
An Assistive Indoor Navigation System for the
Visually Impaired in Multi-Floor Environments

J. Pablo Muñoz1, Student Member, IEEE, Bing Li2, Xuejian Rong2, Jizhong Xiao3∗, Senior Member, IEEE,
Yingli Tian3, Senior Member, IEEE, and Aries Arditi4

Abstract—This paper presents an innovative wearable system to
assist visually impaired people navigate indoors in real time. Our
proposed system incorporates state-of-the-art handheld devices
from Google’s Project Tango and integrates path planner and
obstacle avoidance submodules, as well as human-computer inter-
action techniques, to provide assistance to the user. Our system
preprocesses a priori knowledge of the environment extracted from
CAD files and spatial information from Google’s Area Description
Files. The system can then reallocate resources to navigation and
human-computer interaction tasks during execution. The system
is capable of exploring complex environments spanning multiple
floors and has been tested and demonstrated in a variety of indoor
environments.

I. INTRODUCTION

More than 285 million people in the world have some form
of visual impairment [1]. The visually impaired face significant
challenges when navigating indoors, particularly in unfamiliar
environments. We have successfully developed an innovative
wearable system to confront this particular challenge. Our
context-aware system, Intelligent Situation Awareness and Nav-
igation Aid (ISANA), helps the user navigate to a desired indoor
destination. Based on the user’s current location, the system
produces step-by-step audio instructions, while continuously
correcting deviations from the planned path.

Our contributions are threefold: First, we have designed
and implemented a working wearable system that successfully
helps a visually impaired person navigate indoors in multi-floor
environments by using robust data structures and incorporating

This work was supported in part by U.S. Federal Highway Administration
(FH-WA) grant DTFH 61-12-H-00002, National Science Foundation (NSF)
grants CBET-1160046, EFRI-1137172 and IIP-1343402, National Institutes
of Health (NIH) grant EY023483. The devices used in this research were
provided by Google’s Project Tango. Dr. J. Xiao thanks Google Project Tango
for providing a grant to CCNY Robotics Lab as well as free Tango devices and
technical support. Dr. J. Xiao thanks the Alexander von Humboldt Foundation
for providing the Humboldt Research Fellowship for experienced researchers
and Prof. Jianwei Zhang at University of Hamburg for hosting the research stay
in summers of 2013-2015. The authors acknowledge Ms. Barbara Campbell for
her valuable feedback and suggestion for ISANA. The authors would like to
thank Dr. Ivan Dryanovsky, Dr. Chucai Yi, Dr. Samleo L. Joseph, Xiaochen
Zhang, Mohammed Amin, Patrick Centeno, Luciano C. Albuquerque, Norbu
Tsering for their contributions to this research.

1J. Pablo Muñoz is a Ph.D. student of Computer Science, City University
of New York - Graduate Center, 365 5th Ave, New York, NY 10016, USA
jmunoz2@gradcenter.cuny.edu

2Bing Li and Xuejian Rong are Ph.D. students of Electrical Engineering,
City College of New York, 160 Convent Ave, New York, NY 10031, USA

3Jizhong Xiao and Yingli Tian are faculty of the Department of Electrical
Engineering, City College of New York, 160 Convent Ave, New York, NY
10031, USA. *Corresponding Author: jxiao@ccny.cuny.edu

4Aries Arditi is principal scientist at Visibility Metrics LLC, 49 Valley View
Road, Chappaqua, NY 10514, USA

modules for high-level semantic localization, path planning, ob-
stacle avoidance and human-computer interaction. The system
is capable of responding to much of the uncertainty produced
by the user’s actions and by sudden environmental changes, and
the system responds accordingly in real time. Second, we have
developed a motion planning algorithm to handle multi-floor
navigation challenges. Third, we have implemented a high-
level localization layer to hierarchically manipulate semantic
information that can better assist the user.

This paper is organized as follows: Section II provides an
overview of related work. Section III provides an overview of
the system. Section IV describes the procedure for creating the
data structures used during path planning and navigation and
explains how our system handles navigation in environments
spanning multiple floors. Section V covers the system’s ability
to detect and avoid obstacles. Section VI describes how the
system organizes semantic information and its human-computer
interaction capabilities, and Section VII provides an evaluation
of the system.

