: Comparing memory usage      .  .  .   .  .  .  .  .   .  .  .   .  .  .   .   120 

Figure 42: Comparing relative computational complexity    .  .   .  .  .   .   122 

 
 
 



� 
�

List of Tables 

Table 1: YouTube statistics in 2012       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     16 

Table 2: Feature dimension of base features        .  .  .  .  .  .  .  .   .  .  .  .     99 

Table 3: Comparison to NN-based classifiers     .  .  .  .  .  .  .  .   .  .  .   .   118 

Table 4: Comparison to learning based classifiers       .  .  .  .  .   .  .  .   .   121 

Table 5: Comparison to the hybrid classifiers        .  .  .  .  .  .  .   .  .  .   .   125 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



���

Contents 

1 Introduction            14 

1.1 Applications and Challenges of Visual Classification  .  .  .     14 

1.2 Improving Classification Accuracy  .  .  .  .  .  .  .  .  .  .  .     16 

1.2.1 Spatially Encoded Object Representation    .  .  .  .  .     16 

1.2.2 Multiple Features Fusion      .  .  .  .  .  .  .  .  .  .  .  .  .     17 

1.3 Improving Classification Efficiency  

for Large-scale Learning      .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .     19 

1.4 Dissertation Organization     .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .     20 

2 Related Work            22 

2.1 Local Features for Object Representation     .  .  .  .  .  .  .  .     22 

2.1.1 Feature Extraction    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     23 

(A) Interest Point Detector  .  .  .  .  .  .  .  .  .  .  .     23 

(B) Interest Point Descriptor     .  .  .  .  .  .  .  .  .  .     28 

2.1.2 Object Representation   .  .  .  .  .  .  .  .  .  .  .  .  .  .     30 

(A) Bag of Words Representation       .  .  .  .  .  .  .     32 

(B) Bag of Words in Spatial Context  .  .  .  .  .  .  .     36 

2.2 Multiple-Feature Fusion        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     38 

2.2.1 Direct Concatenation      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     39 

2.2.2 Single-Kernel Learning   .  .  .  .  .  .  .  .  .  .  .  .  .  .     42 

2.2.3 Multiple-Kernel Learning (MKL)    .  .  .  .  .  .  .  .  .     48 



� ��

2.3 Large-scale Learning       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     51 

2.3.1 Discriminative Learning      .  .  .  .  .  .  .  .  .  .  .  .  .     52 

2.3.2 Nearest Neighbor based Classifier      .  .  .  .  .  .  .  .     61 

3 Spatially Encoded EigenMap Representation     70 

3.1 Summary     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     70 

3.2 Method     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     72 

3.2.1 Overview   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     70 

3.2.2 Feature Extraction    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     72 

(A) Region Features: 

Texture, Shape, and Color  .  .  .  .  .  .  .  .  .  .     72 

(B) Interest Point Features: 

Uniform Grids and Harris Corners   .  .  .  .  .     73 

3.2.3 Codebook Formation and Feature Quantization    .  .     74 

3.2.4 EigenMap Generation     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     75 

3.2.5 Classifier    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     77 

3.3 Experiments    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     77 

3.3.1 Databases   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     78 

3.3.2 Experimental Setups    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     80 

3.3.3 Experimental Results      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     80 

(A) Compare to the Bag of Words Model  

and the LDA model     .  .  .  .  .  .  .  .  .  .  .  .  .     80 

(B) Compare to the State-of-the-art 

Performance      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     83 

(C) Select Number of Principal Components 

for EigenMap    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     84 

3.4 Discussion    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     84 



���

4 Margin-Constrained Multiple Kernel Learning   86 

4.1 Summary     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     86 

4.2 Method        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     87 

4.2.1 Multiple-Kernel Learning (MKL)    .  .  .  .  .  .  .  .  .     87 

4.2.2 Margin Constraints      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     88 

4.2.3 Dimensionally Normalized Kernel      .  .  .  .  .  .  .  .     90 

4.3 Multi-Modal Fusion for Affect Recognition    .  .  .  .  .  .  .     91 

4.3.1 Overview of MCMKL-based Affect Recognition .  .     92 

4.3.2 Facial Features .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     93 

4.3.3 Body Gesture Features   .  .  .  .  .  .  .  .  .  .  .  .  .  .     94 

4.3.4 Temporal Segmentation   .  .  .  .  .  .  .  .  .  .  .  .  .  .     95 

4.3.5 Temporal Normalization   .  .  .  .  .  .  .  .  .  .  .  .  .  .     95 

4.3.6 MCMKL Based Multi-Modal Feature Fusion    .  .  .     96 

4.4 Experiments    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     97 

4.4.1 Experimental Setups    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     97 

4.4.2 Comparison to Existing Work and MKL     .  .  .  .  .     98 

4.4.3 Evaluate Feature Weight Distribution  .  .  .  .  .  .   .   101 

4.4.4 Contamination from  

Less Discriminative Features       .  .  .  .  .  .  .  .  .   .   104 

4.5 Discussion        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   105 

5 Discriminative Hierarchical K-Means Tree   106 

5.1 Summary    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   106 

5.2 Construction of Discriminative 

Hierarchical K-means Tree      .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   107 

5.2.1 Algorithm Overview      .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   108 



� ��

5.2.2 Labeled Hierarchical K-means Tree   .  .  .  .  .  .  .   .   109 

(A)  Towards L-HKTree      .  .  .  .  .  .  .  .  .  .  .   .   109 

(B)  Building L-HKTree       .  .  .  .  .  .  .  .  .  .  .   .   113 

(C) Pre-Classification with L-HKTree    .  .  .  .   .   114 

5.2.3 Discriminatively Learned Histogram  .  .  .  .  .  .   .   115 

5.2.4 Classification with D-HKTree    .  .  .  .  .  .  .  .  .   .   116 

5.3 Experiments   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   117 

5.3.1 Experimental Setup    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   118 

5.3.2 Comparisons to NN-based Classifiers   .  .  .  .  .  .   .   118 

5.3.3 Comparisons to Learning-based Classifiers   .  .  .   .   121 

5.3.4 Comparisons to Hybrid Classifiers     .  .  .  .  .  .  .   .   124 

5.4 Discussion     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   125 

6 Conclusion and Future Work      127 

6.1 Discussions and Conclusion    .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   127 

6.2 Limitations and Future Work   .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   128 

Bibliography           130 

My Publication List         143 

  

 

 

 

�



���

Chapter 1 

Introduction 

 Visual classification is a process of recognizing an object or 

understanding a concept by analyzing visual appearance. It categorizes an 

object or a concept into a group, within which all objects or concepts share 

similar properties. For the convenience of discussion, we use object 

recognition as a general term for both physical object recognition and 

concept understanding in this dissertation. 

1.1 Applications and Challenges of Visual Classification 

 Robust visual classification has been an active research area [22, 28, 

40, 44] in computer vision field. It remains a driving force for many 

practical applications, e.g., human computer interaction (HIC), surveillance, 

augmented reality, personal robotics and medical applications. Nevertheless, 

two main challenges, i.e., accuracy and efficiency, have to be overcome, in 

order for visual classification to have a wide range of applications.  
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An object appears different under varying conditions, e.g., occlusion, 

scale change and viewing angle change. These variations adversely affect 

the accuracy of visual classification. Figure 1 shows some example images 

from several object classes, i.e., butterfly and killer whale, and from scene 

classes, i.e., golden gate bridge and beach. Each class exhibits large intra-

class variations due to changes of viewing direction, scale, and occlusion 

etc. It is still an open question how to represent an object to maintain high 

�
Figure 1: Some sample images for objects and scenes show large intra-class 

variations, which includes occlusion, viewing direction changes, and scale changes. 
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discriminative power, while achieving intra-class invariance. It is generally 

believed that multiple features are necessary to accurately recognize an 

object. However, it is not clear what is the best way to combine these 

features to achieve a high accuracy. 

On the other hand, efficiency in terms of both computation and 

memory has become ever more important when designing a visual 

classification system, as the size of available data increases exponentially. 

Table 1 shows YouTube statistics per month in the year of 2012, released by 

Google [110]. Each month, there are more than 3 million hours of video 

uploaded, and 4 billion hours of video watched by viewers. In this 

dissertation, we present an effort to address both challenges, i.e., accuracy 

and efficiency for visual classification. 

1.2 Improving Classification Accuracy 

 To improve accuracy, the most straightforward approach is to 

construct a more discriminative object representation from features [26, 49]. 

The other approach is to combine multiple feature types by utilizing their 

complementarity [22, 40, 88]. 

1.2.1 Spatially Encoded Visual Representation 

Table 1�� YouTube statistics of video watched and uploaded per month in the year of 

2012 [110].�

�
�
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 The bag of words (BOW) object representation has been adapted in 

many state-of-the-art visual classification systems [26, 53] due to its 

simplicity and excellent performance. However, it has ignored all spatial 

relationships among different object parts. Spatial Pyramid Matching (SPM) 

[49] incorporates such spatial relationship by manually partitioning an image 

into multiple sub-regions, and constructs a BOW histogram for each sub-

region. Then all BOW histograms are concatenated together as the final 

object representation. Even though SPM models absolute spatial information 

of object parts based on image space, it has outperformed BOW in many 

challenging datasets [49]. 

 However, SPM requires partition of an image into sub-regions. And 

the dimension of final object representation can be very large if a large 

codebook size is used. We propose a new spatially encoded object 

representation, i.e., EigenMap, which does not require manual partition of 

image and has much lower dimension as compared to SPM. The density 

distribution of object parts over the image space is captured by their 

EigenMaps. The collection of these EigenMaps incorporates both 

appearance and spatial relationship of object parts. 

1.2.2 Multiple Features Fusion 

 Popular approaches to combine multiple feature types are simple 

concatenation [22, 40, 78, 108] and multiple kernels learning (MKL) method 

[2, 73, 88, 89]. Due to the complexity of visual classification, no single 

feature is able to provide the best tradeoff between discriminative power and 

invariance in all datasets. Some features might be scale invariant, while 

others might be rotation invariant. Depending on dataset, one feature might 
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perform better than another, or vice versa. Higher classification accuracy is 

generally obtained, by combining multiple feature types together. 

 A straightforward way to combine multiple feature types is simple 

concatenation, which results in a feature vector representation with large 

dimension [22, 40, 78, 108]. The simple concatenation is very easy to 

implement, and achieves higher accuracy if right features are combined. 

Nevertheless, the right features have to be manually selected, and they are 

different for different datasets. Hence, simple concatenation requires expert 

knowledge on both features and datasets, in order to obtain optimum 

performance. Furthermore, the simple concatenation fusion method is 

vulnerable to the contamination of less discriminative feature types, 

especially those with large feature dimensions. 

 The multiple-kernel learning (MKL) [2, 73, 88, 89] is able to partially 

eliminate some drawbacks of the simple concatenation fusion method. It can 

automatically select most discriminative feature types for a dataset. The 

MKL also provides shielding from the contamination of less discriminative 

base features by assigning very large weights to the most discriminative base 

features. It has recently shown the effectiveness to fuse multiple base 

features in object detection and recognition [88, 89]. However, MKL tends 

to select only the most discriminative base features and ignore other less 

discriminative base features. Therefore, MKL method cannot fully take the 

advantages of all types of base features from heterogeneous modalities, 

which usually provide complementary information. 

 In order to address these issues, we propose a margin-constrained 

multiple-kernel learning (MCMKL) by applying additional margin 

constraints and dimensionally normalized kernel. Unlike conventional MKL 

method, our proposed MCMKL is able to learn the most discriminative base 
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features while still considering other base features, which are less 

discriminative, but can potentially provide complementary information. We 

apply MCMKL method on affect recognition from multiple modalities (e.g. 

face and body gesture). The extensive experimental results on the FABO 

(Face and Body Gesture) facial expression database [41] demonstrate the 

effectiveness of the proposed method for multi-modal feature fusion. 

1.3 Improving Classification Efficiency for Large-scale 

Learning 

 Efficiency of visual classification, in terms of computational cost and 

memory usage, has become ever more important as the available data size 

increases exponentially. Most learning-based algorithms, e.g., one-versus-all 

linear SVM [19, 25], have computation cost increasing at least linearly with 

the number of object classes [14, 49, 56, 100]. At the testing phase for these 

methods, the computation cost becomes infeasible when scaling up to large 

numbers of classes. To improve efficiency of linear SVM for large-scale 

object classification, Hierarchical SVM-based methods [34, 38, 59] utilize 

hierarchical decision structure so that the computational complexity only 

increases sub-linearly with the total number of classes. However, these 

approaches improve efficiency through compromising classification 

accuracy to some extent. 

 On the other hand, non-parametric nearest neighbor (NN) based 

classifiers require no training phase and can naturally handle large numbers 

of classes. However they have to retain all the training examples in testing 

phase, which becomes infeasible on large-scale datasets due to the expensive 

computation cost and memory usage. For example, the total memory 
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required to store dense SIFT features [58] for the training data of SUN 

dataset [99] is around 100 GB, which far exceeds the memory of a desktop 

(typically 4G – 48G). 

 In order to facilitate large-scale object classification by taking 

advantages of both learning-based and NN-based methods, we incorporate 

discriminative learning algorithms into NN-based methods as a novel 

classification framework, i.e., Discriminative Hierarchical K-means Tree (D-

HKTree). The complexity of the proposed D-HKTree only grows sub-

linearly with the number of categories, which is much better than the recent 

hierarchical SVM based methods. The memory usage in the D-HKTree also 

benefits from precluding all training features, which is order of magnitude 

less than the NN-based methods. In the evaluations on several object 

recognition and scene understanding dataset, i.e., Caltech 101 [31], Caltech 

256 [39] and SUN [99] dataset, D-HKTree obtains state-of-the-art 

accuracies, while with significantly lower computation cost and memory 

requirement. 

1.4 Dissertation Organization 

 The dissertation is organized as the following. Chapter 2 introduces 

the related work on features, object representations, multi-feature fusion 

algorithms and large-scale learning. Chapter 3 presents a new object 

representation, EigenMap, for object or scene classification. We evaluate the 

EigenMap on several scene datasets. Chapter 4 describes Margin Constraint 

Multiple Kernel Learning (MCMKL) in details. The MCMKL is evaluated 

on the FABO dataset for affect recognition. Large-scale learning with D-

HKTree is presented in Chapter 5, and is evaluated on several large-scale 
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object recognition and scene understanding datasets. Finally, Chapter 6 

concludes the dissertation and points out the future directions for visual 

classification. 
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Chapter 2 

Related Work  

Significant efforts on visual classification have been made in recent 

years [15, 48, 102], to improve classification accuracy and efficiency. In this 

chapter, we discuss related work from object representation to classifier 

designs, which enhance the performance of visual classification, in terms of 

accuracy and efficiency. 

2.1 Local Features for Object Representation 

 Features for object representation can be roughly divided into two 

categories, i.e., global and local features. Global feature captures the overall 

appearance of an image or an object [68, 71, 82, 84], e.g., color histogram 

[82], principal component analysis [68, 84]. This approach has worked 

surprisingly well on some applications, e.g., image retrieval [82], face 

recognition [84]. Nevertheless, the global feature is usually not robust with 

partial occlusion, lighting change and view angle change etc. 

 On the other hand, the local feature [6, 33, 45, 46, 50, 58, 76] can 

naturally handle the aforementioned issues, as it captures information from a 

local patch. By utilizing the Bag of Words (BOW) representation [26, 60, 

70, 81, 86,  96, 97], the local features have shown striking performance on 
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object and scene recognition [64,  99]. By incorporating spatial information 

in the BOW [18, 49, 63, 75, 101], the classification accuracy is further 

improved. 

 In this section, we will discuss various methods extracting local 

features. After features extracted, some popular algorithms, which organize 

local features to represent an object, are also presented.  

2.1.1 Feature Extraction 

Two main components are usually involved in feature extraction, i.e., 

interest point detector [4, 42, 58, 61, 65] and descriptor [4, 27,  58, 66]. 

Interest point detector extracts repeatable and distinctive local salient regions 

in an image. Interest point descriptor summarizes the characteristics of the 

neighbor pixels of each interest point based on either intensity or gradient 

information. 

(A) Interest Point Detector 

 One of the most popular interest point detector is Harris corner based 

detector [42, 79], which is based on second moment matrix 
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III

III
yxA        ,                         (2-1) 

where xI and yI denote first derivatives of image intensity I at position (x, y) 

in x and y directions. If the second moment matrix has two large 

eigenvalues, the pixel (x, y) is considered as a corner. To avoid the 

expensive computation of eigenvalues decomposition, Harris and Stephens 
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[42] propose a cornerness measure M c ,� which only depends on the 

determine and trace of matrix A. 

 

Mc = Det(A)− k ×Tr2 (A)     ,                                  (2-2) 

 

where k is an empirical constant to be determined. However, Harris corner 

based detector is not scale invariant. 

The other common interest point detector is based on Laplacian of 

Gaussian (LoG) [55, 58]. Blurred image L(x, y,σ )  is obtained by the 

convolution of the original image I(x, y)  with Gaussian kernel G(x, y,σ ), as 

shown in Equation (2-3). 

