
DAAL: Deep Activation-based Attribute Learning for
Action Recognition in Depth Videos

Chenyang ZhangH, Yingli TianH1, Xiaojie GuoI, and Jingen LiuJ

HDepartment of Electrical Engineering
The City College of New York

160 Convent Ave. New York, NY 10031.
{czhang10@citymail,ytian@ccny}.cuny.edu

ISchool of Computer Software
Tianjin University

Tianjin 300350, China
xj.max.guo@gmail.com

JSRI International
jingen.liu@sri.com

Abstract

In this paper, we propose a joint semantic preserving action attribute learning
framework for action recognition from depth videos, which is built on multi-
stream deep neural networks. More specifically, this paper describes the idea
to explore action attributes learned from deep activations. Multiple stream deep
neural networks rather than conventional hand-crafted low-level features are em-
ployed to learn the deep activations. An undirected graph is utilized to model the
complex semantics among action attributes and is integrated into our proposed
joint action attribute learning algorithm. Experiments on several public datasets
for action recognition demonstrate that 1) the deep activations achieve the state-of-
the-art discriminative performance as feature vectors and 2) the attribute learner
can produce generic attributes, and thus obtains decent performance on zero-shot
action recognition.

Keywords: Attribute Learning, Action Recognition, Depth Camera

1Corresponding author.

Preprint submitted to Computer Vision and Image Understanding November 22, 2017

1. Introduction

Over the past decade, many research efforts have been made towards recog-
nizing human actions from RGB videos [1, 2, 3, 4]. Recently, with the increasing
applications of RGBD cameras in surveillance and human-computer interaction,
recognizing human actions using depth information becomes more attractive to
the success of many intelligent systems. Compared with RGB cameras, RGBD
cameras provide more geometric information such as human body size, shape and
position, which is significantly important for action recognition. However, most
of the existing depth-based action recognition methods concentrate on designing
various low-level features from different information channels such as 1D skele-
ton joints [5, 6, 7], 2D Depth Motion Map (DMM) [8], and 3D spatial-temporal
volume [9, 10, 11, 12, 13]. The feature extracted from each channel is usually
well designed and tuned independently for a specific framework.

However, for human recognition processes, information received from mul-
tiple receptors would activate some corresponding specific neurons, which fur-
ther enable high-level neuron activations to accomplish the abstract recognition
task (e.g., face recognition) [14]. Inspired by this observation, we propose a uni-
form deep feature learning architecture, which can automatically learn homoge-
neous features from heterogeneous channels. These learned features are named
as Deep Activations, since each feature element acts like a neuron that can be ac-
tivated to capture some properties of the learning. Leveraging this deep learning
network, our system is able to treat each information channel identically. In other
words, only the Deep Activations are visible to the high-level learners such as
the attributes proposed shortly. As a result, deep learning models have been suc-
cessfully applied to large-scale visual recognition tasks using multiple layers of
convolution filters [15, 16, 17]. Compared with conventional hand-designed fea-
tures, deep-learned features are advantageous not only because they need much
less effort and domain knowledge to become more generic to different modalities,
but also because of their potential to automatically learn an organized hierarchy
of semantic features [18].

Although the deep learning network has been very successful in visual recog-
nition, the deep features are usually treated as mid-level features [19], and function
like signal filters, which affect the recognition performance and limit their appli-
cations. Therefore, inspired by [20], instead of directly mapping deep features
onto action labels, a set of pre-defined action attributes serves as mid-level rep-
resentations. These attributes can boost recognition and enable new applications
such as zero-shot learning. As human bodies/joints are easier to track than open

2

arm below
torso

arm above
head

torso
motion

arm
pendulum-
like motion

single-arm
motion

double-arm
motion

arm
motion

Naming: two-hand waving

Naming: pick-up & throw

torso motion: No
arm below torso: No
arm above head: Yes
arm motion: Yes
arm pendulum-like motion: Yes
single-arm motion: No
double-arm motion: Yes

torso motion: Yes
arm below torso: Yes
arm above head: Yes
arm motion: Yes
arm pendulum-like motion: No
single-arm motion: Yes
double-arm motion: No

D
e

s
c

ri
p

ti
o

n
D

e
s

c
ri

p
ti

o
n

S
e

m
a

n
tic

 G
u

id
in

g

Figure 1: Illustration of the proposed joint action attribute learning algorithm. Instead of treating
each action attribute independently, we apply a semantic graph to guide the joint action attribute
learning algorithm to preserve the relationship among action attributes (e.g. “arm below torso”
may share common information with “arm motion” and “torso motion”.)

source videos in [20], we found that action attributes are more appropriate for de-
scribing actions in depth videos. To our knowledge, our work is the first attempt
to leverage “attributes” to recognize actions from depth videos.