II. RELATED WORK

Researchers have directed substantial efforts to address the
challenge of assisting visually impaired people navigate in-
doors and outdoors. But technologies that are successfully used
outdoors, e.g., Global Positioning Systems (GPS), cannot be
used indoors. For indoor environments, researchers have relied
on other methods for localization and navigation, including
RGB-D cameras [2] [3] [4] [5] [6] [7], stereo and fisheye
cameras [8] [9] [10], iBeacons, laser range finders [11] [12],
and inertial measurement units (IMUs) [12] [13]. Some have
taken approaches that require altering the infrastructure such as
placing digital signs [14] or tactile landmarks [15] inside the
building.

Wearable sensors have been used in assistive technologies
since the 1990s [16]. In the past decade, researchers have pro-
posed assistive systems that integrate smartphone capabilities
[17] and floor plan information [18]. As mobile devices have
become more prevalent, context-awareness [19] and its inte-
gration in assistive navigation technologies have also become
an active area of research [20] [21] [22] [23] [24]. Recently,
researchers have also explored the use of 3D glasses to assist
visually impaired people [25].

We have also considered previous studies that assess the
effectiveness of information provided to the visually impaired
user [26]. Our system has been carefully designed to keep the
human engaged with the system, which has been successfully

demonstrated at the U.S. Department of Transportation [27] and
IJCAI’16 [28].

III. SYSTEM OVERVIEW

Current technology allows for centimeter accurate local-
ization in indoor environments. We exploit this localization
capability by building our system on the Google’s Project Tango
[29] platform. Project Tango devices localize themselves in
an environment by recognizing visual features stored in an
Area Description File (ADF). We generate the ADF in advance
and then align its coordinate system to an occupancy image
obtained from extracting semantic information from CAD files
or floor plan pictures.

One component of our system is a standalone application
that outputs occupancy images and other data structures used
by our software. We call this the Map Editor, which runs
on the Android platform. The Map Editor application parses
CAD files and extracts semantic information contained in these
files. This application can also perform further processing of
raw images and output a data structure containing semantic
information about the indoor environment and an occupancy
grid. Our Path Planning and Navigation modules make use of
these data structures when assisting a visually impaired user.
In addition to these data structures, the Path Planning and
Obstacle Avoidance modules use a navigation graph generated
by the system (Section IV) and depth information. The results of
the Path Planning and Obstacle Avoidance modules are passed
to the Navigation Assistant, which is in charge of the high-
level decision-making of the system and the coordination of
the interaction with the user.

Finally, we have implemented a Human-Computer Interac-
tion module that allows the user to add new destinations while
exploring an unfamiliar environment, request assistance to reach
a destination or request information about her location at any
time. The system uses text-to-speech and audio capabilities to
indicate to the user the recommended actions that she should
take. We expand the explanation of these modules in the
following sections of this paper.

IV. PATH PLANNING AND NAVIGATION

A. Navigation graph

Navigation in our system starts with a navigation graph. This
weighted graph is based on an occupancy grid image generated
from a CAD file or a floor plan picture of the environment.

Our system extracts semantic information from the CAD file
that will later be used for high-level localization and assistance
to the user. In the case of an unlabelled floor plan picture, our
system allows for the input of labelling information in advance
and during execution. CAD files often contain text labels that
are placed within areas of interest. Our Map Editor standalone
application uses this information to automatically associate
these labels to nodes in the navigation graph. (We discuss
the details of how our system handles semantic information
in Section VI.) Regardless of the input representation of the
environment mentioned above, our system is able to parse
the input files and create a grayscale occupancy image I , by
applying an adaptive threshold that separates occupied and

navigable areas. We use a grayscale format because this will
allow us to represent several different kinds of navigable areas
and improve the quality of the information provided to the
visually impaired user.

The navigation graph is created using a procedure that
performs a single pass over the image to create the set of
vertices, V , of the navigation graph, based on pixel intensity,
I(i, j), and location i, j,

V ={[i, j] | i mod separator == 0,

j mod separator == 0, I(i, j) > occupiedTh},
(1)

where occupiedTh is the adaptive threshold value that deter-
mines whether an area is occupied or not. Parameter separator
controls the number of pixels that separate each pixel location
associated with a vertex. We have determined the value of
separator experimentally to be in image space the equivalent
of 20 cm in the world frame. The system is sensitive to the value
of separator. Smaller values for this parameter significantly
increase the number of nodes generated in the navigation graph,
increasing the time needed to generate and optimize paths.
Greater values make the system less precise when guiding the
visually impaired person.