L(x, y,σ ) = G(x, y,σ ) ⊗ I(x, y)       ,                      (2-3) 

where σ  is standard deviation of Gaussian kernel. To detect scale invariant 

interest points, scale normalized Laplacian ∇norm
2 L(x, y,σ )  is computed as 

∇norm
2 L(x, y,σ ) = σ 2 (Lxx + Lyy )       ,                         (2-4) 

where Lxx  and Lyy  are second derivatives of L at pixel (x, y) in x and y 

directions. The interest point at the detected scale can be defined from scale-

space maximum or minimum response of the scale normalized Laplacian, as 

shown in Equation (2-5). 

(x̂, ŷ,σ̂ ) = argmaxmin local
(x,y,σ )

∇norm
2 L(x, y,σ )         .                 (2-5) 

Scale Invariant Feature Transform (SIFT) [58] approximates scale 

normalized Laplacian ∇norm
2 L(x, y,σ )

�
by Difference of Gaussian (DOG), 
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following the study [54]. Since Gaussian kernel satisfies diffusion equation 

over scale, the DOG approximation can be derived from Equations (2-6) and 

(2-7) below.  

 σ ∇2L(x, y,σ ) = ∂L(x, y,σ )
∂σ

= L(x, y, kσ )− L(x, y,σ )
kσ −σ

       ,          (2-6) 

∇norm
2 L(x, y,σ ) = σ 2∇2L(x, y,σ )∝ L(x, y, kσ )− L(x, y,σ )         ,     (2-7) 

�
������� ��� Box filter approximation of Gaussian function and their derivatives. (a) 

One dimensional (1-D) Gaussian function g(x) with standard deviation of 1; (b) First 

derivative of 1-D Gaussian function ��

��
; (c) Second derivative of 1-D Gaussian 

function �
��

���
; (d) Approximated 2-D Gaussian function G(x,y) with standard deviation 

of 1.2; dark grey color indicate 0, and lighter color indicate larger positive value; (e) 

Box filter approximation of ��� �
��	

����
; (f) Box filter approximation of ��� �

��	

���
; 

���

������

�
����

�
�
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where k is a constant. Hence, the interest point can also be defined from 

scale-space maximum or minimum response of DOG in the right hand side 

of Equation (2-7). SIFT (Scale Invariant Feature Transform) detector has 

shown very robust performance, as it is invariant to scale, rotation and 

change in illumination etc. 

 To speed up the detection, Hessian matrix based Speeded Up Robust 

Feature (SURF) [4] detector simplify Gaussian filter using box filters as 

shown in Figure 2(e) and 2(f). Figure 2 shows box filter approximation of 2-

dimensional (2-D) Gaussian function and its derivatives. Figure 2(a), (b) and 

(c) show 1-D Gaussian function, its first derivative and second derivative 

respectively. 

Figure 2(d) shows the approximated 2-D Gaussian function G(x,y) 

with standard deviation of 1.2. Figure 2(e) and 2(f) show the box filter 

approximation of ��� and ���respectively.  The Hessian matrix is defined as  

H (x, y,σ ) =
Lxx Lxy

Lxy Lyy

�

�

�
�

�

�

�
�
              .                        (2-8) 

Therefore, the scale-normalized determinant of Hessian matrix will be  

Detnorm (H ) = σ 4(LxxLyy − Lxy
2 )                                .             (2-9) 

By using box filters to approximate Gaussian kernel, the determinant 

of the scale-normalized Hessian matrix [4] becomes 

Detnorm (Happrox ) = DxxDyy − (0.9Dxy )2           ,                           (2-10) 
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where yyD is the convolution of box filter in Figure 2(f), which is normalized 

by the filter size, with the original image ),( yxI . Similarly, xxD  and xyD are the 

convolution of corresponding box filters with the original image. The 

convolution of box filter can be efficiently computed by integral image 

techniques [90]. Finally, interest point and its scale can be found by 

(x̂, ŷ,σ̂ ) = argmax local(x,y,σ )(Detnorm (Happrox ))        .              (2-11) 

�
�
Figure 3: Interest points detected by SURF; The green line indicate the dominant 

orientation of an interest point. The size of a circle shows scale of interest point. The 

red circle indicates the intensity of an interest point is larger than its neighbor pixels, 

and the blue circle indicates the intensity of an interest point is smaller than its 

neighbor pixels. 
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Figure 3 shows interest points detected by a popular implementation of 

SURF detector [29]. As shown in Figure 3, most detected interest points are 

on the two bears, instead of the snow background. This demonstrates that the 

extracted features can potentially form an excellent representation of bears. 

For some applications, e.g., object recognition, scene understanding, 

uniform sampled pixels or dense sampling are also used as interest points 

[12, 13] in literatures. Better performance has been reported for those 

applications if dense sampling is used [12, 30, 51]. 

(B) Interest Point Descriptor 

 After an interest point detected, descriptor summarizes the 

characteristics of its neighborhood pixels by either intensity or gradient 

information. One of the most successful descriptors is SIFT descriptor, 

which is based on gradient [58]. 

 Dominant orientation is first computed by accumulating a local 

orientation histogram of gradient directions over neighborhood patch 

centered at interest point. Then peaks are detected in the orientation 

histogram to find the dominant orientations. 

 Figure 4 illustrates the computation of a SIFT descriptor after the 

dominant orientation calculated. Along the dominant orientation, rectangular 

4 x 4 grids are laid out on the image. In each grid, a local orientation 

histogram with 8 bins is accumulated by each pixel in the grid, weighted 

with their gradient magnitudes. By concatenating together orientation 

histograms from all grids, we have the final SIFT descriptor, which has 128 

dimensions.  
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  Motivated by the success of SIFT feature, extensions to the original 

SIFT feature are also proposed.  Among them, SURF descriptor [4] is well 

known for speeding up the original SIFT descriptor by employing integral 

image technique. The dominant orientation is computed by detecting 

maximum response of Haar wavelet in a sliding orientation window. 

�
�
Figure 4: Construct SIFT descriptor. (a) Along the dominant orientation, 4 x 4 

rectangular grids are laid out on the image, and the gradients are calculated for each 

pixel (small red arrow). (b) The corresponding local orientation histograms (8 bins) 

are calculated for each grid. Finally, SIFT descriptor is the concatenation of all 

oriental histograms. 

��� ���

�

�
Figure 5: Haar wavelet filters used to compute horizontal and vertical response 
� 

and 
�, where light region is +1, and dark region is -1. 

��� ���
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 Similar to SIFT descriptor, 4 x 4 rectangular grids are also laid out on 

the image along the dominant orientation. In each grid, the Haar wavelet 

responses 
� and 
� in the x and y directions are computed for each pixel 

within the grid. The Haar wavelet filters 
� and 
� are illustrated in Figure 

5(a) and Figure 5(b) respectively. Then sum of wavelet responses (� 
��




�) and their absolute responses (
��


�) are computed for each grid. 

These four sums are used to represent a grid. The concatenation of all 

response sums in the 4 x 4 grids is the SURF descriptor.  

 PCA-SIFT [45] computes local maps of gradient magnitude over local 

patches surrounding interest points. Then principal component analysis 

(PCA) projects the gradient magnitude maps to low dimensional subspace. 

The resulted descriptor is much compact than the original SIFT descriptor, 

however with the price of losing distinctiveness. Color SIFT [12, 17, 95] 

extends regular SIFT with color information, and results in more distinctive 

descriptor.  

2.1.2 Object Representation 

 Object representation describes the represented object as a feature 

vector. The ideal object representation is discriminative enough to 

distinguish one object from another, while robust to variations, such as 

lighting and viewing direction etc. 

 To illustrate the importance of object representation, we use Figure 6 

as an example, which shows an image of a panda with the size of 300 by 207 

pixels. We convert the image to gray scale and down sample the image to 

smaller size, i.e., 30 by 21 pixels, as shown in Figure 6(b). With such small 

size, we can still see the panda from the image. However, if we represent the 
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down-sampled image in a matrix format with same size, as shown in Figure 

6(c), there is no way we can tell where the panda is in the matrix, even 

though the matrix in Figure 6(c) contains identical information as that in 

Figure 6(b).  

�
Figure 6: Reprentation of an image; (a) original image (size of 300 x 207); (b) small-

size image (size of 30 x 21); (c) The corresponding matrix (30 x 21) for the small-

size image in (b); 

��� ���

�
�
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 The example above demonstrates the challenges of object recognition 

in the computer vision field. On the other hand, it also shows the importance 

of object representation for accurate visual recognition. In this dissertation, 

we will focus on algorithms, which build object representation from local 

features. Some of the most popular approaches are Bag of Words (BOW) 

[26, 80] and its variants with spatial context [49, 56, 63, 100].  

(A) Bag of Words Representation 

  The Bag of Words (BOW) is commonly used in document 

classification or text retrieval application [3]. A document is represented by 

a histogram of words, where each element in the histogram is frequency of 

occurrences of a corresponding word in the document.  

 Inspired by the success of the BOW model in text retrieval literature, 

computer vision community also adapts it to represent an image by treating 

local features as visual words. Figure 7 illustrates that a bicycle is 

represented by an orderless collection of local patches, i.e., components of 

�

Figure 7: Illustrate Bag of Words representation for visual classification [111]. 
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the bicycle. The BOW model ignored spatial relationship between different 

components of the bicycle, which, however, is very important for human to 

recognize an object. 

 Despite the loss of spatial information, the BOW object representation 

has been successfully applied in computer vision applications, such as image 

retrieval and visual classification [26, 80, 96, 97, 106].  

 Different from words in a text, there are much more variations in local 

features. Hence nearby features in feature space are grouped together to 

form a cluster, which is represented by a prototype feature, i.e., a visual 

word. The collection of visual words from each cluster in training data forms 

a visual dictionary or codebook. Figure 8 shows a pipeline of BOW model 

including visual dictionary construction in Figure 8(a), and object 

representation in Figure 8(b).  

�
�

Figure 8: Pipeline to construct Bag of Words (BOW) model. (a) Visual dictionary 

construction; (b) image or object representation using BOW model [112]. 
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 We first extract local features, e.g., SURF features, from a set of 

training images or objects. Figure 8(a) shows local features, which are 

projected onto a two-dimensional space and marked by green color. Then 

similar local features are clustered together, and are represented by a 

prototype feature or visual word, marked with red color in Figure 8(a). 

Visual dictionary is formed by collecting all visual words from feature 

clusters, i.e., 3 visual words in Figure 8(a). A popular clustering algorithm is 

unsupervised K-Means clustering method [57]. 

To construct object representation, local features are also extracted 

from an input image. Then coding and pooling operators are used to generate 

the final BOW representation, as illustrated in Figure 8(b). In the coding 

step, local features are encoded using visual words in a dictionary. The 

simplest coding method is vector quantization, i.e., hard assignment. The 

hard assignment of a local feature is to assign the weight of 1 to the nearest 

neighbor visual word, while all other visual words are assigned with 0 

weight. Equation (2-13) shows hard assignment code �� � ��  for ith local 

feature �� in an image. 

dist(xi − dk ) = xi − dk 2

2

                    .                       (2-12) 

∂i, j =
1 if j = argmin

k=1,...,K
dist(xi, dk )

0 otherwise

�

�
	


	       ,                     (2-13) 

where 
�is kth visual word in the codebook, and K is the codebook size, i.e., 

total number of visual words in the dictionary. 

 However, hard assignment of a local feature usually has large 

quantization error since it assigns weights to only one visual word. By 

considering soft probabilistic version of coding as shown in Equation (2-14), 
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soft assignment has normally achieved better performance in visual 

classification [36, 37].  

∂i, j = e
−β * dist(xi, d j )

e−β * dist(xi, dk )
k=1

K

�
                      .               (2-14) 

Euclidean distance is only meaningful to approximate a geodesic 

distance within a local region in feature space [92, 103]. Instead of assigning 

weights to every visual word, local soft assignment [56] assigns weights to 

only n nearest neighbor visual words by modifying distance function of 

Equation (2-12) as shown in Equation (2-15). 

dist(xi, dk ) = xi − dk 2

2
if dk ∈ NNn (xi )

∞ otherwise

�
�
	


	
                  ,                     (2-15) 

where ������� is n nearest neighbor visual words of the local feature �� . 

The local soft assignment is a very simple coding method. Nevertheless, it 

achieves comparable performance with other more sophisticated coding 

scheme [56]. 

Sparse coding on the other hand reconstructs a local feature as a linear 

combination of a few visual words, as shown in Equation (2-16). 

∂i = argmin
∂m

xi − ∂m,k * dkk=1

K

�
2

2

+ λ ∂m 1           ,                  (2-16) 

where ∂m 1

��������� ����∂m ��λ 
����������������������������������
������∂m � 

 Better coding techniques not only increase visual classification 

accuracy by eliminating some undesired noise, but also improve 

classification efficiency. 
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 Pooling is to aggregate all codes of local features of an object into a 

single vector. The pooling vector, which summarizes the codes, is the BOW 

vector, i.e., the object representation. Two of the most popular pooling 

operators are average pooling (Equation (2-17)) and maximum pooling 

(Equation (2-18)). 

pk = 1
I

∂i,ki=1

I

�
                      ,                    (2-17) 

pk = max
i=1,... I

∂i,k
                          ,                    (2-18) 

where I  is the total number of local features in an image, and pk 
�� �
���

�������� ��� ���� � ! � "�����. Maximum pooling has achieved higher accuracy 

and is employed in most state-of-the-art systems for visual classification [15, 

56].  

(B) Bag of Words in Spatial Context 

A major limitation, using the bag of words (BOW) model as an object 

representation is that it only models an object as a collection of local features 

without considering features’ spatial information in the object. As proven by 

many researchers, knowing spatial relationship among different object parts 

can be very important in visual classification [18, 49, 75]. 

 Both absolute spatial information [49, 63] and relative spatial 

information [75] have been incorporated into the bag of words 

representation. Absolute spatial context is the location information of local 

features with reference to the image coordinates. Despite the fact that 

absolute spatial information of local features is not invariant to translation or 
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rotation of cameras, it has 

several benchmark dataset

 Lazebnik et al. [49

as feature representation,

sub-regions and calculating 

the SPM model concatenates all

weights.  

Conventionally, SPM is 

Figure 9. At the first level, the 

computed for the whole image. At second and third level, th

divided into 2 x 2, and 4 x 4 

computed for each sub-region

the SPM achieved better accuracy in several

52, 99] with slightly increase of computational cost

Figure 9: Spatial layout of Spatial Pyramid Matching (SPM) at (a) first level; (b) 

second level; (c) third level.

�
it has achieved the state of the art performance

several benchmark datasets for visual classification [49, 63]. 

49] proposed Spatial Pyramid Matching model 

, by partitioning an image into successively

regions and calculating a BOW histogram over each sub-region. Then, 

concatenates all BOW histograms together with appropriate 

Conventionally, SPM is calculated at three levels, as illustrated in 

At the first level, the whole image is a sub-region, and BOW is 

computed for the whole image. At second and third level, th

divided into 2 x 2, and 4 x 4 sub-regions respectively. A BOW histogram is 

region. As compared with the orderless BOW model, 

achieved better accuracy in several challenge datasets [

increase of computational cost. 

: Spatial layout of Spatial Pyramid Matching (SPM) at (a) first level; (b) 

second level; (c) third level.�

��

state of the art performances on 

model (SPM) 

by partitioning an image into successively smaller 

region. Then, 

histograms together with appropriate 

, as illustrated in 

region, and BOW is 

computed for the whole image. At second and third level, the image is 

. A BOW histogram is 

As compared with the orderless BOW model, 

datasets [30, 31, 39, 

�

: Spatial layout of Spatial Pyramid Matching (SPM) at (a) first level; (b) 
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Recently, McCann and Lowe [63] propose Spatial Local Coding 

(SLC), which is also based on absolute spatial information of local features. 

SLC augments SIFT features with their absolute location (x, y) in the image 

coordinate system. Then a dictionary is constructed based on these 

augmented SIFT feature. Local soft assignment and maximum pooling are 

employed to build the final spatially encoded BOW representation. By 

augmenting SIFT with location, the location information has influenced both 

codebook construction and feature coding. During codebook construction, 

the local features in neighbor regions are more likely grouped together than 

features that are far away from each other. 

Savarese et al. [75] borrowed the idea of color correlograms [43] to 

develop visual word correlograms, which incorporate relative spatial 

information. Correlograms capture spatial correlation between all possible 

pairs of visual words by forming a co-occurrence matrix of visual words as a 

function of distance. However, the correlograms matrix requires expensive 

computation cost even after utilizing the integral image techniques [75]. 

Link analysis models patterns of connections of different images 

based on extracted local features [127].  Kim et al. apply link analysis to 

learn visual model of object categories [127]. 

2.2 Multiple-Feature Fusion 

Due to the complexity of visual classification, there is not a single 

feature, which can provide the best tradeoff between the discriminative 

power and invariance. Different feature types may be complementary to 

each other for visual classification task. However, it is still an open question 

how to combine these different feature types to achieve the best tradeoff.   
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In this section, we introduce two popular approaches in the literatures, 

i.e., direct concatenation [22, 40, 78, 108] and multiple-kernel learning 

(MKL) [2, 73, 88, 89] methods. 