Including [20], most existing attribute learning approaches tend to learn the
attribute detectors independently. As a result, some detectors may learn the prop-
erties that do not belong yet correlate to the attribute of interest. In other words,
they do not “learn the right thing” [21]. For example, the attribute detector “arm
motion” may learn patterns related to “torso up-down motion” in action “jogging”
because of their co-occurrence. We believe the semantic/geometric relationships
among the attributes can serve as constrains during the attribute learning, and
eventually enable the detectors to learn the exact human motions and postures.
Therefore, this paper introduces a joint attribute learning framework which lever-
ages the relationships among attributes represented by a graph, as shown in Figure
1. The proposed algorithm utilizes a relationship affinity graph in the optimization
of attribute detector learning processes. It tends to decorrelate attributes that are

3

semantically distant, while enhance correlation of neighboring attribute detectors.
In object attribute learning, Jayaraman et al. [21] propose to use “groups” to

define the relationships among object attributes. However, since object attributes
are much more fine-grained than action attributes (e.g., “furry” and “brown”),
they can be organized into “groups” such as “color”, “shape” and “texture”, but
it is not helpful to coarsely group action attributes based on human bodies such
as “arm”, “head”, “torso”, etc. For instance (see Figure 1), the action attribute
“arm below torso” is related to “arm above head” as both describe positions of
upper limbs, but it is also related to “torso motion” because both are related to the
body part “torso”. Therefore, we argue that an undirected relation graph is better
to capture the semantic/geometric relationships among action attributes compared
to “groups”. Actually, to some extent, the relation graph also groups attributes if
they are close on the graph. But it captures more complex relationship beyond the
“groups”. Our experiments further verify that attribute detectors trained with the
proposed graph perform much better than detectors trained with “groups”.

In summary, as illustrated in Figure 2, our system takes the heterogeneous
visual information received from the 1D, 2D and 3D channels as inputs, and then
leverage the deep neural networks to automatically learn the homogeneous deep
activations. Building on the deep activation, our system further jointly learns the
attribute detectors by leveraging graph-based constraints. These attributes enable
zero-shot learning and further boost the action recognition.

Our Contributions: 1) we propose a uniform framework to learn homoge-
neous deep activations from the heterogeneous information sources. It is superior
to most previous work on recognizing human actions from depth videos, which
heavily relies on hand-designed low-level features. 2) Our system jointly learns at-
tribute detectors by incorporating the attribute relation graph as constraints, which
de-correlates some attributes, and as a result enables the detectors to “learn the
right thing”. The relation graph pre-defines the semantic/geometric relationships
among action attributes, which is superior to “groups” based constraints for action
recognition. In this paper, we are focusing on how to regularize attribute learning
parameters via pre-defined graph. To the best of our knowledge, this paper is the
first to leverage deep learning features to jointly learn action attribute detectors
constrained on the relation graph to de-correlate attributes for action recognition
from depth videos. The proposed algorithm are evaluated on three benchmarked
datasets, and experimental results demonstrate the effectiveness of the proposed
framework by achieving the state-of-the-art performances on both attribute detec-
tion and zero-shot action recognition.

4

(a) 1D Temporal CNN

(b) 2D Spatial CNN

(c) 3D Volumetric CNN

convolution
layer

max-pooling
layer

...

fully connected
layers

...

...

... ...
...

(d) Deep Activations

(f) Joint
Semantic Preserving

Action Attribute
Learning

2

3

1

5 4

7 6

(e) Semantic Graph

attribute 1: Yes
attribute 2: Yes
attribute 3: Yes
attribute 4: Yes
attribute 5: No
attribute 6: Yes
attribute 7: No

action labels

...
...

max-pooling
layer

convolution
layer

fully connected
layers

action labels

fully connected
layers

max-pooling
layer

convolution
layer action labels

Figure 2: Overview of the proposed deep activation-based action attribute learning model-
ing. (a), (b) and (c) Multiple Convolutional Neural Networks are trained on different dimensional
representations of the given depth videos such as 1D skeleton joint coordinates, 2D depth motion
maps and 3D video volumes. The CNNs are trained in a supervised manner where action labels
are used. (d) The second-last layer neuron activations from multiple CNNs are collected as Deep
Activations. (e) and (f) Semantic preserving joint attribute learning algorithm is proposed by
leveraging the prior knowledge of relations among attributes.