B. Path planning

Using the navigation graph described previously, our system
can proceed with an informed search to find the best path to a
destination. Section VI-B describes how the user would select
a destination. By default, we use A* [30] for path finding. A*
is complete and produces an optimal path, as was proved by
Dechter and Pearl [31], when its heuristic is admissible, i.e.,
heuristic cost is less than or equal to the lowest possible cost
to the destination. Our default heuristic is the L2 distance in
image space. However, the modularity of our system allows for
an easy replacement of the heuristic or base algorithm used
for path planning. We have added data structures on top of the
original A* algorithm to allow for faster reinitialization and
replanning.

Initially, execution of the path planner module will result
in a path, P = {v1, v2, ..., vk}, a sequence of k points,
that might not be very convenient for the user. For instance,
when navigating in a straight hall, the path planner might
suggest several intermediate waypoints, which might cause user
annoyance due to the number of instructions to reach each
of these waypoints. Some of these waypoints can be safely
removed in order to create a better experience for the user.
We implemented a pruning procedure that reduces the number
of waypoints along the path and creates temporary edges in
the navigation graph, resulting in an optimized path for a
more natural assistance to the user. Assuming that each pair
of neighboring vertices in the original path P have a weight w,
equivalent to the Euclidean distance in image space for each
pair of vertices, the new and improved path P is obtained by
the following procedure:

procedure PATHSMOOTHING(P = {v1, ..., vk})
i← 1
j ← k
r ← 1

while j − i > 1 do
. Check if we can see waypoints that are later in the path

if λ(vi, vj) then
R← {vl | l > i, l < j} . Set of waypoints to

be removed from the path
P ← P −R . Path update
i← 1
j ←| P | −r
r ← r + 1

else
i← i+ 1

end if
end while
return P

end procedure
where λ is the boolean function,

λ(vi, vj) =

true if I(nint(r.x), nint(r.y)) > h,

r = vi + qd,

q = vj − vi
d = 0 to 1, step = 1

‖vj−vi‖2
,

false otherwise

(2)

where vi, vj are the pixel coordinates of each vertex on the
occupancy image that is a waypoint in the path, r is a ray from
waypoint at vertex vi to waypoint at vertex vj in the path. nint
is the nearest integer function. We check the pixel intensity at
r, i.e., we check for occupied areas in between waypoints, and
vector q is the vector with magnitude equivalent to the distance
of the each pair of waypoints in image space, and oriented
towards waypoint, vertex vj . h is the same adaptive threshold
described in Equation 1 that decides whether a pixel represents
an occupied area or not.

Thus, a ray is traced from the waypoint at image location vi
to the waypoint at image location vj , determining whether the
path can be smoothed or not.

C. Automatic replanning of the path to improve user experience

In instances where the visually impaired person deviates from
the planned path, our system keeps track of the user actions and
is able to recover in O(1) time, producing a new instruction
to the user that reflects the new state of the system. If the
user deviates from the path, the system brings her back to an
optimal position based on the position of the next waypoint
and the current distance of the path. To handle these kinds of
situations, our system first computes the aggregated distance of
all waypoints in the path,

dw = w(uL, v1) +

k∑
i=1

w(vi, vi+1), k = |P | − 1, (3)

where uL is the current position of the user, and v1 to vk are
the vertices of nodes (waypoints) in the path, and w is again the
weight of the edge, i.e. the Euclidean distance in image space
between two vertices. Since the only possible change in each
iteration of the system loop is the distance to the next waypoint,
v1, we can safely cache the path total distance between the first
waypoint (user immediate destination) and the other waypoints

in the path, so it is not unnecessarily computed over and over.
This simplifies the computation of dw to,

dw = w(uL, v1) + cw, (4)

where cw is the cached value. The next step is to compute the
optimal distance considering the recent user behavior, i.e., after
the user has moved, checking if the system is able to observe
a waypoint later in the path. As described previously, the λ
function from Equation 2 can be used to check whether the
system is able to observe a particular waypoint. First we create
a new path by appending uL, the current position of the user,
to P ,