2.2.1 Direct Concatenation 

The straightforward methodology at feature level fusion is the simple 

concatenation of feature vectors from different modalities to form a large 

feature vector [22, 40, 78, 108]. Given a set of feature types 
�
f1 , 

�
f2 , … , 

�
fN , 

the final concatenated feature 
�
fc is  

�
fc = [

�
f1,

�
f2,...,

�
fN ]                                              (2-19) 

The kernel matrix can be constructed by Equation (2-20), assuming 

Gaussian RBF kernel employed. 

K(
�
fc

i,
�
fc

j ) = e

−
�
fc

i −
�
fc

j

2

2

2σ 2
                         ,                    (2-20) 

where 
�
fc

i and 
�
fc

j are concatenated feature vector for ith sample and jth sample. 

In image classification, a sample is an image. By expanding both 
�
fc

i and 
�
fc

j , 

we have 

K(
�
fc

i,
�
fc

j ) = e

− [
�
f1

i,
�
f2

i,...,
�
fN

i ]−[
�
f1

j,
�
f2

j,...,
�
fN

j ]
2

2

2σ 2
             .                  (2-21) 

 Note that the square of L2 norm in Equation (2-21) can also be 

expressed as  
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[
�
f1

i,
�
f2

i,...,
�
fN

i ]−[
�
f1

j,
�
f2

j,...,
�
fN

j ]
2

2
=

�
fk

i −
�
fk

j

2

2

k=1

N

�              .                      (2-22) 

 Substituting Equation (2-22) to Equation (2-21), we have 

K(
�
fc

i,
�
fc

j ) = e

−
�
fk

i −
�
fk

j

2

2

k=1
N�

2σ 2

                       .                      (2-23) 

Reorganizing Equation (2-23), we have 

K(
�
fc

i,
�
fc

j ) = e

−
�
fk

i −
�
fk

j

2

2

2σ 2

k=1

N∏                       .                       (2-24) 

We can recognize that the product term in Equation (2-24) is the RBF 

kernel for kth feature type K(
�
fk

i,
�
fk

j ) . Then the kernel matrix of the 

concatenated feature vector K(
�
fc

i,
�
fc

j ) is the entrywise product of all kernel 

matrices of single feature types, as shown in Equation (2-25). Note that we 

have assumed same standard deviation σ  used across all feature types in 

deriving Equation (2-25). 

K(
�
fc

i,
�
fc

j ) = K(
�
fk

i,
�
fk

j )
k=1

N∏                                       (2-25) 

From Equations (2-24) and (2-25), we can see that all feature types 

are contributing to the final kernel matrix, i.e., the concatenated feature 

vector’s kernel matrix. If some feature types are less discriminative, it will 

degrade the final kernel matrix K(
�
fc

i,
�
fc

j ) , which in turn lower the final 

classification accuracy. 

The relative weights of single feature types, contributing to the final 

kernel matrix, can be approximated based on Equation (2-23). If we assume
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�
fk,m

i −
�
fk,m

j( )2
is statistically same for each dimension of every single feature 

type, the relative weights then is proportional to dimension of single 

features.  

Hence, if one of feature types is noisy, and has very large feature 

dimension, the noisy feature will dominate the final kernel matrix. 

Therefore, direct concatenation fusion method requires a careful design for 

selections of features and parameters, such as feature dimension etc. This is 

essentially the manual feature selection. 

One of applications for multiple features fusion is affect recognition. 

Human affective state is complicated and sometimes can be very subtle. It 

may not be detected just from the facial expressions. Fortunately, we 

observe affective state naturally through multiple modalities, such as facial 

expression, body gesture, audio signal etc. These observations through 

different modalities provide complementary information on the affective 

states e.g., face and body gesture modalities.  

One of active research areas on affect recognition is how to combine 

features from different modalities. A popular approach is to design features 

based on discriminative power of each modality, and then combine them by 

direct concatenation [40, 78]. 

Shan et al. [78] apply the Canonical Correlation Analysis (CCA) to 

project facial features and body gesture features into a low dimensional 

space which maximizes their correlation. Then the authors concatenate the 

projected feature vectors together to train a Support Vector Machine (SVM) 

classifier for affect recognition. However, it is difficult to extend this method 

to more than two types of features, or base features, since it needs to find the 

correlated space between a pair of base features. In practice, it is very likely 



���

to have more than two base features for affect recognition due to the 

problem complexity. 

Gunes and Piccardi [40] select frames, which are the common apex 

frames from both face and body gesture modalities for affect recognition, 

and then perform a direct concatenation to combine base features from both 

modalities. However, the apex frame selection is based on the knowledge of 

temporal dynamics, which is usually very difficult to predict in advance. 

2.2.2 Single-Kernel Learning 

 In this section, we review single-kernel learning in Support Vector 

Machine (SVM) [16, 25]. We first derive formula for training and testing 

with linear kernel and then generalize results to non-linear kernels. 

 The objective of SVM learning is to find a hyper-plane, which can 

separate features of two classes with maximum margin and minimum 

training error.  

Figure 10 illustrates the hyper-plane, which is a solid purple line 

separating features of pentagon class from that of triangle class. The hyper-

plane can be expressed as 

�
w ⋅ �x + b = 0                          .                     (2-26) 

 Two hyper-planes in Equations (2-27) and (2-28) are two support 

vector hyper-planes of class +1 and class -1 respectively. Two purple dash 

lines in Figure 10 illustrate the hyper-planes. 

�
w ⋅ �x + b = +1                         .                     (2-27) 

�
w ⋅ �x + b = −1                         .                     (2-28) 
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w
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hyper-plane. As an example, t
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�
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�
Figure 10:  Hyper-plane of linear SVM. Features in orange color are support vectors 

with zero training error. Features in red color are support vectors with nonzero error. 

The distance between these two hyper-planes are called margin, which 

Figure 10. The larger margin represents

generalization of the learned model. The features with orange color are 

lie on the two support vector hyper-planes.

Any training features of a class, which lies beyond the class’ s

, toward the other class, introduce training error.

is proportional to the distance between the feature and its support vector 

As an example, the features with red color in Figure

training error. To quantize training error, we define

−ξi               for      yi = +1               ,                   (

+ξi               for      yi = −1               ,            

�

plane of linear SVM. Features in orange color are support vectors 

with zero training error. Features in red color are support vectors with nonzero error. 

��

are called margin, which 

represents the better 

The features with orange color are 

. 

the class’ support 

, toward the other class, introduce training error. The error 

its support vector 

Figure 10 are 

To quantize training error, we define 

,                   (2-29)  

,                  (2-30)  

�

plane of linear SVM. Features in orange color are support vectors 

with zero training error. Features in red color are support vectors with nonzero error.  
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ξi ≥ 0                      ∀i                          ,                        (2-31) 

where training feature 
�
xi  has corresponding class label yi , which is either +1 

or -1.� The slack variable ξi �is upper bound of training error for feature 
�
xi . 

The upper bound of total training error is then ξii=1

l

� , where l is the total 

number of training features. Hence, the objective function, which maximizes 

margin and minimizes training error, is to minimize f 

f = 1
2

�
w

2 + C ξii=1

l

�                            ,              (2-32) 

where C is a constant. Now we have formulated an optimization problem 

with objective function of Equation (2-32) and constraints of Equations (2-

29)-(2-31). 

  Combining Equation (2-29) and (2-30), we have 

yi (
�
w ⋅ �xi + b)−1+ξi ≥ 0 ��������������������������������������.                 (2-33)�

 By introducing non-zero Lagrange multiplier ∂i  and µi for each 

training feature to enforce Equations (2-33) and (2-31) respectively, we 

formulate the primal Lagragian function of Equation (2-32) as  

LP = 1
2

�
w

2 +C ξii=1

l

� − ∂i yi (
�
xi ⋅ �w + b)−1+ξi[ ] − µiξii=1

l

�
i=1

l

� ��������,           (2-

34)�

where 

∂i ≥ 0
���������������������������������������������,            (2-35)�

µi ≥ 0
�������������������������������������������� ,            (2-36)�
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∂i yi(
�
xi ⋅ �w + b)−1+ξi[ ] = 0

����������������������������,            (2-37)�

µiξi = 0
����������������������������������������� .            (2-38)�

 Taking derivative of LP#
��������������
�
w ����and�ξi , we have 

∂Lp

∂ �w
= �

w − ∂iyi

�
xii=1

l

� = 0 ���������������������������,                             (2-39)�

∂Lp

∂b
= − ∂iyii=1

l

� = 0 ���������������������������,                                    (2-40)�

∂Lp

∂ξi

= C −∂i − µi = 0 ���������������������������.                                  (2-41)�

Reformulate Equation (2-34) as  

LP = ∂ii=1

l

� + 1
2

�
w

2 − ∂i yi

�
xi ⋅ �w

i=1

l

� + ξi (C −∂i − µi )i=1

l

� − b ∂iyii=1

l

� �����.      (2-42)�

By substituting Equations (2-40) and (2-41), we can remove the last two 

terms in Equation (2-42). 

LP = ∂ii=1

l

� + 1
2

�
w

2 − ∂iyi

�
xi ⋅ �w

i=1

l

� �����������������������.                   (2-43)�

Substitute Equation (2-39) to Equation (2-43), we have the dual form of 

Lagrangian function as shown in Equation (2-44) below. 

LD = ∂ii=1

l

� − 1
2

∂i∂ j yiy j

�
xi ⋅ �x jj=1

l

�
i=1

l

� �����������������������.                 (2-44)�

Now the optimization problem is to maximize Equation (2-44) subject to  

0 ≤ ∂i ≤ C ����������������������������������������.                              (2-45)�
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∂iyii=1

l

� = 0 �������������������������������������������������.                 (2-46)�

 

Note that the constraint of Equation (2-45) can be obtained from Equations 

(2-35), (2-36) and (2-41). The Equation (2-46) is same as Equation (2-40). 

 We discuss ∂i  value in three different scenarios. The first one is when 

training feature 
�
xi does not lie on or beyond its support vector hyper-plane, 

i.e. yi(
�
xi ⋅ �w + b)−1> 0 �� This scenario corresponds to the green features in 

Figure 10. There is no training error for the feature, i.e., ξi = 0 . From 

Equation (2-37), we know ∂i = 0 ��

� The second scenario is when the training feature�
�
xi lies on its support 

vector hyper-plane, i.e. yi(
�
xi ⋅ �w + b)−1= 0 �� This corresponds to the orange 

feature in Figure 10. There is no training error in this scenario, i.e., ξi = 0. 

Therefore, yi (
�
xi ⋅ �w + b)−1+ξi = 0 and ∂i is undefined, which means some 

training features on the support vector hyper-plane are non-zeros and some 

can be 0.  

 The last scenario is when the training feature�
�
xi lies beyond its support 

vector hyper-plane, i.e. yi(
�
xi ⋅ �w + b)−1< 0 �� $������ ������ 
�� ���
�
�%� ������� 
�����

ξi > 0 . From Equations (2-38) and (2-41), we know that ∂i = C � 

 After removing training features with ∂i = 0 , Equation (2-39) becomes 

�
w = ∂iyi

�
xii=1

Ns�                            .                    (2-47) 

where Ns is the number of support vector used in training. 

By selecting training features with 0 < ∂i < C , we know ξi = 0 , and 

Equation (2-37) becomes yi(
�
xi ⋅ �w + b)−1= 0 . In other words, training features 
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with 0 < ∂i < C is on their support vector hyper-planes. Therefore, b can be 

computed by simply selecting one of such training features. Of course, it is 

numerically wiser to take the average of b over all such training features as 

shown in Equation (2-48). 

b = 1
{i | 0 < ∂i < C}

yi − �
xi ⋅ �w

{i |0<∂i<C}

� ��������������������������������������������     (2-48) 

Substituting Equation (2-47) to Equation (2-48), we have 

b = 1
{i | 0 < ∂i < C}

yi − ∂ j y j

�
xi ⋅ �x jj=1

Ns

��
��

�
��

{i |0<∂i<C}

�                      .          (2-49) 

During testing phase, the predicted class label score yt �of the testing feature 
�
xt  is 

yt = �
w ⋅ �xt + b = ∂iyi

�
xi ⋅

i=1

Ns�
�
xt + b                           .           (2-50) 

Then the predicted class label is sign( yt&��

 To generalize SVM training and testing to other kernels, including 

non-linear kernels, we replace the linear kernel term �xi ⋅ �x j  with K(
�
xi,

�
x j ) . 

Therefore kernel training of Equations (2-44)-(2-46) becomes to maximize 

LD = ∂ii=1

l

� − 1
2

∂i∂ j yiy jK(
�
xi,

�
x j )j=1

l

�
i=1

l

� �                      .            (2-51) 

subject to  

0 ≤ ∂i ≤ C                                         ,            (2-52) 

∂iyii=1

l

� = 0 �������������������������������������������������.                 (2-53) 
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The testing phase of Equation (2-50) becomes 

yt = ∂iyiK(
�
xi,

�
xt )i=1

Ns� + b                           ,            (2-54) 

where 

b = 1
{i | 0 < ∂i < C}

yi − ∂ j y jK(
�
xi,

�
x j )j=1

Ns

��
��

�
��

{i |0<∂i<C}

�                      .          (2-55) 

In literature, kernel function K(
�
xi,

�
x j ) is usually considered as linear kernel of 

transformed features of 
�
xi and �x j , i.e., Φ(

�
xi ) ⋅Φ(

�
x j ). The transformed feature 

Φ(
�
xi )can be in infinite dimension space. 

2.2.3 Multiple-Kernel Learning (MKL) 

Given a set of base features and their associated base kernels Kk , we 

want to find the optimal kernel combination Kopt = dkKkk
� , where dk  is the 

weight for the kth base feature. The kernel combination Kopt approximates the 

best trade-off between the discriminative power and the invariance for a 

specific application. 

Equations (2-56) to (2-58) show the objective cost function f and the 

constraints for the multiple-kernel learning (MKL) proposed in [88]. 

 
w,  ξi ,dk

Min       f = 1
2

�
w

2 + C ξi
i

� + σ kdk
k

�                 ,               (2-56) 

subject to  

yi (
�
w ⋅Φ(

�
xi )+ b)−1+ξi ≥ 0                                ,                (2-57) 

   0≥iξ  i∀ ; 0≥kd  k∀ ;  A
�
d ≥ �

p                      .                   (2-58) 
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where Φ(
�
xi ) is the combined features corresponding to Kopt  in a high 

dimensional space for sample xi , which is shown in Equation (2-59). 

Equivalently, Kopt can be expressed in Equation (2-60), where Φk (
�
xi ) ⋅Φk (

�
x j )

forms kth base kernel Kk .          

   Kopt (
�
xi,

�
x j ) = Φ(

�
xi ) ⋅Φ(

�
x j )                                              (2-59) 

   Kopt (
�
xi,

�
x j ) = dkΦk (

�
xi ) ⋅Φk (

�
x j )

k

�                                      (2-60) 

 The optimization can be carried out in a SVM framework subject to 

additional regularization term of weight dk in the objective function. 

In order to handle large-scale problems involving many base kernels, 

the minimax optimization strategy [20, 73, 88] is used with two iteration 

steps. In the first step, feature weight dk  is fixed, i.e., Kopt = dkKkk
� is fixed. 

Then the optimization problem of Equation (2-56) can be solved by any 

standard SVM solver using its dual form of Equation (2-61), since the term 

σ kdkk
�  is simply a constant. 

 
∂i

Max   LD = ∂i
i

� − 1
2

∂i∂ j yiy jKopt (
�
xi,

�
x j )

i, j

� + σ kdk
k

�     ,         (2-61) 

subject to     

0 ≤ ∂i ≤ C ;  ∂iyi = 0
i

�                             .               (2-62) 

In the second iteration step with the fixed ∂i , projected gradient 

descent is employed to find updated feature weights dk  as shown in 

Equations (2-63) and (2-64). 
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 ∂LD

∂dk

= σ k − 1
2

∂i∂ j yiy jKk (
�
xi,

�
x j )

i, j

�                                 (2-63) 

  dk
new = dk

old − ∂LD

∂dk

                                                 (2-64) 

These two iteration steps are repeated until converge or the maximum 

number of iterations is reached. The final weights of base features can be 

determined. 

Then we train SVM classifiers using the optimal combined kernel 

according the final weights of base features. A new sample xt  is assigned the 

class labels with the sign of Equation (2-65). 

yt = ∂iyi dk
k

� Kk (xi, xt )i=1

Ns

� + b                   .                     (2-65) 

The multi-class problem can be solved by one-vs.-one or one-vs.-all 

strategy similar to SVM. 

MKL method provides an elegant framework to fuse many base 

features by assigning larger feature weight to the most discriminative base 

feature. Compared to the direct concatenation method, MKL can avoid the 

contamination from less discriminative base features, especially when those 

features have large dimensions. 