2. Related Work

Action Recognition from Depth Sequences: Action recognition from depth
videos can be roughly categorized into two groups, depth map-based methods
[22, 11, 10], and joint based methods [5, 7, 6, 23] which are based on a skeleton
joint estimator (e.g. [24]). In depth map-based methods, Li et al. [22] sample the
silhouette points from three 2D planes that are orthogonal projections from a 3D
point cloud, and then use a bag of 3D points together with action graph [25] to
infer class labels. Some researchers have developed 3D or 4D local patterns such
as 4D-normals [11], occupancy patterns [9, 10], and cuboid features [26]. As an
instance for joint-based methods, Xia et al. [5] directly use 3D joint locations to
recognize actions by a Hidden Markov Model on posture words.

Deep Learning for Action Recognition: Deep Convolutional Neural Net-
work (CNN) has been applied in video classification [27] and action recognition

5

[28]. In [28], learned spatio-temporal features from video sequences using in-
dependent subspace analysis achieve the state-of-the-art performances on sev-
eral benchmark datasets. Combined with the exploration by Zeiler et al. [18],
the deep-learned features demonstrate desirable properties such as increasing in-
variance and class discrimination with ascending layers. Inspired by the above
progress, our proposed framework leverages the advantageous properties of deep-
learned features (i.e. deep activations) and mines high-level semantic concepts
(action attributes). In recent years, sequential input networks (RNN) have also
played an essential role in action recognition. In [29], human-tracking problem
and group recognition problem are jointly tackled by a two-staged framework
composed of two LSTM modules: one for person-level action recognition and the
other for group level dynamics. In [30], LSTMs are applied on different body joint
groups to perform skeleton-based action recognition. In addition to learning rep-
resentation, deep networks are also used in learning view point transfer function
[31] for action recognition from novel viewpoints. Besides, deep autodecoders
are also employed in feature fusion [32]. In [33], multi-stream deep network ar-
chitecture is also employed to learn action descriptors from trajectory-based raw
features.

Attribute Learning: Attributes serve as high-level semantic features for vi-
sual recognition tasks [34, 35]. As studied by Liu et al. [20], action attributes
are useful for zero-shot action recognition. Deep learning based attribute classi-
fication [36] shows promising results in human attribute classification. The re-
lationships among attributes are often ignored in attribute learning, which may
result in learning the correlated yet wrong properties. In [21], the authors pro-
pose to decorrelate the attributes by grouping object attributes into disjoint groups
to eliminate the ambiguity. However, simply grouping attributes is inadequate to
model the complexness of action attributes. Therefore, an undirected graph is in-
tegrated into the joint attribute learning framework to preserve the complex action
semantics.

3. Architecture of Learning Deep Activations

This section elaborates the architecture of each deep CNN in our multi-stream
deep neural network framework. An overview of three types of CNN architectures
is illustrated in Figure 3. Note that the numbers of dimensions in this figure are
trained on the MSR Action3D dataset [22]. For different datasets, these numbers

6

may vary 2.
1D Representation: In the 1D-Temporal-CNN model, the input is a 1D se-

quence where the dimension is the frame number of the depth video. Each element
in the sequence represents the skeleton joints in the corresponding depth frame.
Each coordinate of a skeleton joint is compared with 1) its two counterparts in
the previous and initial frames and 2) the anchor joint in the current frame and
the coordinate offsets are used for representation. Thus the dimension of each
joint is 6 and for each skeleton is 120 (20 joints). An abstract feature extraction
layer is composed by one temporal convolution layer and one max-pooling layer.
Three abstract layers and an additional 3-layer multilayer perceptron (MLP) are
added. The deep activation layer here denotes the second layer in the MLP, which
is composed by abstract features learned from input and supervised by its action
label.

2D Representation: To capture the spatial energy distribution of an action,
Depth Motion Map (DMM) [8] is employed for each depth sequence as the 2D
representation. The input of 2D-spatial-CNN is a 128×128 depth motion map that
characterizes the spatial movement during the whole action. Then 4 abstraction
layers are employed before the MLP.