Po = {uL} ∪ P (5)

Next, we execute the PATHSMOOTHING procedure on Po, and
compute the optimal distance,

do =

k∑
i=1

w(vi, vi+1), k =| Po | −1, v1 = uL (6)

The system then proceeds to compare both distances, dw and
do, and updates the path if necessary,

do < dw ⇒ P ← Po − v1, v1 = uL (7)

D. Multi-floor navigation

Our robust prototype can navigate multi-floor environments
by creating a higher level of abstraction that describes the
navigation through floors in the building. The system creates
a graph that represents the 3D relations of gateway points or
areas in each floor. Thus, when navigating to a destination, the
system keeps track of the traversal of two different kinds of
navigation graphs:

- Navigation in building graph.
- Navigation in floor graph.
If the final destination is on a different floor, the user will be

guided to the closest gateway node. When the user arrives at
this gateway point, the system will release previous navigation
information, reconnect to the localization service using the
configuration for the new floor, and after relocalization, guide
the user to the next intermediate destination, or final goal,
if the user is already on the floor of the final destination.
When transitioning between floors, the system currently does
not prioritize elevators over stairs. Future work includes an
investigation of the trade-off between the comfort to the user in
travelling to the closest node, e.g. stairs, versus taking a longer
route to the closest elevator. The decision could be taken based
on configurable parameters, for instance, when the profile of
the user indicates so form of mobility impairment.

To allow for multi-floor navigation, each destination target
has the following information: the floor on which it is located,
i and j coordinates in image space, a label associated with
this node, and whether other areas, e.g., floors, can be accessed
through this node.

E. Automatic vs. User-trigger map switch

An earlier version of our prototype switched the maps
automatically when the user was within a certain distance
of a gateway point if the user was being assisted to reach

a destination on a different floor. After several iterations of
development, we have found that letting the user trigger the
change of map has many benefits. For instance, when the user is
travelling in an elevator, the system remains idle until reaching
the appropriate floor.

V. OBSTACLE DETECTION AND AVOIDANCE

We detect obstacles in the user’s path with a modified version
of the Vector Field Histogram (VFH) [32] [33] based on the
depth perception capabilities of the hardware; that is, the Project
Tango tablet provides us with a point cloud obtained from the
RGB-D camera. Depth information is projected to the floor to
establish the obstacle position in the occupancy data structure,
and the same point cloud is also projected forward to establish
the object’s relative height in relation to the user [34]. A beep
train is emitted by the system with an interval that represents
the proximity of the obstacle. An increase in frequency of
beeps means that the user is approaching the obstacle. Unlike
the white cane, our system is capable of detecting the height
of the obstacle, thus also helping the user to avoid obstacles
that are above the level of the torso. The Obstacle Avoidance
module alerts the user only when the obstacle detected occupies
a previously empty space in the occupancy image.

Point cloud data is received approximately every 200 mil-
liseconds and depending on the detection resolution, the obsta-
cle avoidance module requires between 27 to 56 ms to return
valuable information to the user.

A. Obstacle detection and path replanning

Once an obstacle is detected, our path planner proceeds to
update the path, taking into account the obstacle dimensions.
The replanning due to obstacle detection is handled by the
navigation module as follows: First, nodes are removed from
the navigation graph based on the point cloud data,

PW = {[x, y] | [x, y, z] ∈ Point cloud}, (8)

where PW is the set of 2D points projected from all the points
in the original point cloud. Next, obstacle points, i.e., the points
that are within a distance range from the user are transformed
to image coordinates,

PI = {[i, j] | Ap, p ∈ PW }, (9)

where A is the transformation matrix from world coordinates to
image coordinates obtained from the alignment of the Tango’s
Area Description File and our occupancy data structure. Next,
we change the properties of the occupancy image, and the
navigation graph,

∀pi ∈ PI∀pj ∈ V {‖pi − pj‖2 ≤
separator

2
:

I(pi.x, pi.y) = 0︸ ︷︷ ︸
New occupied cells

, V ← V − pj︸ ︷︷ ︸
V ertex removed from graph

}, (10)

where PI is the set of points in image coordinates that the
detected obstacle occupies. The system updates the occupancy
image and matches all these points with the closest vertices
that are then removed from the navigation graph. The criteria
for matching are that they have to be at maximum separator

2

distance in image space. separator is the parameter described
in Section IV for the pixel separation between vertices in the
navigation graph. Finally, we replan the path to a destination.