However, MKL method tends to select very few base features from 

the feature pool. It often only selects one or two base features, which are 

discriminative at a particular high dimensional space H. Moreover, the 

kernel parameter, e.g., σ  in Gaussian RBF kernel, associated with the 

optimal high dimensional space H may be significantly different for the base 

features from different modalities. Therefore, traditional MKL cannot utilize 
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the maximum discriminative power of complementary base features at the 

same time. 

2.3 Large-scale Learning 

As the continuously increasing scale in both examples and classes of 

available datasets [28, 31, 39, 99], research work on visual classification has 

to take into account of many practical constraints, e.g., computation and 

memory costs, for both training and testing.  

ImageNet [28] is currently one of the largest public available datasets 

for image classification task. It has 14 million images with more than 21,000 

image categories. With a such large dataset, both computation and memory 

cost become crucial in algorithm design. To train 10,000 classifiers with 

linear SVM using one-vs-all framework, it takes one CPU year [28]. For 

nearest neighbor classifier, a brute force approach can also take one year to 

go through 4.5 million testing images [28]. With 1000 codebook size, it 

requires 18 GB memory capacities to simply store the Bag of Words 

histograms for 4.5 million training images. 

Most learning-based algorithms, e.g., one-vs.-all linear SVM [19, 25], 

at best linearly increase with the number of image classes [14, 49, 56, 100]. 

During testing, it becomes computationally infeasible when scaling up to 

large numbers of classes.  

On the other hand, non-parametric nearest neighbor (NN) based 

classifiers require no training phase and can naturally handle large numbers 

of classes. However, they have to retain all the training examples in testing 

phase, which becomes infeasible on large-scale datasets due to the expensive 

computation cost and memory usage. For example, the total memory 
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required to store dense SIFT features [58] for the SUN dataset [99] is around 

100 GB, which far exceeds the memory of a desktop (typically 4G – 48G). 

Compared to learning-based classifiers, accuracies of NN-based classifiers 

are normally much lower, which also limits their applications for visual 

classification.  

In this section, we will discuss some research effort to improve 

efficiency of discriminative learning algorithms for large-scale visual 

classification problem. We will also present related work on nearest 

neighbor (NN) based methods, and discuss limitations, which prevent NN-

based methods from large-scale visual classification application. Some 

research work on combining both learning based and NN-based classifiers 

are also presented.  

2.3.1 Discriminative Learning 

To adapt linear SVM for large-scale visual classification, most 

research work are built on hierarchical decision tree structure [34, 38, 59]. 

Figure 11 shows the comparison between the conventional one-vs.-all 

classification scheme and hierarchical tree structure classification scheme.  

As shown in Figure 11(a), one-vs.-all classification framework learns 

a model for each category. During testing phase, a test image is predicted by 

the models of all classes, with each of them assign a prediction score. Then 

the final predicted label is simply the class label, which has the maximum 

prediction score.  Hence, one-vs.-all framework has the complexity of O(N), 

where N is the total number of classes. 

On the other hand, hierarchical structure classifiers partition class 

labels space hierarchically based on affinity between class labels. As 
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illustrated in Figure 11(b), tiger is more similar to dolphin than watermelon 
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hierarchical structure. As illustrated in 

predicted as either animal or fruit at the first level. 
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�
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fourth level contains leaves of taxonomies, at which one group only has one 

class label.  

The taxonomies are learned based on affinity between a pair of classes 

or a pair of class groups. The affinity is measured based on confusion 

matrix, which can be constructed using cross validation scheme during 

training phase. 

Two different methods are employed to generate class taxonomies 

automatically. The first method splits the confusion matrix into two groups 

recursively using Self-Tuning Spectral Clustering [105] until only one 

category in all sub-groups. This is essentially a top-down approach.  

The second method is a bottom-up approach. Initially, every class is 

an individual group. Two groups with maximum mutual confusion are 

joined into one group, while the confusion matrix is updated by averaging 

their rows and columns. The process is repeated until one group contains all 

class labels. 

Similar to other hierarchical classifier framework, Griffin et al. [38] 

train a classifier for every class label partition in the taxonomies.  In testing 

phase, they propose a termination node, at which the test image will stop 

going down the hierarchical taxonomies, and perform one-vs.-all 

classification for the group of class labels at the termination node.  

Taking Figure 12 as an example, the classification framework is 

identical to one-vs.-all classification if we place the termination node at the 

first level. If the termination node is at the second level, and the test image is 

classified as plant group at the first level, then all four classes in the animal 

group are eliminated for further consideration. The test image will stop at the 

second level, and one-vs.-all classifier is employed to determine, to which 

class in the four plant classes the test image belong. The termination node at 
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the last level results in a classifier, which 

hierarchical based classifier

In order to achieve a better tradeoff between accuracy and e

several papers [34, 59] 

decision for some confusing classes in the hierarchical decision structure. 

�
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: Illustrate relaxed hierarchy for four class data. (a) Relaxed hierarchy with 

red colored class labels as “+1” class, and green colored class labels as “

The black colored class labels in bracket are in ignored group. (b), (c) and (d) 
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�
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Figure 13(a) illustrates the concept of relaxed hierarchy. At each level, 

class labels are divided into three groups. The first  group of class labels is 

colored as red, which is “+1” class. The second group is colored as green, 

which is “-1” class. The third group includes all confused class labels, which 

are colored as black. The ignored class labels are not participating in 

computing decision boundary at the node.   

Figure 13(b) illustrates the class label coloring with decision boundary 

obtained by data from “+1” and “-1” groups at the first level of the hierarchy 

in Figure 13(a). In Figure 13(b), class label 1, which features are marked as 

red, belong to “+1” group, and class label 2, which features are marked as 

green, belong to “-1” group. The class labels 3 and 4 belong to the ignored 

group, and their features are marked as black. Similarly Figure 13(c) and 

Figure 13(d) shows coloring and associated decision boundary at the left 

node and right node of the second level in the hierarchy. Note that the class 

labels, which features are not marked with any color, participate in neither 

coloring process nor decision boundary calculation. 

From intuition, the less ignored class labels is at a node of the 

hierarchy, the better efficiency of the hierarchical decision structure is. In 

other words, if there are more classes participating in computing decision 

boundary at a node, the more class labels can be eliminated at next level of 

the hierarchy. 

The authors [34] formulate this tuition into a principle optimization 

problem. At each node, given l training samples (
�
xi , yi ), where 

yi ∈ ϒ = {1,2,..., N}, class labels ϒ ����� partitioned into a positive subset Sy
+ , a 

negative subset Sy
−  and an ignored subset Sy

0 . A particular partition or 

coloring gives a different binary classification problem, where positive 
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samples are Sx
+ = {

�
xi | yi ∈ Sy

+} , and negative samples are Sx
− = {

�
xi | yi ∈ Sy

−} . Note 

that the samples from ignored subset Sy
0 are not participating in the binary 

classification problem. An additional coloring variable for each class label is 

also introduced, i.e., µn ∈ {−1, 0,+1} , where n is from 1 to N, indicating which 

subset the nth class label should belong to. Then, the optimization problem at 

each node becomes to minimize 

f = 1
2

�
w

2

2 + C µyi ξi − A µyii=1

l

�
i=1

l

�              .                 (2-66) 

subject to  

µyi ∈ {−1, 0,+1}                     .                    (2-67) 

µyi (
�
w ⋅ �xi + b) ≥1−ξi                      .                    (2-68) 

ξi ≥ 0                            .                    (2-69) 

−B ≤ µnn=1

N

� ≤ B                     .                    (2-70) 

{n | µn > 0} ≥1     and    {n | µn < 0} ≥1       .                    (2-71) 

The first two terms in objective function (Equation (2-66)) is to 

minimize training error and maximize SVM classifier margin. They are 

same as standard SVM objective function if only training samples from 

positive subset, i.e., “+1” group, and negative subset, i.e., “-1” group, are 

considered. The last term in objective function is to encourage all training 

samples participating to calculate binary decision boundary at a given node. 

That is to encourage small size in ignored subset Sy
0 . The constraints of 
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Equations (2-70) and (2-71) ensure data balance of positive and negative 

group for the binary classification problem at the node. 

To solve the optimization problem of Equations (2-66)-(2-71), the 

authors [34] propose a two-step alternating method, i.e., (1) fixing µn , and 

optimizing 
�
w, b; (2) fixing 

�
w, b, therefore ξi , optimize µn . 

With fixing µn , the optimization problem reduces to standard SVM 

problem with positive samples from Sx
+ , and negative samples from Sx

− . We 

can then find 
�
w, bwith standard SVM solver [19].  

With fixing 
�
w, b, therefore ξi , the objective function of Equation (2-

66) becomes 

f = 1
2

�
w

2

2 + C [δ(µyi −1)ξi
+ +δ(µyi +1)ξi

− ]
i=1

l

� − A µyii=1

l

�            ,         (2-72) 

where δ(t − m)  is delta function, which is 1 only when t = m . Otherwise, the 

delta function has value of 0. Since �
w

2

2  is fixed at this step, hence we drop 

the first term of Equation (2-72). By recognizing µyi  is same for samples of 

a given class label n, we reformulate Equation (2-72) over class labels. 

f = C [δ(µn −1)ξi
+ +δ(µn +1)ξi

− ]
i={i | yi=n}

�
n=1

N

� − A µni={i | yi=n}
�

n=1

N

�           (2-73) 

Reorganizing Equation (2-73), we have 

f = C [δ(µn −1)ξi
+ +δ(µn +1)ξi

− − A
C

µn ]
i={i | yi=n}

�
n=1

N

�          .        (2-74) 

Since C is a constant, it can be dropped out from the objective function, and 

let fn  represent cost function of a class label n, i.e., 
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fn = [δ(µn −1)ξi
+ +δ(µn +1)ξi

− − A
C

µn ]
i={i | yi=n}

� ��������������������������'�(��& 

Equation (2-74) becomes  

f = fnn=1

N

�               .                               (2-76) 

 Therefore, with fixing 
�
w, b, the optimization is to minimize Equation 

(2-76), subject to  

µn ∈ {−1, 0,+1}                      .                    (2-77) 

−B ≤ µnn=1

N

� ≤ B                     .                    (2-78) 

{n | µn > 0} ≥1     and    {n | µn < 0} ≥1       .                    (2-79) 

Note that  

ξi
+ = max{0,1− �

w ⋅ �xi − b}             ,                   (2-80) 

ξi
− = max{0,1+ �

w ⋅ �xi + b}             .                   (2-81) 

Since µn  can only take three discrete values as shown in Equation (2-77), a 

single class label’s cost function fn , which depends on µn , can only take 

three values too. To minimize Equation (2-76) is equivalent to select 

minimum fn over three possible µn  values for each class label. Let’s say µ̂n

gives minimum fn , then µ̂nn=1

N

�  need to satisfy the constraint of Equation (2-

78).  

If  µ̂nn=1

N

� satisfy Equation (2-78), then µ̂n  is the solution. If 

µ̂nn=1

N

� > B , then we know there are more class labels in the positive subset, 
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i.e., Sy
+ . Therefore, some class labels’ µ̂n should be decreased. This can be 

done by calculating the delta increase of fn , i.e., ∆fn , per unit decrease in µn

for each class label. Then sort the ∆fn , and select minimum ∆fn , and decrease 

its corresponding µn . The process is repeated until µ̂nn=1

N

� satisfy Equation 

(2-78). If µ̂nn=1

N

� < −B , same approach is adapted except to increase µn . 

 Hierarchical based SVM classifiers improve classification efficiency 

because of the hierarchical tree structure. However, the price is 

compromising classification accuracy to some extent. 

Deep learning recently has successfully applied on large-scale image 

classification. Krizhevsky et. al. [48] has trained a deep convolutional neural 

network (CNN) to classify a million of images on a subset of ImageNet. It 

outperforms the state of the art performance by a significant percentage.  

The CNN they applied has 8 layers, i.e. 5 convolutional layers and 3 

fully connected layers with 60 million parameters and 650,000 neurons. 

Given such large network, the over fitting becomes a major issue. To avoid 

the over fitting problem, the authors propose several techniques including 

data augmentation and dropout etc. [48]. 

Dean et. al. [128] propose to replace the dot-product kernel operator 

with locality-sensitive hashing in order to accelerate the convolution with 

millions of filters. The technique achieves 20,000 times faster, and is used to 

classify 100,000 object classes. 

2.3.2 Nearest Neighbor based Classifier 

Nearest neighbor based classifiers can naturally handle large number 

of categories. However, their classification accuracy is usually much lower 
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than learning based classifier [62, 99]. Even though NN-based classifier is 

well known for its efficiency on training, i.e., no training required, its testing 

speed is extremely slow [62]. NN-based classifier usually needs to store all 

training data in test phase. Hence, memory usage can become prohibitively 

large when applying on large-scale datasets. 

A popular approach to apply nearest neighbor on image classification 

is to form an image representation by Bag of Words (BOW) model for both 

training and testing images. The distances between a test image and each of 

training images, i.e., image-to-image distances, are computed based on the 

Euclidean distance of their BOW vectors.  The predicted class label of the 

test image is assigned with the class label of the training image, which has 

the smallest image-to-image distance. 

Boiman et al. [10] argue that two practices have severely degraded the 

performance of nearest neighbor classifier, i.e., (1) vector quantization step 

used in forming the BOW image representation, and (2) classification based 

on image-to-image distance. 

BOW enjoys a compact representation of an image based a codebook, 

which size is usually small, e.g., a few hundred to a thousand visual words. 

Nevertheless, the compactness comes with the price of discriminative power 

loss for individual descriptors during vector quantization process. Without 

training phase, nearest neighbor based classifier cannot compensate for such 

loss as in learning-based classifiers. Hence, NN-based classifiers yield 

inferior performance.  

The use of image-to-image distance cannot generalize well to dataset 

with large intra-class variation, especially when the training sample size in 

each class is small. On the other hand, image-to-class distance describes the 
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overall similarity between a query 

is expected to generalize better during testing.

Figure 14(b) shows a query i

training images of class “office”.

from any one of the three training images

are highlighted in different colors, 

training images of class “office”

between the query image and 

these patch similarity. Since the search of similar patches is not limited to a 

single training image, the

phase, especially with limited training samples in each class

To avoid vector quantization and utilize

Boiman et al. [10] propose 

Figure 14: Illustrate the concept of image

patches of a query image over all training images in class “office”; (a) Training images 

of class “office”; (b) query image [123,124,125,126

� en a query image and all training images in 

is expected to generalize better during testing.  

shows a query image, and Figure 14(a) shows three 

class “office”. The query image is significantly different 

of the three training images. Nevertheless, its patches, which 

are highlighted in different colors, can still find similar ones in

of class “office”. To compute image-to-class distance 

query image and the class “office”, we can simply accumulate 

Since the search of similar patches is not limited to a 

the image-to-class distance generalize better

, especially with limited training samples in each class. 

ector quantization and utilize image-to-class distance, 

] propose Naïve-Bayes Nearest-Neighbor (NBNN)

: Illustrate the concept of image-to-class distance by searching similar 

patches of a query image over all training images in class “office”; (a) Training images 

of class “office”; (b) query image [123,124,125,126].�

��

images in a class. It 

14(a) shows three 

query image is significantly different 

its patches, which 

in different 

class distance 

class “office”, we can simply accumulate 

Since the search of similar patches is not limited to a 

better in testing 

class distance, 

Neighbor (NBNN) 

�
class distance by searching similar 

patches of a query image over all training images in class “office”; (a) Training images 
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classifier. The NBNN achieves comparable performance with the learning 

based classifiers. In the following, we will provide the overview of NBNN 

derivation.  

Given a query image Q, the predicted class label Ĉ  is 

Ĉ = argmax
C

p(C |Q)                     .                  (2-82) 

By Bayes’s theorem, 

p(C | Q) = p(Q | C)p(C)
p(Q)

                    .                  (2-83) 

Equation (2-82) becomes  

Ĉ = argmax
C

p(Q | C)p(C)
p(Q)

                    .                  (2-84) 

Since p(Q) is constant over all class label C, and we assume uniform 

prior, i.e., p(C) is a constant, Equation (2-84) becomes  

Ĉ = argmax
C

p(Q | C)                     .                  (2-85) 

We further assume independence of descriptors 
�
di , i.e.,  

p(Q | C) = p(
�
di | C)

i=1

N∏ ���������������������������������,                  (2-86) 

 

where N is the total number of descriptors in the query image Q. Substituting 

Equation (2-86) into Equation (2-85), and take the logarithmic probability, 

we have 

Ĉ = argmax
C

log p(
�
di | C)

i=1

N∏( )                     .                  (2-87) 

 

Therefore,  

Ĉ = argmax
C

log p(
�
di | C)( )i=1

N

�                     .                  (2-88) 
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Next, approximating p(
�
di | C) with Parzen window estimator [72, 74], gives  

����� p(
�
di | C) = 1

L
K(

�
dij=1

L

� −
�
d j

C )�������������������������,                    (2-89)�

where 
�
d j

C  is a training descriptor from class C. NBNN further assumes that 

the summation term in Equation (2-89) can be approximated by kernel value 

of K(
�
di − NNC (

�
di )), where NNC (

�
di ) is the nearest neighbor training descriptor 

in class C. Therefore,  

���� p(
�
di | C) = 1

L
K(

�
di − NNC (

�
di )) �������������������������,                    (2-90) 

By choosing Gaussian RBF kernel, we substitute Equation (2-90) to 

Equation (2-88). 