3D Representation: In many deep learning-based action recognition algo-
rithms [28, 27], the spatial-temporal video volumes, per se, can also be a repre-
sentation. In our work, the depth spatial-temporal 3D volume itself is used as the
3D representation. The input of 3D-Volumetric-CNN is a 128×128×T (T = 39 in
Figure 3) tensor which is the normalized video volume itself. The filters are also
3D-tensors which are applied on the spatial-temporal subvolumes of the depth
video to extract features. More implementation details for 1D, 2D and 3D rep-
resentations can be found in the appendices. In this work, each CNN is trained
individually in a supervised manner. By collecting deep activations learned from
multiple representations, the deep activations are desired to be discriminative from
different aspects. Another benefit of using multiple representations is that it can
alleviate the demand of a vast amount of training data for deep CNNs [36].

We also apply drop-out layers after each of the convolution layers in all CNN
models to avoid feature co-adaptation. The idea of drop-out is proposed by Hin-
ton et al. [37], to randomly zero a fraction of the neuron units during training
processes. The drop-out layers can effectively avoid the overfitting caused by

2The actual numbers of dimensions shown in the figure may vary in different datasets. Here
the numbers are of our models trained on MSR Action3D dataset [22]

7

39

 1
6 1

6

12
0

19 9

 1
6

4

2
x1

20

2
x1

6

2
x1

6

a
ct

io
n

 la
b

e
ls

In
p

u
t:

 J
o

in
t S

eq
u

en
ce

feature
map 1

feature
map 2

feature
map 3

drop out layer

temporal
conv+pool layer

reshapse layer

fully connect
layer

logistic regression
layer

deep
activations
Spatial conv +
subsample layer
volumetric
conv+pool layer

128x128

a
ct

io
n

 la
b

e
ls

In
p

u
t:

 D
ep

th
 M

ot
io

n
 M

ap

39

128x128

a
ct

io
n

la
be

ls

In
p

u
t:

 V
id

e
o

V
o

lu
m

e

5x5 5x5

62x62
64

feature map 1

5x5

29x29

feature map 2

12
8

3x3

12x12

feature map 3

12
8

5x5 25
6

feature map 4

200

1024

1024

17

61x61
7

27x2716
16

2

10x10

16

5x7x7
4x7x7

3x7x7

Figure 3: Overview of architectures for each of deep CNNs employed in proposed algorithm. Top
row is for 1D-Temporal-CNN and the middle and bottom rows are for 2D-Spatial-CNN and 3D-
Volumetric-CNN. Legend for layers is shown in the top-right corner. Convolution filters of each
layer are shown as red cubes or rectangles. Dimensions of feature maps, deep activations and
filters are shown accordingly.

complex co-adaptations, where feature detectors are only helpful with a certain in-
ternal context. CNNs with random drop-out layers show improvements on speech
and object recognition benchmarks, and better generalization without using very
large training data. All the CNN layers in our network are trained starting from
random initial values in a supervised manner by a classification loss against ac-
tion labels. Different with the framework in [36], which directly learns CNNs on
attribute labels, the CNNs of our framework are trained to learn action discrim-
inative deep activations without the involvement of action attributes. The main
reasons are two-fold. On one hand, training CNNs directly on action labels can
ensure the learned activations are action discriminative. On the other hand, se-
mantic relations between attributes are difficult to be directly embedded into a
CNN. More favored structure must be designed to learn action attributes. The
deep activations are the activations in the middle layer of MLP in each CNN. We
collect all deep activations together as the final output of the multi-stream deep
CNNs for each depth video sequence. For instance, as illustrated in Figure 3, the
final output of the tri-stream model is a 200 + 1024 + 1024 = 2248 dimensional
activation vector.

8

4. Semantic Preserving Multi-task Action Attribute Learning

This section firstly discusses the characteristics of relations among action at-
tributes and the similarity/difference with object attributes. Then the formulation
of the joint semantic preserving action attribute learning problem together with an
efficient solution will be introduced.

4.1. Semantic Relations among Action Attributes
Attribute learning is a popular topic in object recognition and face recognition

[35, 34, 38]. While modeling co-occurrence between attributes is helpful in ob-
ject recognition, attribute learning with de-correlating attribute pairs can prevent
excessive biasing the likelihood function on the training set [21]. In action recog-
nition, the benefits of using action attributes have also been initially explored in
recent years [20]. However, as most of previous methods in object attribute recog-
nition, action attributes are often learned independently without considering the
relations among action attributes. In this paper, we resolve this problem by em-
bedding the relationships among action attributes into a joint multi-task attribute
learning formulation.