B. Restoring the navigation graph after avoiding an obstacle

Due to the dynamic nature of many obstacles, our system
needs to be able to restore the navigation graph so the user is
able to visit areas where obstacles previously were but are no
longer present. In the case of dynamic obstacles, e.g., people
crossing in front of the user, the system is able to restore the
navigation graph and re-plan in less than 8 milliseconds, making
it imperceptible to the user, thanks to an efficient caching
mechanism that keeps track of the real time changes to the
graph.

VI. CONTEXT AWARENESS AND HUMAN
COMPUTER INTERACTION

A. Organization of Semantic Information

Each node object in the navigation graph has a label field.
We use this label to name small areas in the environment. In
the case of bigger areas, e.g., narrow halls, elevator banks, we
have created an area structure that encapsulates the properties
and methods related to these spaces. To organize the associated
semantic information, we build a hierarchical tree of areas.
Once the tree is built, the user can query the system for its area
location. The system will search the tree using the position of
the user and will output the corresponding information when it
has reached a leaf in the tree.

B. Human-Computer Interaction

We have enabled voice recognition and gesture detection
capabilities for receiving commands from the user. Voice recog-
nition is activated using the wake-up keyword “Isana”. Gesture
detection has proved to be very useful in noisy environments.
We are currently using simple gestures, e.g., swiping left to
right, to help the visually impaired person learn the available
gestures in a short time. In addition to voice recognition and
gesture detection, the user can enable the system to receive
commands by listening to touch events on the device’s screen.
Text-to-speech and auditory feedback have been implemented to
guide the user. The user can also mute speech output commands
at any time.

Once the system is running, the initial step is for the user to
select the destination via speech recognition or gesture detec-
tion. The system proceeds to load all the information required
for effective assistive navigation. First, the map, occupancy grid
and a list of destinations are loaded. If the user wants to add
a new destination while the system is running, it can do so by
indicating the corresponding label that should be assigned to the
closest node to the current location. After the resources have
been loaded, the next step is to use the Tango’s capabilities
to localize the system in the selected environment. Once the
system has successfully localized itself, the user can proceed
to select a destination. The system will generate a path based on
the user’s preferences and after searching for the best possible
trajectory.

As the user moves in the environment, the system keeps track
of the next waypoint and decides whether a waypoint has to be

removed from the path. We do not expect the user to follow the
path with great accuracy. Thus, using the algorithm described in
Section IV, the system will notify the user if it detects that she is
deviating from the path. Taking into account the unpredictable
behavior of the user, the system continuously checks whether
it can better guide the user if a further waypoint is detected. It
does so by using the λ function described in Equation 2. The
system continuously checks for obstacles and alerts the user
if any has been detected. If for some reason the system gets
lost in the environment, e.g., failure in localization, an assistant
module is activated to guide the user’s actions and recover the
system’s capabilities.

Navigation instructions are given based on the heading direc-
tion to the next waypoint. The system also takes into account
the distance to the waypoint and it is capable to provide this
information to the user. Heading category values have been
determined experimentally to ensure a pleasant experience to
the user.

In multi-floor environments, once the user has reached a
gateway area, the system is capable of warning or guiding
the user in her transition to the new area. For instance, if the
transition areas are escalators or an elevator, the system can
inform the user that she has to proceed with caution or where
the exact location of the closest elevator is.

User preferences are read from a configuration file. Among
the properties that can be customized by the user are the
estimated stride length of the user, the preferred distance to
walls, and the intervals between receiving new instructions.

To manage possible conflicting instructions to the user, e.g.,
when the path requires the user to go straight but there is an
obstacle in front of her, the system has a built-in functionality
for setting the priority of the information that is given to the
user.