� =

�
�
�
�
�
�




�

�
�
�
�
�
�

�

� −
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= N
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L
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2

)(

1
logargmaxˆ σ

��

                    .                  (2-91) 

Reorganizing Equation (2-91) gives 

Ĉ = argmax
C

− log(L)−

�
di − NNC (

�
di ) 2

2

2σ 2i=1

N

�                     ,                  (2-92) 

where σ  is a kernel bandwidth, which is positive number. 

Assuming L and σ  are equal over classes, i.e., balance training data with 

equal kernel bandwidth for all class labels, we can have 

Ĉ = argmax
C

−
�
di − NNC (

�
di ) 2

2

i=1

N

�                     ,                  (2-93) 

Equivalently,  

Ĉ = argmin
C

�
di − NNC (

�
di ) 2

2

i=1

N

�                     ,                  (2-94) 

Equation (2-94) is the classification rule of NBNN classifier. For each 

descriptor in a query image, we find a nearest neighbor descriptor over all 



���

training images in each class. Then we compute the Euclidean distance 

between the query descriptor and nearest neighbor descriptor

We call the distance as feature

distances are accumulated over class

query image. Finally, the

has the minimum accumulated 

image-to-class distance.  

 However, similar to other NN

expensive classification cost in both computation and memory. Even after 

 
Figure 15: Illustrate the difference 

calculate query feature (red square) to class distance for each of the four classes; (b) 

Bar representation of query feature to class distance over all four classes for NBNN 

method; (c) local NBNN calculates query feat

within the circle; (d) Bar representation of query feature to class distance over all four 

classes. The black bars indicate background distance.
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query image. Finally, the query image is assigned with the class label

minimum accumulated feature-to-class distance, i.e., minimum 
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training images in each class. Then we compute the Euclidean distance 

of each class. 
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query descriptors in the 

label, which 

distance, i.e., minimum 

based classifiers, NBNN requires 

e classification cost in both computation and memory. Even after 

�
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Bar representation of query feature to class distance over all four classes for NBNN 

ure to class distance only for classes 

within the circle; (d) Bar representation of query feature to class distance over all four 
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using some approximate nearest neighbor techniques [1, 67]. The 

computation cost of NBNN is still linearly proportional to the number of 

classes, since each query descriptor needs to compute the feature-to-class 

distance for all classes. 

 To reduce computational cost, McCann and Lowe [62] propose local 

NBNN, in which feature-to-class distance are accumulated only over the 

classes, which are presented in a local neighborhood of a query descriptor. 

They argue that the feature-to-class distance cannot approximate the 

likelihood of query descriptor p(
�
di | C) well, if it gets too large. 

 Figure 15 illustrates the difference between NBNN and local NBNN 

method. Figure 15(a) illustrates the calculation of query feature to class 

distance for all the four classes, i.e., triangle, star, pentagon and circle. Note 

that query feature in Figure 15 is shown as a red square. Figure 15(b) is the 

bar representation of query feature to class distance over all four classes.  

 Figure 15(c) illustrates the local NBNN algorithm. Local NBNN finds 

k+1 nearest neighbors features, which are illustrated using the circle, i.e., the 

star feature on the circle is (k+1)th nearest neighbor. We then calculate query 

feature to class distance only for classes within the circle, i.e., the classes, in 

which some features are k nearest neighbor of the query feature; Note that 

radius of the circle is used as background distance, i.e., the distance between 

query feature and (k+1)th nearest neighbor (the star feature on the circle). 

Figure 15(d) shows the bar representation of query feature to class distance 

for local NBNN. For classes, in which no feature is the k nearest neighbor of 

query feature, i.e., not within the circle, background distance is assumed. 

They are indicated by black bars. 
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Local NBNN improves the computation cost of NBNN by only 

updating the classes found in a local neighborhood. Hence, the complexity 

only grows logarithmically with the number of categories. Nevertheless, the 

computation cost can still be expensive when the training data is large. For 

instance, we observe that it takes more than 100 seconds for local NBNN to 

classify one image on the Caltech 256 dataset using dense SIFT features.  

Some research efforts have been made to combine learning-based and 

NN-based methods. Tuytellaars et al. [85] observe the complementarity 

between NBNN and Bag-of-Words (BOW). They propose to kernelize 

NBNN and combine with BOW kernel, using a discriminative learning 

framework, e.g. Multiple Kernel Learning (MKL) [35, 88]. In order to 

reduce the computation cost, they simply down-sample query features in a 

testing image, which adversely affects classification results. SVM-KNN 

[107] hybrids �  nearest neighbors (K-NN) method with learning based 

classifier, i.e., SVM, to improve accuracy of the K-NN method. Despite 

these efforts [5, 10, 85, 88, 107] made to improve the performance of NN-

based classifiers, very few work, if any, has tried to extend the NN-based 

classifiers to large-scale visual classification, to improve accuracy as well as 

reduce computation and memory costs simultaneously. 

Another related work is vocabulary tree [69], which constructs 

hierarchical k-mean tree by recursively dividing training data into k groups. 

k is the branch factor of the vocabulary tree. The leaf nodes in the tree then 

form a large dictionary as the codebook. The vector quantization has the 

computation cost of O(log(n)) instead of O(n) as in the conventional vector 

quantization method, where n is the codebook size. A very efficient 

hierarchical TF-IDF (Term Frequency and Inverse Document Frequency) 
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scoring scheme is proposed based on large codebook, which the hierarchical 

k-mean tree provides. 
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Chapter 3 

Spatially Encoded EigenMap Representation 

3.1 Summary 

We propose a novel approach to describe and recognize visual 

categories. Inspired by the success of Bag of Words approach, we represent 

an object using a collection of EigenMaps, which incorporate both 

appearance and spatial information.  

Each EigenMap captures the location likelihood of a visual word 

through the kernel density estimation method. By collecting EigenMaps of 

all visual words, our approach can effectively integrate both local features 

and their global correspondences.  

Experimental results on scene datasets demonstrate significant 

performance improvement as compared with the standard Bag of Words 

approach and the Latent Dirichelet Allocation model, which also utilizes a 

codebook of visual words, over several feature types including both region 

features and interest point features.  

3.2 Method 

3.2.1 Overview 
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The flowchart in Figure 16 illustrates our overall approach in visual 

scene classification using EigenMap representation.  

We first extract features from images. A codebook is generated from 

the training image features by using an unsupervised clustering algorithm 

such as the K-Means method. The center feature vectors in the codebook are 

called visual words. Then each feature in both training and testing images is 

vector-quantized to one of the visual words in the codebook. 

We then construct location map for each visual word in a scene image 

using the kernel density estimation method [8]. The EigenMap of a visual 

word is then generated by projecting the location map to the principal 

component space. The concatenation of every visual word’s EigenMap in 

the scene image forms an input feature vector of a SVM (Support Vector 

Machine) classifier [19, 25]. Finally we can classify an unknown scene 

image to different scene categories. The proposed EigenMap representation 

of a scene image not only incorporates spatial information in the appearance 

features, but also effectively integrates both local features and their global 

interactions. 

 

Figure 16: Flowchart of the proposed approach using EigenMap representation in 

visual scene classification. 

�
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3.2.2 Feature Extraction 

In order to verify the effectiveness of the proposed model, we extract 

five types of different features, which include both region features and 

interest point features. In other words, for each type of features, we evaluate 

the performance improvement of the EigenMap model. In our experiments, 

we extract three types of region features and two types of interest point 

features. 

(A) Region Features: Texture, Shape, and Color 

Three types of region features are extracted in our experiments: 

texture, shape, and color. Before generating any region features, we first 

perform segmentation on images using the algorithm proposed by 

Felzenszwalb and Huttenlocher [32]. As shown in Figure 17, connected 

pixels with same color are used to represent one segmented region. At each 

segmented region, the above three types of region features are extracted. 

Texture features are generated by passing the original image with S 

filter bank [87]. S filter bank is rotationally invariant with 13 isotropic. 

There are 13 responses for each image. The means and standard deviations 

of each response are calculated for individual segmented region in the 

image. In other words, each segmented region has 13 means and standard 

deviations of the filter responses. These means and standard deviations are 

combined together as texture features of one segmented region. 
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A simple type of shape features is extracted in this experiment 

following the approach in [52]. The size of each segmented region is found 

by calculating the maximum length of a segmented region in x and y 

directions. Then, the shape feature of each segmented region is formed by 

combining the size and the number of pixels in each segmented region. 

Color features are formed by calculating color histograms of each 

segmented region over the RGB color space. Each color space is divided 

into 10 bins. Therefore, the color feature vector of each segmented region 

has 1000 dimensions. 

(B) Interest Point Features: Uniform Grids and Harris Corners 

In addition to the region features above, two types of interest point 

features are evaluated in our experiments: the uniform grids and the Harris 

corners. In our evaluations, the uniform grid method is used to sample 

interest points every 10 pixels in x and y directions. The number of interest 

points generated for a typical image (resolution of 300 by 500) is around 

1500. 

 
 

Figure 17: Segmentation example of a Polo scene. Connected pixels with same color 

belong to the same segment. 
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Unlike the uniform grid method, the Harris corners utilize gradient 

information to detect more stable interest points in an image [42]. The 

average number of the Harris corners in one image is approximately 100 in 

our experiments, which is significantly less than the number of the uniform 

grid interest points. 

The Scale Invariant Feature Transform (SIFT) descriptor [58] is used 

to describe all interest points regardless of their detection methods. A square 

patch window with each interest point at its center is extracted. The patch 

window size is 24 by 24 pixels. 4 by 4 center points are uniformly sampled 

from the patch window. For each center point, an 8-Bin orientation 

histograms of gradients within the patch window is constructed. The 

gradient magnitudes are further weighted by a Gaussian function with the 

mean corresponding to the center point. Then all histograms of the 16 center 

points are concatenated together to form an interest point descriptor, which 

has 128 dimensions. 

3.2.3 Codebook Formation and Feature Quantization 

After extracting feature vectors from the training images, the K-

Means clustering algorithm is used to group the feature vectors together 

based on the Euclidean distance. As a result, the center feature vectors in all 

clusters are called visual words. The resulting visual words form the 

codebook vocabulary [26]. The codebook sizes of the texture, shape and 

color features are 120, 100 and 30 respectively. Both the uniform grid and 

the Harris corner features have the codebook size of 150. 

The features in each image are then vector-quantized to one of visual 

words in the codebook. The vector quantization process of a feature is to 
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find a visual word in the codebook with the smallest Euclidean distance. 

Then the feature is represented by the closest visual word in the codebook. 

3.2.4 EigenMap Generation 

In order to effectively incorporate spatial information into these visual 

words and describe their global correspondence within a scene image, we 

generate an EigenMap for each visual word in the scene image. The 

flowchart of EigenMap generation for each visual word is shown in Figure 

18.    

Given an input image and a codebook of visual words generated from 

the K-Means clustering algorithm as described in the last section, we first 

locate a visual word Vi in the input image and mark the corresponding 

positions at the visual word Vi’s location map. The location map has fixed 

size of 50 by 50 pixels. Then we use kernel density estimation [8] to model 

the location likelihood of the visual word Vi in its location map, as illustrated 

in the examples shown in Figure 19. The kernel we used is the normal 

distribution with the standard deviation of 2. 

The next step is to project the constructed location map to a lower 

dimensional space using the principal component analysis, as shown in 

Equation (3-1). 

 

Figure 18: The flowchart of EigenMap Generation for each visual word from the 

codebook.  
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�
s = ΦT ∗(

�
m − m)                    ,                        (3-1) 

where �s  is the location map projected in the eigen-space, �m  is the location 

map, and m  is the average map of all training location map �
m . Φ  is a 

matrix, in which each column vector is an eigenvector of the location maps’ 

covariance matrix, obtained from the training images, in the order of 

descending eigenvalues of the covariance matrix. Finally, the EigenMap 
�η  

is constructed as the concatenation of �s  and µ , as shown in Equation (3-2). 

 

�η = [
�
s,µ]                           ,                         (3-2) 

where µ is the mean value of a visual word’s location map �m .  Typical 

dimension of EigenMap 
�η is below 8, which results a very compact 

representation of a scene image, as compared with previous work [49, 75].  

   
                           (a)   coast                                          (b)   inside city  

 
     (c)  living room 

Figure 19: A visual word Vi’s locations in an input image and its location likelihood 

on the corresponding location map using the kernel density estimation analysis. 
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After each visual word’s EigenMap 

then concatenate the EigenMaps of 

scene image. This concatenated feature vector is also an input to the SVM 

classifier.  

3.2.5 Classifier 

We employ the SVM with the RBF kernel as our multi

with one vs. one framework

which separate each pair classes of data 

to assign a scene category to an 

visual words’ EigenMaps.

3.3 Experiments 

     

Figure 20: Sample images of the 8 scene categories from t

Database. 

s EigenMap 
�η �of a scene image is constructed, we 

EigenMaps of all visual words together to represent the 

scene image. This concatenated feature vector is also an input to the SVM 

We employ the SVM with the RBF kernel as our multi-class classifier

one framework. The SVM is to find a set of hyper

each pair classes of data with the maximum margin. That is 

to assign a scene category to an unknown image based on the collections of 

EigenMaps.  

: Sample images of the 8 scene categories from the UIUC Sport Scene 
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of a scene image is constructed, we 

visual words together to represent the 

scene image. This concatenated feature vector is also an input to the SVM 

class classifier 

s to find a set of hyper-planes, 

the maximum margin. That is 
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also be very different. The database consists of 8 categories of sport scenes 

with 500 images in each category.  

Natural Scene database consists of 13 categories, with 210 scene 

images in each category, as shown in Figure 21. Most of them are gray 

images. Therefore, we cannot evaluate the color feature on this dataset.  

 
(a) 

 
(b) 

Figure 22: Comparing to the Bag of Words (BOW) model and the Latent Dirichlet 

Allocation (LDA) model on (a) the UIUC Sport Scene database; and (b) the Natural 

Scene database. 
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3.3.2 Experimental Setups 

We divide the dataset of each category into five subsets. Then the 

images of one subset are used as testing set, while the images from the 

remaining four subsets are used as training set. The process is repeated five 

times with each of the five subsets used as the testing data once. All 

experimental results reported in the dissertation are the average accuracy of 

the five repeated testing. 

3.3.3 Experimental Results 

(A) Compare to the Bag of Words Model and the LDA model 

For each feature type, i.e., texture, shape, color, the Harris corner with 

the SIFT descriptor and the uniform grid interest point with the SIFT 

descriptor, we compare the proposed EigenMap approach with the Bag of 

Words model (BOW) [26] and the Topic Discovery model [52]. More 

specifically, we employ the Latent Dirichlet Allocation (LDA) [9] similar to 

the approach proposed by Li et al. [52]. They are all running under the same 

experimental setup. 

The detailed comparisons over different feature types are shown in 

Figure 22(a) and Figure 22(b) for the UIUC Sport Scene database and the 

Natural Scene database respectively. On the UIUC Sport Scene database, the 

EigenMap model outperforms the standard Bag of Words model by the 

average of 4.8% over all different feature types. It also outperforms the LDA 

model by the average of 15.3%. 

We observe larger performance improvement over the other two 

models on the Natural Scene database. The proposed approach improves 



� 	�

classification accuracy by the average of 6% and 19% as compared with the 

BOW and the LDA models respectively. 

The consistent performance improvement over every feature type 

verifies the effectiveness of the proposed model in the visual scene 

classification. The spatial correspondences among local features, which the 

�
(a) 

�
(b) 

Figure 23: Comparing the BOW and the LDA models using the five-fold cross 

validation results of the uniform grid interest point features on (a) the UIUC Sport 

Scene database; and (b) the Natural Scene database. 

�
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EigenMap model captures, contribute to the performance improvements. 

Figure 23 shows the detailed cross validation results as compared with the 

BOW and the LDA model.  

The sample confusion matrices of the uniform grid interest point 

feature are also shown in Figure 24 for both the UIUC Sport Scene database 

� �
       (a) EigenMap on Sport Scene                         (b) BOW on Sport Scene  

�
(c) EigenMap on Natural Scene 

�
(d) BOW on Natural Scene 

Figure 24: Sample confusion matrices of the EigenMap and the BOW models over 

both the UIUC Sport Scene and the Nature Scene database;  
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and the Natural Scene database. The true positive rate for each category is 

shown in the last column next to the corresponding confusion matrix. 

All the four confusion matrices are generated using the uniform grid 

interest point with the SIFT descriptor, where the rows are the ground truth 

while the columns are the classified categories. As we can see from the 

confusion matrices of the EigenMap and the BOW, the EigenMap approach 

achieves higher performance on most of the scene categories.  

In the UIUC Sport Scene dataset, the most confusion occurs between 

the “Rowing” and the “Sailing” categories since both sport scenes are very 

similar in the background, which contains water in the scene images. In the 

Natural Scene dataset, the most confusion occurs between the bedroom and 

the living room scene images. 