As object attributes are often fine-grained and have simple semantic relations,
simple grouping is often enough to capture the essential information. However,
action attributes have more complicated semantic relationships than object at-
tributes, thus need a more suitable structure. Human action attributes often in-
volve one or more body parts, therefore a natural connection would be built on
the body parts that the attributes involve. For example, as illustrated in Figure 1,
the attribute “arm below torso” is related to body parts “torso” and “arm”, so it
is related to attributes “torso motion” and “arm motion”. In addition, since “arm
below torso” is an attribute describing “the position of upper limbs”, it is related
to other attributes of the same topic, such as “hand above head”. In this work, the
relationships among attributes are represented by an undirected graph. An exam-
ple of such graph is provided in Figure 1 and more detailed semantic graphs can
be found in the appendices.

4.2. Joint Attribute Learning
As suggested in [20], we pre-define a number of attributes as well as their cor-

respondences between each action class. The protocol to label these attributes is
based on motions and relative positions of body parts. Therefore from the ground-
truth action class labels, we infer the attribute labels for each training sample by

9

its action label. 1 is used to indicate that the attribute is “active” and −1 other-
wise. In the following, the formulation the joint attribute learning problem as a
multi-task learning problem is proposed.

Formulation: Suppose there is a set of training samples X ∈ RM×N and
corresponding attribute labels Y ∈ {−1, 1}K×N , where each column Xi∈[1,N] of
X is a learned deep activation and each column Yi in Y is Xi’s attribute label. M
is the deep activation dimension, N and K are the numbers of training samples
and number of defined attributes, respectively. The objective is to learn a matrix
W ∈ RM×K . Each column Wk∈[1,K] in W is the parameter of the corresponding
attribute predictor where W T

k Xi = Y k
i .

Therefore, learning the optimal W is to minimize the following problem:

W ∗ = argmin
W

L(X, Y,W) +O(W), (1)

where L(X, Y,W) is the empirical loss function of predicting attribute labels. In
this work, we use ‖W TX − Y ‖2F as our loss. And O(W) is a regularization term
on W to pursue some prior structures such as sparsity.

What are the desired properties of W ? Since deep activation vector is dis-
criminative on action labels and each one has the potential to describe a semantic
concept, so an attribute should have sparse response to the deep activation vec-
tor. As suggested by [21] and [39], the group sparsity enforced by l2,1 norm plays
an important role in feature selection. Secondly, to preserve the semantic rela-
tionships among attributes, the attributes that are semantically close should share
features while distant ones should compete for features. We advocate this property
by using the graph Laplacian of a predefined attribute graph.

By putting all the concerns aforementioned together, the problem of semantic
preserving joint attribute learning can be formulated in the following shape:

W ∗ = argmin
W

‖W TX − Y ‖2F + λ‖W‖2,1 + βtr(WLW T), (2)

where λ and β are the weights for the row-sparsity and semantic preserving reg-
ularizers, respectively. The first term is the empirical loss for predicting attribute
labels. The second term introduces row-sparsity to the learned weight matrix,
which avoids overfitting and includes feature-selection. The third term models
the relationships among attribute weight vectors based on the graph.

Optimization: To efficiently and effectively solve the problem in Eq. (2),
two auxiliary variables are introduced to make the problem separable, which give

10

the following program:

min
W,P,Q

‖P TX − Y ‖2F + λ‖Q‖2,1 + βtr(WLW T)

s.t. W = P, W = Q.
(3)

The program in Eq. (3) can be solved in an unconstrained form by the dual as-
cent method. To bring robustness to the dual ascent method, we use Augmented
Lagrangian methods (ALM) to generate the augmented Lagrangian for Eq. (3):

Lρ(X, Y,W, P,Q) = ‖P TX − Y ‖2F + λ‖Q‖2,1
+ βtr(WLW T) + 〈Z1, P −W 〉

+
ρ

2
‖P −W‖2F + 〈Z2, Q−W 〉

+
ρ

2
‖Q−W‖2F ,

(4)

where Z1 and Z2 are Lagrangian multipliers associated with the two constraints in
Eq. (3), and ρ is a positive penalty. Since the program in Eq. (4) is separable, we
can apply the alternating direction method of multipliers (ADMM) [40] strategy.
The solutions of the sub-problems based on ADMM are shown as follows:

W sub-problem: With unrelated terms discarded, this sub-problem becomes
a classic least squares problem and the optimal W (t+1) can be calculated easily
by:

W (t+1) = argmin
W

Lρ(W,P (t), Q(t))

= argmin
W

βtr(WLW T) +
ρ

2
‖P (t) −W + u

(t)
1 ‖

2
F

+
ρ

2
‖Q(t) −W + u

(t)
2 ‖

2
F

= ρ(P (t) +Q(t) + u
(t)
1 + u

(t)
2)(2βL+ 2ρI)−1,

(5)

where u(t)1 = (1/ρ)Z
(t)
1 and u(t)2 = (1/ρ)Z

(t)
2 are scaled dual variables which make

the representation more compact by combining linear and quadratic terms. Note
that the matrix inverse (2βL+ 2ρI)−1 only needs to be computed once.