VII. EXPERIMENTS

A. Setup and Results

We evaluated different aspects of our prototype using
Google’s Project Tango’s Yellowstone tablets. We tested the
system with several blindfolded users to refine our implemen-
tation. We also randomly generated an environment spanning an
area of 641.98 m2 (29.26m x 21.94m). We tested 147 multiple
trajectories, with a maximum trajectory length of 325.45 m.

We experimented with different spacing of the nodes to
construct the navigational graph. Experimentally, we found that
setting separator equal to 7 and making it equivalent to 20cm
in the world frame yielded the best experience for the user.
This can be easily done by modifying the size of the occupancy
image. In the case of the testing environment, it took an average
of 400 milliseconds for the system to create the navigation
graph with this configuration.

As the distance to a destination increases, the length of the
path (number of nodes) increases linearly with A*. Depend-
ing on the characteristics of the environment and using the
smoothing procedure, the system is able to keep the number of
nodes in the path to a minimum. For the longest trajectory to a
destination, applying the path smoothing procedure resulted in
a path with 119 nodes, while without executing this procedure,

the number of nodes in the path was 1475. For the maximum
trajectory length in our testing environment, 325.45 m., the
system only required 21 additional milliseconds to smooth the
path.

As was expected, the total distance that the user had to travel
was reduced by executing the path smoothing procedure. The
additional path smoothing procedure reduced the number of
waypoints, thus, creating more straight lines in the path and
resulting in a saving of 14.93 meters in the longest trajectory to
the furthest destination in our testing environment (325.45 m).
Even more important than path shortening, path optimization
makes the path simpler for the visually impaired user.

Fig. 1. Three example areas during the demonstration at the Department of
Transportation. Top: The user is in an area with columns and big open space
on the left. Several obstacles are present and the user has to carefully navigate
between the columns up to a point in which she is guided towards the elevators.
Middle: The user is being guided through a hallway with very similar visual
features. At the end of the hallway there are stairs and columns that present
additional challenges to the system Bottom: The user is about to turn and
traverse a narrow area before entering a floor with multiple rows of cubicles.
The system allows space for the user to turn and navigate in this narrow area.

B. Demonstration

We successfully demonstrated the system at the Depart-
ment of Transportation (DOT) in Washington, D.C. in March
2016 [27]. The demonstration consisted of assisting a visually
impaired person navigate from the main entrance of DOT
headquarters to an office located on the eighth floor of an
adjacent and interconnected building. To reach the destination,
the system had to assist the person in three different envi-
ronments: narrow hallway followed by a big open space; an
environment with few distinctive marks and endpoints with
similar appearances; on a floor full of cubicles with similar
characteristics and with several obstacles (including columns)
that were located in the path of the user. Figure 1 shows
the system providing assistive navigation at the Department
of Transportation headquarters. In the first example, the user
traverses an area with multiple columns that divide a big open
space. In the second example, the user is a long hallway
that contains very similar visual features. Finally, in the third

example, the user is turning in a narrow area outside of the
elevators bank.

VIII. CONCLUSIONS
In this paper, we have described an innovative wearable

system that advances the goal of efficiently helping visually im-
paired people navigate indoors in unfamiliar environments. We
use state-of-the-art devices from Google’s Project Tango, com-
bining techniques from Robotics and implementing Human-
Computer Interaction functionality consistent with blind user’s
abilities, to provide an efficient, seamless, and pleasant experi-
ence to the user. We extract semantic information from CAD
files and floor plans to provide navigation information in a user-
friendly format. We are constantly improving the functionality
for the user to provide additional semantic information to
the system during execution. The path provided to the visu-
ally impaired person has been efficiently pruned to minimize
the number of instructions provided to the user. We have
implemented data structures and procedures that reduce the
required computation and complexity of the assistive navigation
problem. We successfully demonstrated the system in public
venues and in environments spanning multiple floors. Videos of
the system are available at: http://www.assistiverobot.org/ain/.

REFERENCES

[1] World Health Organization, “Towards Universal Eye Health: a global
action plan 2014-2019,” Tech. Rep., 2013. [Online]. Available:
http://www.who.int/blindness/AP2014 19 English.pdf?ua=1

[2] Y. H. Lee and G. Medioni, “RGB-D camera Based Navigation for the
Visually Impaired,” RSS 2011 RGBD: Advanced Reasoning with Depth
Camera Workshop, pp. 1–6, 2011.