(B) Compare to the State-of-the-art Performance 

Figure 25(a) and 25(b) show the detailed comparison with the state-

of-the-art performance on the UIUC Sport scene dataset [52, 93] and the 

� ��������������������
                          (a)                                                      (b) 

Figure 25: Compare with the state of the art reported by Fei-Fei and Perona [30], 

Lazebnik et al. [49], Li et al. [52], and Wang et al. [93] on both (a) UIUC Sport Scene 

database and (b) Natural Scene database. 

�
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Natural Scene dataset [30, 49] respectively. The results are directly cited 

from their papers. From Figure 25, the proposed EigenMap model achieves a 

state-of-the-art performance on both the UIUC Sport Scene database and the 

Natural Scene database.�  

   (C) Select Number of Principal Components for EigenMap 

We also evaluate the effect of number of eigenvectors used in the 

construction of the EigenMap on the classification performance. As we can 

see from Figure 26, the number of eigenvectors used in the PCA projection 

achieves the best performance when it is around 5. As the number of 

eigenvectors continues increasing, the performance degrades slightly. That 

suggests that we only need a very small dimensional space to represent each 

visual word’s EigenMap. 

3.4 Discussion 

���� �
                       (a)        (b) 

Figure 26: The effect of number of eigenvectors used in the PCA projection on the 

classification performance over (a) the UIUC Sport Scene database; (b) the Natural 

Scene database; Note that we used the uniform grid interest point with the SIFT 

descriptor for both databases. 

�
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We have proposed a novel EigenMap representation of a scene image, 

which can not only incorporates the spatial information with the appearance 

features, but also integrates both local features and their global 

correspondences effectively. The EigenMap model has been evaluated on 

two public databases for scene image classification and outperforms both the 

standard Bag of Words model and the LDA model. The proposed model also 

achieves a state-of-the-art performance on both datasets with small feature 

dimension.   
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Chapter 4 

Margin-Constrained Multiple Kernel Learning 

4.1 Summary 

Recent advances in multiple-kernel learning (MKL) show the 

effectiveness to fuse multiple base features in object detection and 

recognition. However, MKL tends to select only the most discriminative 

base features but ignore other less discriminative base features which may 

provide complementary information. Moreover, MKL usually employ 

Gaussian RBF kernels to transform each base feature to its high dimensional 

space. Generally, base features from different modalities require different 

kernel parameters for obtaining the optimal performance. Therefore, MKL 

may fail to utilize the maximum discriminative power of all base features 

from multiple modalities at the same time. In order to address these issues, 

we propose margin-constrained multiple-kernel learning (MCMKL) method 

by extending MKL with margin constraints and applying dimensionally 

normalized RBF (DNRBF) kernels for application of multi-modal feature 

fusion. The proposed MCMKL method learns weights of different base 

features according to their discriminative power. Unlike the conventional 

MKL, MCMKL incorporates less discriminative base features by assigning 

smaller weights when constructing the optimal combined kernel, so that we 
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can fully take the advantages of the complementary features from different 

modalities. We validate the proposed MCMKL method for affect 

recognition from face and body gesture modalities on the FABO dataset. 

Our extensive experiments demonstrate favorable results as compared to the 

existing work, and MKL-based approach. 

4.2 Method 

4.2.1 Multiple-Kernel Learning (MKL) 

Multiple-kernel learning (MKL) is to find the optimal combination of 

multiple base kernels Kk , i.e., Kopt = dkKkk
� , where dk  is the weight for the 

kth base kernel. Its objective function is shown in Equations (2-56) to (2-58) 

in section 2.2.3. We copy the equations here for the convenience. 

 
w,  ξi ,dk

Min       f = 1
2
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The dual form of Equation (4-1) is 
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0 ≤ ∂i ≤ C ;  ∂iyi = 0
i

�                             .               (4-6) 

The optimization is carried out by two iteration steps: (1) fixing feature 

weight dk , then solving Equation (4-5) with standard SVM solver; (2) fixing 

∂i , then updating feature weights dk  with projected gradient descent as 

shown in Equations (4-7) and (4-8). 

∂LD

∂dk

= σ k − 1
2

∂i∂ j yiy jKk (
�
xi,

�
x j )

i, j

�                                 (4-7) 

  dk
new = dk

old − ∂LD

∂dk

                                                 (4-8) 

4.2.2 Margin Constraints 

To address these issues, we propose a Margin-Constrained Multiple Kernel 

Learning (MCMKL) method. This is motivated by the observations that base 

feature which is more discriminative usually finds a hyper-plane with larger 

margin to separate support vectors of opposite classes during training of 

SVM machines. A hyper-plane of base feature “a” in Figure 27(a) has a 

larger margin than that of base feature “b” in Figure 27(b) to separate the 

class of solid dot from the class of triangle. This suggests that the base 

feature “a” is more discriminative than the base feature “b” for the 

classification of the solid dot and the triangle class. 
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Therefore, the separation margin for each base feature in its high 

dimensional space provides a rough measurement on the base feature’s 

discriminative power. Nevertheless, these rough measurements can 

effectively guide MKL when searching for the optimal feature combination. 

The separation margin for each base feature can be calculated using 

Equation (9) as the inversed square root of its own objective cost function. 

mk = 2
�
wk

≈ 2
fk

= 2
1
2

�
wk

2 +C ξi
i

� +σ kdk

          .                   (4-9) 

After obtaining the separation margin mk for each base feature, we select one 

of base features as the reference base feature, which has the feature weight 

of ds �and the margin ms . The weight dk of kth base feature is constrained in 

the range, which has the lower bound of LBk and the upper bound of UBk

according to the margin ratio between ms and mk during training. LBk and UBk

      
       (a)                      (b) 

Figure 27: (a) The hyper-plane of base feature “a” has a large separation margin to 

separate solid dot class and triangle class; (b) The hyper-plane of base feature “b” has 

a small margin to separate solid dot class and triangle class. 
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can be calculated as in Equation (4-11). The additional weight constraints in 

Equation (4-10) are enforced during the multiple-kernel learning.  

 LBk ≤ dk ≤UBk          ∀k                         .                        (4-10) 

LBk = mk

ms

�

�
�

�



�

n

* ds    ;   UBk = mk

ms

�

�
�

�



�

n

* ds *(1+δ)             .           (4-11) 

where n is a parameter that controls the margin sensitivity on the feature 

weight ratio between dk and ds . As n increases, the values of LBk and UBk

become more sensitive to the ratio of mk and ms . δ �is a constant to control 

the range width of the feature weight dk . In our experiments, we set n to 1.5 

and δ �to 1. 

4.2.3 Dimensionally Normalized Kernel 

Gaussian RBF kernel is one of the most popular non-linear kernels 

due to its excellent performance in numerous applications. It is defined in 

Equation (4-12). 

K(
�
xi,

�
x j ) = exp(−γ (xi,q − x j,q )2 )

q=1

D

�           .                       (4-12) 

where �xi �and �x j �are the ith sample and the jth sample along with xi,q and x j,q  as 

the qth element in a feature vector. D is the sample’s feature dimension.  

� is the RBF kernel parameter, which determines the mapping from a low 

dimensional feature space L to a high dimensional space H. 

Assuming that (xi,q − x j,q )2  is statistically same, the kernel value decreases 

when the feature dimension increases at a fixed � as shown in Equation (4-

12). Hence, Equation (4-12) suggests the inverse relationship between the 
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optimal � and the feature dimension. This intuition is confirmed in our 

experiments. 

In MKL fusion, base features from different modalities may have 

significantly different feature dimensions, which will result very different 

optimal � values for each base feature. Therefore, MKL cannot utilize the 

maximum discriminative power of all base features from different modalities 

at the same time. 

We can treat � as a feature selection parameter in MKL, which select 

only few base features at a time. This intuition also explains the observations 

reported in [88] that MKL tends to select only very few most discriminative 

base features. Therefore, MKL cannot take the full advantages of all types of 

features from multiple modalities. 

Based on these observations, we propose a dimensionally normalized RBF 

kernel (DNRBF), which is defined in Equation (4-13). 

    K(xi, x j ) = exp(− γ
D

(xi,q − x j,q )2 )
q=1

D

�                              (4-13) 

This normalization step is essential to eliminate the effect of feature 

dimension on � selection, so that all base features have a similar optimal �. 

Therefore, MCMKL can utilize the maximum discriminative power of all 

base features from multiple modalities. 

4.3 Multi-Modal Fusion for Affect Recognition 

Affect recognition from multiple modalities is a challenging problem. Our 

study focuses on fusion of features from visual modalities, i.e., face and 

body gesture modality. 
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Different from conventional approaches to fuse features from multiple 

modalities, which simply concatenate all feature vectors from different 

sources together and feed the concatenated feature vector into a classifier, 

such as SVM, we apply a margin-constrained multiple-kernel learning 

(MCMKL) method to fuse features from both face and body gesture 

modalities.  MCMKL can effectively combine all types of features for affect 

recognition by assigning an appropriate feature weight to each type of 

features and calculate the optimal kernel for affect recognition. 

4.3.1 Overview of MCMKL-based Affect Recognition 

Figure 28 shows an overview of our affect recognition system, which 

consists of five major parts, i.e., facial feature extraction, body gesture 

feature extraction, expression temporal segmentation, temporal 

normalization, and MCMKL-based classification. 

Two types of facial features, i.e., Image-HOG and MHI-HOG [23] are 

extracted in our experiments. Here, HOG stands for Histogram of Gradients 

[27], and MHI stands for Motion History Image [9, 83]. Image-HOG 

features capture facial appearance changes, while MHI-HOG features 

represent facial motion information.  

Four types of gesture features are extracted, which include location 

features, motion area features, Image-HOG features, and MHI-HOG features 

around both hands. 

Each expression in video sequences can be first temporally segmented 

into onset, apex, offset and neutral phases [23]. Then, we perform a temporal 

normalization procedure to handle different temporal resolutions of 
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expressions. Finally MCMKL method is employed to find the optimal 

feature combination and recognize affects. 

4.3.2 Facial Features 

Active Shape Model [24, 94] is first applied to track 53 facial landmark 

points including brows, eyes, nose, mouth, and face contour, as shown in 

Figure 29(a). Then we locate the corresponding positions of the facial points 

in the Motion History Image (MHI), as shown in Figure 29(b). 

The next step is to extract Image-HOG and MHI-HOG features on original 

video frames and the corresponding MHI images respectively. 

 We use 48 by 48 pixels patches with the number of orientation bin 

equals to 6 and 8 for the Image-HOG and the MHI-HOG features 

�

Figure 28: The overview of our proposed MCMKL-based multi-modal fusion for 

affect recognition through both face and body gestures. 
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respectively. The MHI image captures motion information of each selected 

facial point, while the original video frame conveys the appearance 

information. Finally, we concatenate the Image-HOG descriptor of all the 53 

facial points and apply Principal Component Analysis (PCA) to reduce the 

feature dimension of the concatenated Image-HOG feature from 2862 to 40. 

Similarly, we can obtain the MHI-HOG descriptor for the corresponding 

frame and reduce the feature dimension of the concatenated MHI-HOG from 

3816 down to 40 for each frame.  

4.3.3 Body Gesture Features 

To extract body gesture features, we first track both hands and head in 

an expression video. The head position is simply the center point of the 

�� ����� �
                                                     (a)                                            (b) 

Figure 29:  (a) Facial landmark points tracking; (b) Motion History Image. 

              
      (a)                                            (b)                                            (c)           

Figure 30: (a) skin color detection; (b) head and hand position in the original video 

frame; (c) head and hand positions in the MHI image.  
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facial points from the ASM model (see Figure 30(b)). To track hands, we 

apply a skin color detection [47] followed by the removal of the face 

regions, which has already been tracked by the ASM model as shown in 

Figure 30(a) and 30(b). 

In addition to the positions of head and hands, we also calculate the 

motion areas (e.g. the numbers of motion pixels in MHI image) within the 

detected regions of head and hands. Figure 30(c) shows the head and hand 

regions in a MHI image. 

We further extract Image-HOG and MHI-HOG features in hand 

regions by uniformly sampling interest points. Then a bag of words 

representation with the codebook size of 80 is used to describe the 

distribution of Image-HOG and MHI-HOG features of hand regions. Finally, 

we perform PCA to reduce their feature dimensions. 

4.3.4 Temporal Segmentation 

An expression is a sequence of facial movements, which can be 

roughly described by neutral, onset, apex and offset temporal segments.  

Figure 31 shows a sample of the ground truth temporal segmentation 

of an expression video. The temporal segmentation procedure is necessary to 

accurately model the expression dynamics, which has been proven crucial 

for facial behavior interpretation [77]. In our experiments, we simply use the 

ground truth temporal segmentation and the affect recognition is performed 

on the complete expression cycle, i.e., onset, apex and offset.  

4.3.5 Temporal Normalization 
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In general, the temporal resolution of an expression is generally 

different when performed by different people. Even same expression 

performed by same person at a different time, the temporal resolution may 

not be the same. In order to resolve this time resolution issue in expression 

videos, we adopt the temporal normalization approach by normalizing all 

types of features over a complete expression cycle.  

The temporal normalization over an expression cycle can be easily 

implemented by linear interpolation over frame’s feature vector along the 

temporal direction. 

4.3.6 MCMKL Based Multi-Modal Feature Fusion 

Features from multiple modalities may have different forms. 

Therefore dimensions of different types of features may vary significantly. 

Our proposed margin-constrained multiple kernel learning (MCMKL) 

method can effectively fuse all base features from different modalities, i.e., 

face and body gesture modality, by assigning a feature weight to each base 

feature. 

�

Figure 31:  temporal segmentation of an expression video. 
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We concatenate the Image-HOG and the MHI-HOG of facial points as 

one base feature, i.e., the face feature. The other four base features are from 

the gesture channel, i.e., location, motion area, and both hands’ Image-HOG 

and MHI-HOG features. Using the margin of each individual base feature as 

a guide, along with the DNRBF to synchronize the optimal kernel parameter, 

the MCMKL learns the optimal combined kernel by selecting a proper 

weight for each base feature during the fusion. 

For our multi-classes application, we choose one vs. one 

classification, and then using the maximum voting scheme to label testing 

samples. 

4.4 Experiments 

4.4.1 Experimental Setups 

We use a bi-modal face and body gesture database, i.e., FABO 

database in our experiments [9]. The database is collected using two 

cameras, i.e., one for face and one for body gesture in a laboratory 

environment. A sample video is shown in Figure 32. However, we only 

employ the videos captured by the body camera to extract features for both 

modalities, since the videos from the body camera already contain both face 

and body gesture information. 

After removing the categories in the database with very small number 

of samples, there are 8 expression categories, i.e., “Anger”, “Anxiety”, 

“Boredom”, “Disgust”, “Fear”, “Happiness”, “Puzzlement”, and 

“Uncertainty”. The total number of videos used in our experiment is 255 and 

each video has 2 to 4 complete expression cycles. 
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We randomly divide the videos into three subsets. Two subsets are 

used in training and the remaining subset is used in testing. No same video 

appears in both training and testing. But same subject may appear in both 

training and testing due to the random selection process.  

4.4.2 Comparison to Existing Work and MKL 

 

Figure 32: sample video in FABO database recorded by body (top) and face (bottom) 

camera;  

�

Figure 33: The average performance of the top 12 ranks by sweeping kernel 

parameter log2(�) from -15 to 8 for each of the three methods, i.e., concatenation 

(cvpr4HB’11), MKL, and MCMKL. 
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In order to evaluate the effectiveness of the proposed MCMKL fusion 

method, we compare it to the most recent work on the FABO database [41] 

by using same features, and same training and testing dataset. We further 

compare MCMKL with MKL method. The performance of the comparison 

is displayed in Figure 33.  

The five base features are used in our experiments, which include face 

feature, location feature, motion area feature, Image-HOG and MHI-HOG 

feature of both hands. The face feature is the concatenation of the Image-

HOG and the MHI-HOG from the face modality. The Table 2 shows the 

corresponding feature dimension for each base feature. These base features 

are fused through the concatenation, MKL, and MCMKL methods. 

To make a fair comparison, we sweep kernel parameter log2(�) from   

-15 to 8, and select the top 12 performances for each fusion method. Then 

we rank these 12 performances by a descending order of their accuracy. We 

repeat same experiment for three different subsets and the average 

performances are reported in Figure 33. Figure 34 shows more details of the 

rank 1 comparison, i.e., the comparison of the best performances for the 

three fusion methods: MCMKL, MKL, and direct feature concatenation 

(cvpr4HB’11 [23]). 

Table 2: The feature dimension for each base feature, i.e., Face, Loc (location), MA 

(motion area), Img-HOG (Image-HOG from gesture), and MHI-HOG (from gesture). 
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MCMKL outperforms the other two methods over all the top 12 ranks, 

as shown in Figure 33. If we look at the rank 1 comparison in Figure 34, we 

can see that the proposed MCMKL achieves better performance than the 

concatenation method. Note that the five base features have been carefully 

selected, and the parameters, e.g., PCA projection dimensions etc. are also 

carefully chosen for the concatenation fusion method in [23]. On the other 

hand, MCMKL effectively select those feature vectors, and it can still 

outperform the concatenation fusion method by the average of 1.3%. 