P sub-problem: Similar to the W sub-problem, the P sub-problem is also a

11

 it#1

 it#5

it#29

it#195

d
ee

p
ac

tiv
at

io
n

s

attributes

(f) it#1 (g) it#5 (h) it#29 (i) it#195 (j) no graph

(l)(k)

 it#1

 it#5

it#10

it#99

de
ep

 a
ct

iv
at

io
ns

attributes

(a) it#1 (b) it#5 (c) it#10 (d) it#99 (e) semantics

1 2 3 4 5

1

2

3

4

5

Figure 4: Illustration of the effect of Algorithm 1 on a synthetic dataset with 5 attributes (the
top row) and MSR Action dataset with 30 attributes (the bottom row). (a-d) and (f-i) are learned
weights for sampled iterations. Columns correspond to attributes and rows correspond to features
or deep activations. Warmer colors indicate higher absolute values in weight matrix, the more
the attribute relies on the feature. (e) The underlying semantic graph of the synthetic dataset. (j)
The result generated without graph involved for comparison. (k) and (l) show two examples of
graph-guided effects, please see text for details.

classic least squares problem:

P (t+1) = argmin
P

Lρ(X, Y,W (t+1), P,Q(t))

= argmin
P

‖P TX − Y ‖2F

+
ρ

2
‖P −W (t+1) + u

(t)
1 ‖2F

= (2XTX + ρI)−1[2XTY + ρ(W (t+1) − u(t)1)].

(6)

Please note that the terms (2XTX + ρI)−1 and 2XTY also need to be computed
only once.

Q sub-problem: The closed form solution of Q(t+1) can be obtained by:

Q(t+1) = argmin
Q
Lρ(W (t+1), P (t+1), Q)

= argmin
Q

λ‖Q‖2,1 +
ρ

2
‖Q−W (t+1) + u

(t)
2 ‖

2
F

= S2,1λ
ρ

(W (t+1) − ut2),

(7)

12

where S2,1
ε>0(·) represents the shrinkage operator [41].

In addition, the two scaled dual variables u1 and u2 need to be updated using
corresponding residuals:

u
(t+1)
1 = u

(t)
1 + P (t+1) −W (t+1)

u
(t+1)
2 = u

(t)
2 +Q(t+1) −W (t+1).

(8)

For clarity, we summarize the optimization procedure of the deep activation-
based attribute learning algorithm (DAAL) in Algorithm 1. The algorithm termi-
nates when (‖P (t) −W (t)‖F + ‖Q(t) −W (t)‖F) ≤ δ(‖P (0) −W (0)‖F + ‖Q(0) −
W (0)‖F) where δ = 10−5, or when the predefined maximal number of iterations
is reached.

Algorithm 1: DAAL
Input: Deep Activation Matrix X , Attribute Ground-truth Y
Initialization: Randomly initialize W (0),P (0),Q(0), Set u(0)1 and u(0)2 to be

zero matrices. ρ = 1.5,t = 0
while not converge do

update W (t+1) via Eq. (5)
update P (t+1) via Eq. (6)
update Q(t+1) via Eq. (7)
update u(t+1)

1 , u
(t+1)
2 via Eq. (8)

t = t+ 1
end
Output: Optimal solution W ∗ = W (t)

5. Experimental Results

Effectiveness of the Algorithm: To better understand our joint attribute ac-
tion attribute learning process, a simulation is conducted on five attributes with
1000 features. The semantic relationships among these attributes are shown in
Figure 4 (e). One can consider the attributes to be {1: “arm-upward motion”,
2: “arm-downward motion”, 3: “arm-motion”, 4: “arm below torso”, 5: “leg
motion”}. Learned weights for sample iterations are shown in Figure 4 (a) to (d),
from which we can observe that the semantic relationship among attributes are
more obvious with more iterations, note that warmer colors indicate higher abso-
lute weights and each column corresponds to the weight vector for an attribute.