[3] ——, “RGB-D Camera Based Wearable Navigation System for the
Visually Impaired,” Comput. Vis. Image Underst., vol. 149, no. C, pp.
3–20, aug 2016.

[4] H. He, Y. Li, Y. Guan, and J. Tan, “Wearable Ego-Motion Tracking
for Blind Navigation in Indoor Environments,” IEEE Transactions on
Automation Science and Engineering, vol. 12, no. 4, pp. 1181–1190, oct
2015.

[5] M. Zöllner, S. Huber, H.-C. C. Jetter, H. Reiterer, M. Zollner, S. Huber,
H.-C. C. Jetter, and H. Reiterer, “NAVI: A Proof-of-concept of a Mobile
Navigational Aid for Visually Impaired Based on the Microsoft Kinect,” in
Proceedings of the 13th IFIP TC 13 International Conference on Human-
computer Interaction - Volume Part IV, ser. INTERACT’11, vol. 6949
LNCS, no. PART 4. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 584–
587.

[6] M. Brock and P. O. Kristensson, “Supporting Blind Navigation Using
Depth Sensing and Sonification,” in Proceedings of the 2013 ACM
Conference on Pervasive and Ubiquitous Computing Adjunct Publication,
ser. UbiComp ’13 Adjunct. New York, NY, USA: ACM, 2013, pp. 255–
258.

[7] A. Aladrén, G. López-Nicolás, L. Puig, and J. J. Guerrero, “Navigation
Assistance for the Visually Impaired Using RGB-D Sensor With Range
Expansion,” IEEE Systems Journal, vol. 10, no. 3, pp. 922–932, sep 2016.

[8] J. Courbon, Y. Mezouar, L. Eck, and P. Martinet, “A Generic Fisheye
camera model for robotic applications,” in IEEE International Conference
on Intelligent Robots and Systems, vol. 1, no. c, 2007, pp. 1683–1688.

[9] T. Schwarze, M. Lauer, M. Schwaab, M. Romanovas, S. Böhm, and
T. Jürgensohn, “A Camera-Based Mobility Aid for Visually Impaired
People,” KI - Künstliche Intelligenz, vol. 30, no. 1, pp. 29–36, 2016.

[10] V. Pradeep, G. Medioni, and J. Weiland, “Robot vision for the visu-
ally impaired,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2010 IEEE Computer Society Conference on, 2010, pp. 15–22.

[11] J. A. Hesch and S. I. Roumeliotis, “An indoor localization aid for
the visually impaired,” Proceedings - IEEE International Conference on
Robotics and Automation, no. April, pp. 3545–3551, 2007.

[12] J. A. Hesch, F. M. Mirzaei, G. L. Mariottini, and S. I. Roumeliotis, “A 3D
pose estimator for the visually impaired,” 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2009, pp. 2716–
2723, 2009.

[13] L. H. Chen, E. H. K. Wu, M. H. Jin, and G. H. Chen, “Intelligent
Fusion of Wi-Fi and Inertial Sensor-Based Positioning Systems for Indoor
Pedestrian Navigation,” IEEE Sensors Journal, vol. 14, no. 11, pp. 4034–
4042, nov 2014.

[14] G. E. Legge, P. J. Beckmann, B. S. Tjan, G. Havey, K. Kramer,
D. Rolkosky, R. Gage, M. Chen, S. Puchakayala, and A. Rangarajan,
“Indoor navigation by people with visual impairment using a digital sign
system.” PloS one, vol. 8, no. 10, p. e76783, 2013.

[15] N. Fallah, I. Apostolopoulos, K. Bekris, and E. Folmer, “The User As
a Sensor: Navigating Users with Visual Impairments in Indoor Spaces
Using Tactile Landmarks,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’12. New York, NY,
USA: ACM, 2012, pp. 425–432.

[16] A. R. Golding and N. Lesh, “Indoor navigation using a diverse set of
cheap, wearable sensors,” in Wearable Computers, 1999. Digest of Papers.
The Third International Symposium on. IEEE, 1999, pp. 29–36.