Our proposed MCMKL outperforms traditional MKL method by an 

average recognition rate of 5.7% on these base features, as shown in Figure 

34(a). Figure 34(b) shows the performance comparison over three different 

testing subsets. 

 

��� ��
                           (a)                                                                       (b)    

Figure 34: (a) The best average performance by sweeping kernel parameter log2(�) 

from  -15 to 8 for each fusion method, i.e., cvpr4HB’11, MKL, and MCMKL; (b) 

The best performance  of the three fusion method in three different testing subsets. 
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4.4.3 Evaluate Feature Weight Distribution 

In this section we verify that our proposed MCMKL is more effective 

than MKL to incorporate less discriminative features, which provide 

complementary information to the base features with the maximum 

discriminative power.  We select the kernel parameter � of 2-15 for MKL and 

2-1 for MCMKL method, which yield the best performance for MKL and 

MCMKL method respectively.  

Since we choose one vs. one strategy for our multi-class expression 

classification, the total number of models we need to train is 
nC2 , where n is 

the total number of expression classes in the dataset. Therefore, we have 

trained 28 models for 8 categories of expressions, in which each model 

contains one set of feature weights for the base features, i.e., face, location 

(loc), motion area (MA), and both hands’ Image-HOG (imgHOG) and MHI-

�

Figure 35: Comparing the average feature weight distribution of the 5 base features, 

i.e., face, location (loc), motion area (MA), and both hands’ Image-HOG (imgHOG) 

and MHI-HOG (mhiHOG) features, for MKL and MCMKL methods. 
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HOG (mhiHOG) features. Then we take the mean feature weight of the 28 

models over each base feature, followed by the proper normalization.  

 Figure 35 shows the distribution of average feature weights over the 5 

base feature types for MKL and MCMKL method. As expected, MKL 

selects only the most discriminative base feature, i.e., face feature. More 

specifically, it assigns more than 98% of the total feature weights to the face 

feature. The MKL method ignores all the gesture features, i.e., location, and 

motion area etc., even though these gesture features have been proven to 

provide complementary information to the face feature [23]. 

As shown in Figure 35, the proposed MCMKL obtains a more 

reasonable feature weight distribution. Similar to MKL methods, it 

recognizes the face feature as the most discriminative base feature by 

assigning the largest feature weight of 48%. At the same time, it also 

incorporates other less discriminative gesture features according to their 

discriminative power.  

�

Figure 36: The effect of feature dimension of three base features over the selection of 

the optimal RBF kernel parameter �. 
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Figure 35 has verified the effectiveness of the proposed margin 

constraints and the dimensionally normalized RBF kernel (DNRBF). It is 

obvious that the additional constraints on the feature weights according to 

the separation margin of each base feature can enforce the model to assign 

small weights to the less discriminative base features. However, it may not 

be intuitive how the DNRBF contribute to a more reasonable feature weight 

assignment. 

Before we provide such intuition, we examine the relationship 

between the optimal � value and feature dimension experimentally. We 

select three base features, i.e., facial point’s MHI-HOG, the facial point’s 

Image-HOG and the location feature. Then we manually vary the PCA 

dimension of the Image-HOG and the MHI-HOG, or the number of 

normalization frames of the location feature, so that their feature dimensions 

can be gradually increased. Then we use SVM’s 5-fold cross validation to 

find out the optimal kernel parameter � for each of the three base features at 

the selected feature dimension. Figure 36 has suggested the inverse 

relationship between the optimal � value and the feature dimension, which 

has verified our analysis in section 4.2.3. 

In the experiments of the last section, the most discriminative feature, 

i.e., the face feature, has the optimal � of 2-15. Since other less discriminative 

gesture feature has much smaller feature dimension as we can see from 

Table 2. Their optimal � value is much larger. Therefore, at the � of 2-15, the 

other gesture features has almost no discriminative power since their optimal 

� values are very far away from 2-15. Therefore, MKL method assigns almost 

zero feature weights to other gesture features. 

After we perform the dimensionally normalization as in Equation (4-

13). The optimal � values become very close for different base features 
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regardless the differences of their feature dimensions. Therefore, MCMKL 

can utilize the maximum discriminative power of all base features at the 

same time. That is another reason why MCMKL method can incorporate 

other less discriminative base features, which provide complementary 

information.  

4.4.4 Contamination from Less Discriminative Features 

In this section, we examine the contamination from the less 

discriminative base features, particularly those with large feature 

dimensions. From the feature weight distribution in Figure 35, we know that 

the Image-HOG and MHI-HOG of hands are the least discriminative 

features. So we intentionally increase their feature dimension to 1200 by 

including more PCA dimensions. At the same time, we also decrease the 

dimension of the most discriminative feature, i.e., the face feature, down to 

90. Now, we also sweep kernel parameter log2(�) and select the top 10 

�

Figure 37: Explore contamination from noisy feature. The average performance of 

the top 10 ranks by sweeping kernel parameter � for each of the three methods, i.e., 

concatenation (cvpr4HB’11), MKL, and MCMKL. 
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performances for each fusion method, i.e., concatenation, MKL, and 

MCMKL. Then we rank these 10 performances by the descending order of 

their accuracy. The experimental results are shown in Figure 37. 

We observe that the rank 1 result of the MCMKL method outperforms 

the concatenation fusion method by almost 10%, which indicate that 

MCMKL method is more effective to shield the contamination from the less 

discriminative base features, as compared with the concatenation fusion 

method. 

4.5 Discussion 

In this chapter, we have proposed a margin-constrained multiple-

kernel learning (MCMKL) method, which extends the multiple-kernel 

learning (MKL) method by constraining feature weight range according to 

the separation margin of each base feature. The dimensionally normalized 

RBF kernel (DNRBF) is also proposed and employed in MCMKL in order 

to fuse the features from multiple modalities, which is possible to have very 

different feature dimensions. Our experimental results demonstrate favorable 

results as compared to the state-of-the-art results on the FABO database. We 

also demonstrate the significant improvement as compared to the 

conventional MKL method. 

The training time of MCMKL can increase slightly since it needs to 

find separation margin for each feature type. Nevertheless, by constraining 

the fusing weight range of each feature type, the MKL training might 

converge faster, which we need to verify in our future work. 

�

�
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Chapter 5 

Discriminative Hierarchical K-Means Tree 

5.1 Summary 

A key challenge in large-scale image classification is how to achieve 

efficiency in terms of both computation and memory, but without 

compromising classification accuracy. The learning-based classifiers achieve 

state-of-the-art accuracies, but have been criticized for the complexity that 

grows linearly with the number of classes. The non-parametric nearest 

neighbor (NN) based classifiers naturally handle large numbers of 

categories, but incur prohibitively expensive computation and memory costs. 

In this chapter, we present a novel classification scheme, i.e., Discriminative 

Hierarchical K-means Tree (D-HKTree), which combines the advantages of 

both learning-based and NN-based classifiers. The complexity of D-HKTree 

only grows sub-linearly with the number of categories, which is much better 

than the recent hierarchical SVM based methods. The memory usage in D-

HKTree also benefits from precluding all training features, which is order of 

magnitude less than the recent NBNN based methods. In the evaluations on 

several challenging benchmarks, D-HKTree obtains state-of-the-art 

accuracies, while with significantly lower computation cost and memory 

requirement.� 
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5.2 Construction of Discriminative Hierarchical K-means 

Tree 

One attractive property of NN-based classifiers is able to naturally 

handle large numbers of categories in object and scene classification. 

However, the aforementioned issues of expensive classification cost and 

inferior performance have hindered their applications on large-scale image 

classification, due to high variances in a large-scale dataset but limited 

training samples. The proposed D-HKTree addresses these issues and 

�
�
Figure 38: Labeled Hierarchical K-means Tree (L-HKTree). (a) L-HKTree structure. 

(b) The corresponding feature space partitions projected onto two-dimensional space. 

(c) Example images from the classes of bear and dog respectively. (d) The label 

histogram associated with one leaf node, i.e., the frequency of training features falling 

in the leaf node over all class labels. 

�
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extended NN-based classification scheme to large-scale object and scene 

classification. In this section, we describe the detailed theoretical derivations 

and computational procedures to build D-HKTree and L-HKTree.  

5.2.1 Algorithm Overview 

�
�

Figure 39: The framework of D-HKTree. In the forward L-HKTree process, query 

features come down the L-HKTree, and the label histograms of associated leaf node 

are summed up into the accumulated label histogram at the bottom. Top � 

performance class labels are selected. Then query features propagate back to their 

parent non-leaf nodes, and the DL histogram at the non-leaf nodes of the selected 

class labels are summed up into the accumulated DL histogram. The class label is 

finally predicted according to the maximum value in the accumulated DL histogram. 
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Figure 39 demonstrates the framework of D-HKTree. Query features 

in a testing image come down L-HKTree and arrive at their nearest neighbor 

leaf nodes. The label histograms at the associated leaf nodes are summed up 

into the accumulated label histogram at the bottom, where top p  

performance class labels are selected. After the forward L-HKTree process, 

query features propagate back to their parent non-leaf nodes at a certain 

level, where their discriminatively learned (DL) histograms over the selected 

pclass labels are summed up into the accumulated DL histogram at the top. 

The predicted class label is finally inferred from the accumulated DL 

histogram. The DL histograms associated with non-leaf nodes of a particular 

level can be generated by training a suitable discriminatively learning 

classifier. In order to maintain a high speed, the accumulations of label 

histograms associated with leaf nodes and DL histograms associated with 

non-leaf nodes are implemented by simple operations. 

5.2.2 Labeled Hierarchical K-means Tree 

The main structure of D-HKTree builds upon L-HKTree. In this 

subsection, we provide detailed procedures in deriving and building L-

HKTree.  

 (A) Towards L-HKTree 

As the classification rules in NBNN, we make the two assumptions, 

i.e. uniform prior over all class labels and the independence of query 

features di  in a testing image Q [10]. The predicted label can be obtained by 

Equation (5-1). 
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Ĉ = argmax
C

log p(di | C)
i=1

N

�               .                      (5-1) 

We explicitly model unbalanced data over class labels in the Parzen 

window estimator. The total number of training features in class C  is LC . 

log p(di | C) = 1
LC

K(di − d j
C )

j=1

Lc

�          .                     (5-2) 

Instead of using the Gaussian kernel for K as in the local NBNN, we 

use a uniform kernel with the bandwidth of ri . 

K(di − d j
C ) = B fU(1−

di − d j
C

ri

)                   ,                  (5-3) 

where the bandwidth ri > 0 , B f is a positive constant and U is a unit 

step function, which is 1 if the Euclidean distance between the training 

feature d j
C  and the query feature di  is less than the bandwidth ri ; and 

otherwise is 0. If substituting Equation (5-3) to Equation (5-2), we have 

log p(di | C) =
B f

LC

U(1−
di − d j

C

ri

)
j=1

Lc

�                      .                     (5-4) 

The summation term in Equation (5-4) denotes the total number of 

training features in class C, which have Euclidean distance smaller than �� 

away from the query feature ��. This can be illustrated using Figure 40(a). 

The center of the purple circle is at the query feature �� with the radius equal 

to the bandwidth of �� . The summation term in Equation (5-4) for the 

triangle class is the total number of triangle training features falling within 

the purple circle, i.e. 2 in Figure 40(a). Similarly, the summation terms for 

the pentagon class and the star class are 3 and 1, respectively. As illustrated 
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in Figure 40(b), we further approximate the unit step function � with the 

feature space boundary defined by the leaf node  � , in which the query 

feature �� falls within.� 

U(1−
di − d j

C

ri

) ≅ δ( fi, LEAF(d j
C ))                                   (5-5) 

where !"#$��%
&�  is the nearest neighbor leaf node of the training 

feature �%
&; ' equals to 1 when feature �� and �%

& falls within the same feature 

space partition defined by the leaf node  �. If we substitute Equation (5-5) to 

Equation (5-4), it becomes 

log p(di | C) =
B f

LC

δ( fi, LEAF(d j
C ))

j=1

LC�                     .            (5-6) 

Note the right hand side of the Equation (5-6) does not depend on the 

query feature �� except that  � is the leaf node of ��. Therefore, we can pre-

�

Figure 40: Illustration of unit step function. (a) The purple circle illustrates the unit 

step function in equation (5-4). The center is at the query feature di with the radius 

equal to the bandwidth of ri. (b) Approximate the unit step function of the purple 

circle with the feature space partition by one of the leaf nodes in the HKTree. 
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compute the right hand side of Equation (5-6) for each class label (, and 

store the results as the label histogram associated with the leaf node  � , 

denoted as !)� �� (�. 

 The summation term in Equation (5-6) is the number of training 

features from category (, which falls within the feature space partition of the 

leaf node  � . !&  corresponds to the total number of training features in 

category ( . *+  is a L1-Norm constant. Substituting Equation (5-6) to 

Equation (5-1), we have the L-HKTree classification rule.   

Ĉ = argmax
C

B f

LC

δ( fi, LEAF(d j
C ))

j=1

LC�
�

�
�

�

�
�

i=1

N

�

= argmax
C

LH (LEAF(di ),C)[ ]
i=1

N

�
                  .               (5-7) 

As demonstrated in the derivation of the L-HKTree, we do not need to 

compute the pair-wise distance of the query feature ��  with each training 

feature �%
& online. Instead, we only employ the label histogram associated 

with the leaf node where �� falls within. Hence, L-HKTree does not retain 

any training feature. This results in a significant saving in the memory, 

which allows us to extend this NN-based classifier to a large-scale 

classification task. 

 As suggested in Equation (5-7), in the testing phase, we only need 

accumulate label histograms of the leaf nodes, at which query features 

arrive. The computation cost is therefore significantly reduced as compared 

to the conventional NN-based classifiers [10] and the recently proposed 

local NBNN [62]. Note the complexity of L-HKTree is independent of the 

number of classes, which is a very attractive characteristic for image 

classification on large-scale dataset with huge number of categories.  
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(B) Building L-HKTree 

L-HKTree is first constructed by the hierarchical K-means tree [69] 

from training samples with ! levels and , branches. Figure 38(a) illustrates a 

two-level tree with three branches. The corresponding feature space partition 

of each leaf node projected on the two-dimensional space is shown in Figure 

38(b). We modify the original hierarchical K-means tree to automatically 

adjust the number of branches of a non-leaf node if the average training 

features arriving at its children nodes is below a threshold -.  

Algorithm 1 provides the pseudo code to build L-HKTree. A label 

histogram associated with each leaf node, as shown in Figure 38(d), 

accumulates the number of training features arriving at this leaf node over 

———————————————————————— 
Algorithm 1: Building L-HKTree 
———————————————————————— 
Require: 
(1) Hierarchical Kmean Tree ./0 
(2) Initialize label histograms and 12 to 0 
———————————————————————— 
for all categories 3 do 
     for all training feature 
� in category 3 do 

       4 � 1567�
��  
      1.�4� 3� � 1.�4� 3� 8 9  
      12 � 12 8 9 
 end for 

end for 
 
for all leaf nodes 4 do 
     for all categories 3 in 4 do 

       1.�4� 3� � 1.�4� 3�:12 
 end for 
  L1 normalize leaf node the label histogram of 4 

end for 
 
return ./0 
———————————————————————— 
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all class labels. For example, Figure 38(c) shows two images from the 

classes of bear and dog. One training feature from the bear class and two 

training features from the dog class arrive at the feature space partition of 

one green leaf nodes in Figure 38(b). The label histogram of this green leaf 

node in Figure 38(d) describes the frequency of training features arriving at 

this leaf node over the class labels of dog and the bear. 

 In order to handle unbalanced training data in different categories, we 

normalize label histograms using the total number of training features of 

corresponding class labels, i.e., !& in Algorithm 1. 

All leaf nodes in L-HKTree have defined their corresponding feature 

space boundaries as illustrated in Figure 38(b). Any feature arriving at a leaf 

node can be considered as a nearest neighbor of this leaf node. The label 

histogram associated with each leaf node counts numbers of training features 

over class labels, which correspond to nearest neighbors to the leaf node 

within the predefined feature space boundary. Intuitively, the more nearest 

neighbor features are from a class label ( in the label histogram of the leaf 

node  , the smaller distance is between the leaf node   and the class label (. 

Therefore, we can have another interpretation of the label histogram as the 

inverse distance from leaf node   to different classes. 

(C) Pre-Classification with L-HKTree 

�The classification rule of L-HKTree is shown in Equation (5-7). 

Query features from a testing image arrive at corresponding leaf nodes. The 

summation of the label histograms associated with leaf nodes forms the 

Accumulated Label Histogram(#!)�. The ; class candidates can be selected 

by the top ; values in #!). The predicted class label (top 1 class candidate) 

corresponds to the maximum value in #!).  
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In our implementation, instead of using every query feature in a 

testing image to accumulate label histograms, we employ the non-leaf nodes 

at a particular level as a filter to remove some noisy query features. This is 

motivated by the max pooling scheme [56] widely used in computing BOW. 