13

Table 1: Attribute detection scores (mean average precision) and zero-shot action recognition rates
on three benchmark datasets, higher is better.

Tasks Attribute detection scores (MAP) Zero-shot learning (%)
Datasets MRA UTA MRP MRA UTA MRP
Methods Seen Unseen Seen Unseen Seen Unseen l2o l2o l2o

no-regularize 0.4057 0.4913 0.4880 0.3620 0.5305 0.5254 50.27 53.40 55.89
lasso 0.8283 0.5105 0.9473 0.4293 0.9894 0.6414 67.82 80.94 93.28

all-sharing [39] 0.4291 0.4794 0.6085 0.3989 0.5590 0.5809 49.48 73.07 81.82
group-lasso [21] 0.9356 0.5236 0.9051 0.4329 0.9985 0.6405 70.81 81.53 93.27

proposed 0.9667 0.5356 0.9687 0.4304 0.9994 0.6426 72.03 81.89 94.69

In (d), attribute “1”,“2” and “3” share many features, “3” and “4” share some
features and “5” barely shares features with other attributes.

In addition, a similar experiment is conducted on a real dataset, MSR Action
Dataset [22]. 284 samples are used with 2248 deep activations and the activation-
attribute map is visualized for sampled iterations in Figure 4 (f) to (i). In (k), we
show the learned pattern showing that “arm in-front-of torso” and “arm above
head” tend to share features with arm-related motions while (l) “arm below torso”
tends to share features with torso related motions. For comparison, the weights
learned on the same set of features without graph involved are illustrated in (j).

5.1. Experiment Setup and Datasets
Datasets: There are three datasets for depth based action recognition used

in the experiments, including the MSR Action 3D dataset [22] (MRA), the UTA
Action 3D dataset [26] (UTA) and the MSR Action Pairs dataset [11] (MRP).
The MRA dataset contains 20 gaming actions, such as “two arms waving” and
“golf swing”. Each action is performed by 10 different subjects and the subjects
perform each action 2 to 3 times in the same location. The UTA dataset contains
10 actions which cover movements of hands, arms, legs and upper torso. Each
action is performed by 10 different persons. The MRP dataset contains 6 pairs
of actions that each pair of actions has opposite temporal orders, such as “push
chairs” and “pulling chairs”. Different from the MRA dataset, UTA and MRP
allow the subjects moving around while performing actions. We define 30 action
attributes for MRA, 19 for UTA and 16 for MRP, where they share some common
attributes such as “arm-motion”, etc.

Deep Activations: For the MRA and MRP datasets, since the skeleton joint
locations are available, we apply all three streams of deep CNNs as illustrated in
Figure 3. For the UTA dataset, only the DMM-based 2D CNN and the video-
volume-based 3D CNN streams are applied because the skeleton joints are not
available. For the MRP and UTA datasets, since the temporal order plays an

14

important role and the 2D representations is temporal order invariant, multiple
CNNs are trained for 2D representations following the idea of temporal pyramid.
For thorough lists of action attributes, their relationships, and CNNs used in each
dataset, please refer to the appendices.

Baselines: For attribute detection and zero-shot learning, the proposed method
is compared to four related baselines. All empirical loss functions are same
as in Eq. (2) for uniformity. The four baselines include (1) “non-regularize”:
is single-task learning using least-squares loss without any regularization term.
(2)“lasso” is l1-regularized. (3)“all-sharing” is a multi-task learning method with
l2,1-regularized. (4) “group-lasso” is using the same regularize terms as in [21].
We set the default parameter values of λ and β for each baseline (if existed) to 1.

5.2. Attribute Detection and Zero-shot Action Recognition
This section shows the evaluation of the proposed joint attribute learning method

on all three datasets with two tasks: 1) attribute detection and 2) zero-shot action
recognition using only the learned attributes. For the first task, we employ two
splitting ways for training and testing sets: 1) “Seen”: this is the same as the
“cross-subject” splitting protocols as in [9], [26] and [11], where half of the sub-
jects are used for training and the remaining half for testing. All action classes
appear during training. 2) “Unseen”: the protocol introduced in [20] as “leave-
two-out” scheme, where all combinations of action classes are considered. Since
some combinations may contain attributes that do not appear in the training set,
we leave these combinations out and keep the rest. For the MRA dataset, there
are total of 104 combinations which fulfill this condition. For the UTA dataset,
there are 20 such combinations and for the MRP dataset there are 64 combina-
tions. Since the training on the 3D volumetric deep CNNs is time-consuming, we
only train CNNs for each combination using 2D spatial and 1D spatial models for
“Unseen” tasks, if available.