[17] I. Apostolopoulos, N. Fallah, E. Folmer, and K. E. Bekris, “Integrated
Online Localization and Navigation for People with Visual Impairments
Using Smart Phones,” ACM Trans. Interact. Intell. Syst., vol. 3, no. 4, pp.
21:1—-21:28, 2014.

[18] K. C. Lan and W. Y. Shih, “Using smart-phones and floor plans for indoor
location tracking - Withdrawn,” IEEE Transactions on Human-Machine
Systems, vol. 44, no. 2, pp. 211–221, apr 2014.

[19] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing Applica-
tions,” in Proceedings of the 1994 First Workshop on Mobile Computing
Systems and Applications, ser. WMCSA ’94. Washington, DC, USA:
IEEE Computer Society, 1994, pp. 85–90.

[20] I. Afyouni, C. Ray, and C. Claramunt, “Spatial models for context-aware
indoor navigation systems: A survey,” Journal of Spatial Information
Science, vol. 4, no. 4, pp. 85–123, 2012.

[21] I. Afyouni, “Knowledge Representation and Management in Indoor
Mobile Environments,” Ph.D. dissertation, 2013.

[22] W. S. Gribble, R. L. Browning, M. Hewett, E. Remolina, and B. Kuipers,
“Integrating Vision and Spatial Reasoning for Assistive Navigation,” in
Assistive Technology and Artificial Intelligence, Applications in Robotics,
User Interfaces and Natural Language Processing, no. 003658. London,
UK, UK: Springer-Verlag, 1998, pp. 179–193.

[23] F. Lyardet, J. Grimmer, and M. Mühlhäuser, “CoINS: Context sensitive
indoor navigation system,” in ISM 2006 - 8th IEEE International Sympo-
sium on Multimedia, 2006, pp. 209–216.

[24] F. Lyardet, D. W. Szeto, and E. Aitenbichler, “Context-Aware Indoor
Navigation,” in Ambient Intelligence, Proceedings, vol. 5355, 2008, pp.
290–307.

[25] S. Mattoccia and P. Macri, “3D Glasses as Mobility Aid for Visu-
ally Impaired People,” in Computer Vision - ECCV 2014 Workshops:
Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part III,
L. Agapito, M. M. Bronstein, and C. Rother, Eds. Cham: Springer
International Publishing, 2015, pp. 539–554.

[26] E. Havik, M. K. Steyvers, and J. J. Aart C ; Frank, “The Effectiveness
of Verbal Information Provided by Electronic Persons,” Journal of Visual
Impairment & Blindness, vol. 105, no. 10, pp. 624–638, 2011.

[27] “http://www.assistiverobot.org/ain/,” 2016.
[28] J. P. Muñoz, B. Li, X. Rong, J. Xiao, Y. Tian, and A. Arditi, “Demo

: Assisting Visually Impaired People Navigate Indoors ,” in IJCAI
International Joint Conference on Artificial Intelligence, 2016, pp. 4260–
4261.

[29] J. Lee and R. Dugan, “Google Project Tango.” [Online]. Available:
https://www.google.com/atap/projecttango/#project

[30] P. E. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Transactions on Systems,
Science and Cybernetics, vol. 4, no. 2, pp. 100 – 107, 1968.

[31] R. Dechter and J. Pearl, “Generalized best-first search strategies and the
optimality af A*,” Journal of the ACM, vol. 32, no. 3, pp. 505–536, 1985.

[32] J. Borenstein and Y. Koren, “Histogramic In-Motion Mapping for Mobile
Robot Obstacle Avoidance,” IEEE Transactions on Robotics and Automa-
tion, vol. 7, no. 4, pp. 535–539, aug 1991.

[33] ——, “The Vector Field Histogram - Fast Obstacle Avoidance for Mobile
Robots,” IEEE Journal of Robotics and Automation, vol. 7, no. 3, pp.
278–288, 1991.

[34] B. Li, J. P. Muñoz, X. Rong, J. Xiao, Y. Tian, and A. Arditi, “ISANA:
Wearable Context-Aware Indoor Assistive Navigation with Obstacle
Avoidance,” in Fourth International Workshop on Assistive Computer
Vision and Robotics (ACVR) in conjunction with ECCV 2016, 2016.