If we deem the non-leaf nodes at a particular level as a visual vocabulary, a 

coding scheme (e.g., local soft assignment) and a pooling scheme (e.g., max 

pooling) can be used to compute a BOW histogram ) over the selected non-

leaf nodes. Similarly in L-HKTree, only the query features, which provide 

the max response at the non-leaf nodes at a certain level, are allowed to 

continue down. In this way, we can also weight label histograms by the 

responses of corresponding query features at the selected non-leaf nodes. In 

the end, the weighted label histograms are accumulated into #!). 

5.2.3 Discriminatively Learned Histogram 

We choose the one-versus-all linear SVM as the discriminative 

learning algorithm to incorporate into NN-based L-HKTree. In this 

subsection, we show how to transform the learned SVM weights to the 

discriminatively learned (DL) histograms of non-leaf nodes at a selected 

level. 

As stated above, in building L-HKTree, we can also compute BOW ) 

for training images using the selected non-leaf nodes as a visual vocabulary, 

e.g., the red non-leaf nodes of L-HKTree in Figure39. We then employ one-

versus-all linear SVM to obtain the weights <&for class (. The score vector 

over = classes can be computed by Equation (5-8). For convenience, we 

ignore the bias term.  

Y = [y1, y2,..., yC,..., yT ]                     ,                    (5-8) 
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where yC = W C ⋅ H = Wk
CHKk=1

M

� and > is the number of non-leaf nodes at the 

selected level. Substituting ?& into @, we have 

Y = [Wk
1

k=1

M

� Hk,Wk
2Hk,....,Wk

CHK ,...,Wk
T HK ]        .              (5-9) 

If we further factor out )A from the vector @, we have 

Y = HkWkk=1

M

�              ,                          (5-10) 

where Wk = [Wk
1,Wk

2,...,Wk
C,...,Wk

T ]. 

<A is the discriminatively learned histogram over = classes at the �th 

non-leaf node at the selected level. As label histograms are associated with 

leaf nodes, discriminatively learned histograms are attached to selected non-

leaf nodes as well.  

5.2.4 Classification with D-HKTree 

As shown in Figure 39, a testing image is first pre-classified by L-

HKTree according to Equation (5-7). We obtain the accumulated label 

histogram and select the top ; performance class labels from this histogram. 

Query features in the leaf nodes are then propagated back to their parent 

non-leaf nodes at the selected level. Their discriminatively learned 

histograms of the selected ; class labels are multiplied by the maximum 

responses at corresponding non-leaf nodes, which are summed up as the 

accumulated discriminatively learned histogram. The bias terms of trained 

SVM models are then subtracted from the accumulated discriminatively 

learned histogram for the selected class label. Finally, we select the class 
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label with the highest score from the accumulated discriminatively learned 

histogram. 

The number of top class candidates ;  is adaptively selected for 

different testing images. We utilize the distribution of the accumulated label 

histogram to build a cumulative confidence level, which is the cumulative 

probability of the class labels in the accumulated label histogram. In our 

experiments, we set a threshold of 0.2 to the cumulative confidence level to 

determine the top ; class candidates. By adaptively select the top ; classes 

in the forward L-HKTree process, D-HKTree is able to achieve a complexity 

that grows only sub-linearly with the number of classes. On the other hand, 

the best performing learning-based classifiers has the computation cost at 

least increases linearly with the number of categories. Therefore, D-HKTree 

can handle large-scale image classification with huge numbers of categories 

more efficiently than learning-based classifiers while maintain state-of-the-

art accuracy. 

5.3 Experiments 

We evaluate our proposed models on object and scene recognition 

datasets including Caltech 101 [31], Caltech 256 [39], and SUN dataset [99]. 

D-HKTree significantly outperforms all previous NN-based classifiers in 

terms of classification accuracy, computation cost, and memory requirement. 

The relative computational complexity of D-HKTree is also significantly 

improved compared to the state-of-the-art learning-based classifiers. 

Experimental results demonstrate that D-HKTree can scale very well to 

large-scale datasets with large numbers of categories. 
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5.3.1 Experimental Setup 

We employ the dense SIFT features augmented by B and ? coordinates 

throughout our experiments. The two spatial dimensions in the augmented 

feature vector are weighted by 1.6 in Caltech 101 and 0.75 in Caltech 256 

and SUN, as recommended in [62, 63]. L-HKTree has 2 levels with 

maximum branch factor of 65K in Caltech 101 and 130K in Caltech 256 and 

SUN. We employ the approximate nearest neighbor library FLANN [67] to 

find the nearest neighbor branch for a query feature at each level. 

In order to facilitate a fair comparison, we follow the evaluation 

conventions, i.e. we use 30 images per category as training data and 15 

images per category as testing data in Caltech 101 and Caltech 256 datasets. 

We repeat the experiments 10 times with random selection of non-

overlapping training and testing data. The average accuracy with the 

standard deviation is reported in the paper. As for SUN, we use exactly the 

same training and attesting splitting as in [99], i.e. 50 images for both 

training and testing sets.  

5.3.2 Comparisons to NN-based Classifiers 

Table 3: Comparison to NN-based classifiers on accuracy and speed (sec/image).   

�
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In this paper, we use the “*” sign after a number to indicate that the 

number is directly quoted from original papers. The “-“ in the table indicate 

that the data is not available. 

Table 3 shows the comparisons of D-HKTree with other NN-based 

classifiers on both classification accuracy and computation cost. D-HKTree 

has achieved the highest accuracies, i.e. 77.6% and 45.5%, on Caltech 101 

and Caltech 256, respectively. We achieve 35.7% accuracy on the SUN 

dataset. To the best of our knowledge, this is the highest accuracy on this 

dataset using a single feature type. Since the D-HKTree takes advantages of 

both NN-based and learning-based classifiers, the performance is much 

better than the conventional NN based classifiers. The second step of D-

HKTree tree, i.e. the learning based classifier, has boosted up the 

classification accuracy.  We also quote the classical 1-NN classifier results 

on Caltech 256 and SUN datasets for the comparison in the Table 3.  The 1-

NN classifier is a correlation classifier in the feature space with pixel 

intensities of a resized image [39]. The 1-NN results reported in [99] use 

multiple feature types. If using a single feature type, the result is probably 

even worse.  

The testing speed of D-HKTree is significantly faster than the 

conventional NN-based classifiers, especially on larger datasets. To evaluate 

the testing speed, we use the code provided by [62] with the recommended 

parameters for NBNN and local NBNN. The L-HKTree defines partition 

boundary in feature space, which pre-stores nearest neighbor feature 

statistics within each boundary. The testing of a query image does not need 

to go through all features in training data. Instead, it only requires the query 

features to find the corresponding boundary and update the nearest neighbor 

statistics. 
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  If we use 30 training images per category on Caltech 256, the testing 

speed of D-HKTree is 30 times faster than local NBNN, and 120 times faster 

than NBNN. As shown in Table 3, local NBNN is 10 times faster than 

NBNN on Caltech 101, but only 4 times faster on Caltech 256, which is 

different from the results reported in [62].  

We think the discrepancy may be due to the number of training 

images in each category used and the number of descriptors extracted in 

each training image. If the total number of training features is too large, the 

testing time might increase exponentially instead of logarithmically 

depending on the implementation. On the other hand, the time increment is 

significantly lower for D-HKTree as the dataset changes from Caltech 101 to 

Caltech 256. It is interesting to observe the computation cost of SUN is even 

lower than that of Caltech 256, i.e. 1.9 second per image versus 3.7 second 

per image. This is due to the structure difference of the L-HKTrees built for 

the two datasets, since the major computation costs of D-HKTree is from the 

pre-classification of L-HKTree.  

�

Figure 41: Comparing memory usage over different NN-based classifiers as the scale 

of the dataset increases. 
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Figure 41 compares the memory requirements of different NN-based 

classifiers as the scale of dataset increases. Since the memory usage of 

conventional NN-based classifiers is directly related to the size of training 

data size, we can estimate their memory usages according to the training 

data size. As for D-HKTree, the memory usage is estimated from the size of 

L-HKTree. As shown in this figure, the memory usage of D-HKTree only 

increases slightly from Caltech 101 to Caltech 256, then SUN. However, the 

memory consumptions of NBNN and local NBNN grow significantly as 

dataset scale increases. For example, the memory requirement is around 

100GB for both NBNN and local NBNN under our experimental settings in 

SUN dataset, while the memory usage of D-HKTree is only 6GB.  

5.3.3 Comparisons to Learning-based Classifiers 

Table 4: Comparison of classification accuracy to learning based classifiers on (a) 

Caltech 101 and Caltech 256 datasets; (b) SUN dataset.  

�

(a) 

�� �

 (b) 

� ��	

 0�����	��#� 0�����	�'*!

3 ��4�15� !� !"# ,$�%�'& �� �"# '$�%�#&

10�15� �%'�& �� '"# *�$ ��"# �*$

1+0 #,$)-&'$+- *+$#(&'$+-

.0�%)& !� �"� *$ '� '"# �$

��- ./��� ##$%&'$%% *+$+&'$+,

�� ��	

 12 �

3 ��4�15� �%''& '� *$

1�������- 3 6 %''& '� '$

1�������- 3 6 %�& '�$

� �- ./��� )+$#&'$(,



����

Table 4 demonstrates the comparisons of classification accuracy 

between D-HKTree and the state-of-the-art learning-based methods. D-

HKTree outperforms most learning-based methods and achieves comparable 

performance to the recently proposed Spatially Local Coding (SLC) [63] on 

Caltech 101 and Caltech 256. As for the SUN dataset in Table 4(b), D-

�

(a)�

�

(b) 

Figure 42: Comparison of the tradeoff between accuracy and relative computational 

complexity to other hierarchical SVM based methods for large-scale data, i.e. Gao 

[34], Griffin [38], Marszalek [59], on (a) SUN dataset; (b) Caltech 256 dataset; Note 

that the results from the other three methods are directly estimated from the plots in 

the paper [34]. 
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HKTree significantly outperforms the current state-of-the-art with a single 

feature type by more than 8% in classification accuracy.  

To further evaluate the scalability to large-scale image classification, 

we compare D-HKTree with several hierarchical SVM based classifiers [34, 

38, 59] in Figure 42. All of these hierarchical SVM based classifiers attempt 

to improve the efficiency of one-versus-all linear SVM classifier, so that 

their complexity can grow sub-linearly with the number of categories.   

However, these classifiers have to sacrifice classification accuracy for 

the improvement on speed. We adopt the relative computational complexity 

metric introduced in [34] for our evaluation. In the case of a linear kernel, 

the relative complexity is the ratio between the number of categories 

evaluated and the total number of categories in the dataset.  

The relative computational complexity of D-HKTree can be tuned by 

varying the number of top selected class labels from the accumulated label 

histogram. Although the computation cost of L-HKTree is not reflected in 

this metric, this cost is independent of the number of categories. As 

demonstrated in Figure 42, D-HKTree dominates the classification 

accuracies on Caltech 256 and SUN datasets, especially when the relative 

computational complexity is low. For instance, at the relative computational 

complexity of 0.06 in Figure 42(a), D-HKTree achieves 35% on the SUN 

dataset, which is more than 10% higher than that of the best method reported 

in [34]. Similar results are shown on the Caltech 256 dataset in Figure 42(b). 

It is also interesting to observe that the classification accuracy of D-HKTree 

tend to saturate around the relative computational complexity of 0.1, which 

means D-HKTree is more effective to reduce the relative computational 

complexity and maintain a desirable accuracy.  
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The top p categories, the L-HKTree selected, are the most confident 

class labels specifically for the testing image. It has pruned away a large 

number of unrelated class labels. Hence, the learning based classifier in the 

second step can focus only on those class labels which are confused by the 

L-HKTree, and make the final prediction with better accuracy. 

On the other hand, leaf node in the hierarchical SVM based classifier 

also has several class candidates to make the final prediction. The difference 

is that the class candidates are not the most confident class labels 

specifically to the testing image. Therefore, D-HKTree yields better 

performance. 

5.3.4 Comparisons to Hybrid Classifiers 

There are very few work [85, 107] on combining learning-based and 

NN-based classifiers to take advantages of both classifier types. Table 5 

compares D-HKTree with two other methods that hybrid both classifier 

types, i.e. SVM-KNN [107] and NBNN Kernel [85]. As shown in this table, 

D-HKTree significantly outperforms SVM-KNN and NBNN Kernel by 11% 

and 8% in accuracy respectively. Note that NBNN Multi-Kernel is actually 

combining NBNN Kernel with other kernels of different feature types 

instead of a single feature type. Nevertheless, D-HKTree still obtains the 

highest accuracy as shown in Table 5.  
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SVM-KNN [107] selects k-nn neighbor images for a query image and 

training a local multi-class SVM classifier to predict query image. As the 

training data closely coupled with the nearest neighbor results, the nn-based 

and svm based classifier cannot complement each other very well. That may 

cause the significant performance decrease as compared with the D-HKTree. 

5.4 Discussion 

In this chapter, we have proposed a novel classification scheme, i.e. 

D-HKTree, for larg-scale image classification. D-HKTree takes advantages 

of both learning-based and NN-based methods. It extends the ability of NN-

based classifiers to scale to large numbers of image classes due to much 

lower computation cost and memory requirement, while achieving state-of-

the-art classification accuracies. Compared to NN-based methods, D-

HKTree significantly outperforms NBNN and local NBNN in classification 

accuracy, computation cost, and memory usage. Compared with learning-

based methods, D-HKTree largely improves the accuracy of hierarchical 

SVM based methods at much lower relative computational complexity. 

Compared to previous hybrid methods, D-HKTree also obtains much better 

performance than SVM-KNN and NBNN Kernel. 

Hierarchical K-Mean tree is employed to partition feature space for 

training data in the D-HTree. However, any approximate nearest neighbor 

Table 5: Comparison to the hybrid classifiers, i.e. SVM-KNN [24], and NBNN 

Kernel [20], on the Caltech 101 dataset. 
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method, such as hashing algorithms, can be used to generate the partition 

regions. 
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Chapter 6 

Conclusion and Future Work 

6.1 Discussions and Conclusion 

Visual classification contains three major components, i.e., feature 

extraction, feature representation and classification. Each component can 

have significant impact on both classification accuracy and efficiency. The 

recent progress on each component of visual classification is impressive and 

encouraging toward a more robust visual classification system. In this 

dissertation, we have made contributions for feature representation and 

classifier design. Especially, we focus on multi-feature fusion to improve 

classification accuracy, and large-scale learning algorithm, which takes 

advantages of both learning-based and nearest neighbor based classifiers. 

We have proposed a new feature representation, i.e., EigenMap, 

which extends the BOW model with spatial information. An EigenMap 

describes the distribution of a visual word in the image’s spatial space. By 

collecting EigenMaps of all visual words as an object representation, we not 

only understand what object parts are in the image, but also know where 

these object parts occur relative to the image space. Unlike spatial pyramid 

matching method, EigenMap does not require manual partition of image 

space, and has lower dimension. 
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To effectively combine multiple types features, we have proposed a 

margin constrained multiple-kernel learning framework (MCMKL), which 

finds optimal combination of base features’ kernels. The MCMKL utilizes 

the discriminative power of each individual type of features, i.e., the 

separation margin of features, to guide the learning of optimal weights for 

kernel fusion. 

The dimensionally normalized RBF kernel (DNRBF) is also proposed 

and employed in MCMKL in order to fuse features with very different 

feature dimensions. Our experiments demonstrate that MCMKL achieves 

better performance as compared to the state-of-the-art results on affection 

recognition by combining facial features and body gestures. 

For large-scale visual classification problem, we have proposed a new 

classifier, Discriminative Hierarchical K-Means Tree (D-HKTree), which 

combined the advantages of both learning-based and nearest neighbor (NN) 

based classifiers. D-HKTree significantly outperforms conventional NN-

based classifiers in classification accuracy, while with much lower 

computation cost and memory usage. Compared to learning-based methods, 

D-HKTree achieves comparable performance with lower relative 

computational complexity. 

6.2 Limitations and Future Work 

Similar to other feature representations, which are based on absolute 

spatial information, EigenMap is not invariant to translation or rotations. 

Future work on feature representation will capture the relative spatial 

relationship among different object parts while maintaining high efficiency. 
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Margin Constrained Multiple-kernel learning (MCMKL) requires 

iteratively solving SVM problem and projected gradient descent problem 

many times. The total training time can become prohibitively high, as one 

iteration already has expensive computational cost. To scale the algorithm to 

the large-scale data, our future work will focus on improving the efficiency 

on multi-feature fusion. 

Even though the Discriminative Hierarchical K-Means Tree (D-

HKTree) achieves the state of the art performances on several large-scale 

datasets, its complexity, however, greatly depends on the accuracy of the 

underlying nearest neighbor algorithm, i.e., L-HKTree. We will evaluate its 

performance impact as the dataset becomes larger.  

Another limitation of D-HKTree is the construction time of L-

HKTree. As the data size increases, the computational cost to construct the 

L-HKTree also increases. If we can build a universal L-HKTree, which only 

need be modified slightly according to a specific dataset, then we can 

significantly reduce the training complexity. We would like to continue 

develop a universal L-HKTree in future. 
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