Table 1 shows the action attribute detection results in terms of mean average
precisions (MAP) and zero-shot action recognition in terms of recognition rates.
Our method outperforms other baselines in most tests. The poor results obtained
by “no-regularize” indicate that the training process is easy to overfit. We observe
that “group-lasso” performs stably during all tests while “all-sharing” and “lasso”
do not always perform well, which suggest that solely pursuing sparsity may result
in biased attribute estimations. Preserving the semantics in attributes is beneficial
for attribute detection. In most cases, our method significantly outperforms “group
lasso” which is proposed in [21]. This is because our method is more suitable in
modeling relationships among action attributes. The right panel of Table 1 lists

15

0

0.2

0.4

0.6

0.8

1

1D only
2D only
1D + 2D

Figure 5: The average accuracies of zero-shot action recognition test on the MRP dataset using
deep activations based on 1D, 2D and both representations.

the zero-shot learning action recognition results. Our method generalizes well in
all datasets when dealing with zero-shot action learning, which demonstrates that
our method learns better and more discriminative attribute vectors. By comparing
attribute learning results and zero-shot learning results, we notice that higher MAP
scores in attribute detection may not necessarily lead to better classification results
in zero-shot action recognition, especially when they are very close.

Figure 5 shows the class-wise average accuracies comparison of using deep
activations learned from 1D, 2D, and 1D+2D CNNs. We observe that deep ac-
tivations learned from multi-stream CNNs perform better than single streams. It
is interesting to observe that 2D model performs better than 1D model except for
action pair “lift up box” and “place down box”, since this pair of actions involves
drastic motion “bent”, which is easy for joint-based models.

5.3. DAAL Boosting Action Recognition
In this section, we compare the action recognition accuracies with some state-

of-the-art methods. The results for three datasets are shown in Tables 2, 3, and
4, respectively. In all experiments, the same protocols used in [9], [26] and [11]
are followed, where half of the subjects are used for training and the other half
of subjects for testing. We evaluate deep activations, learned action attributes and
their combination.

From Tables 2, 3, and 4, we can observe that the deep activation vectors are
very discriminative, which demonstrate the effectiveness of our multi-stream deep
architectures. Compared to previous features, the learned attributes are very com-
pact (only 16∼30 dimensions) and discriminative in action labels. By combining
the learned activations and attributes together, our proposed framework achieves

16

Methods Accuracy
Bag of 3D points [22] 74.70%
HOJ3D [5] 79.00%
STOP [13] 84.80%
ROP [10] 86.50%
Actionlet [9] 88.20%
HON4D [11] 88.89%
DSTIP [26] 89.30%
Pose Set [23] 90.00%
SNV [12] 91.64%
Moving Pose [6] 91.70%
deep act. (Ours) 92.30%
attr. (Ours) 87.18%
deep act. + attr. (Ours) 93.40%

Table 2: Comparison of action recognition rate on MSR Action 3D with other methods using the
protocol in [9].

Methods Accuracy
Posture Word[26] 79.57%
DSTIP [26] 85.80%
deep act. (Ours) 86.87%
attr. (Ours) 78.79%
deep act. + attr. (Ours) 87.88%

Table 3: Comparison of action recognition rate on UTA Action 3D dataset with other methods
using the protocol in [26].

the best performances on all three datasets, because the attributes transfer knowl-
edge from other classes to further complete the information for action classifica-
tion.

5.4. Evidence of Learning the Right Things
In this section, we conduct an experiment to show what the attribute learner

learned from deep activations. For visualization purpose, only 2D representa-
tions are used in this experiment. Given a 2D representation, we use a patch with
random values to occlude it and use pre-trained deep CNN to generate the deep
activation vector. Then the learned attribute classifier is employed to generate an
attribute vector. By comparing the generated attribute vector with the ground-truth
attribute vector, we propagate the deviation to the locations where the patch is. By

17

Methods Accuracy
Skeleton + LOP [9] 63.33%
[9] + Pyramid 82.22%
HON4D[11] 97.67%
SNV [12] 98.89%
deep act. (Ours) 98.89%
attr. (Ours) 87.22%
deep act. + attr. (Ours) 99.44%

Table 4: Comparison of action recognition rate on MSR Action Pairs dataset with other methods
using the protocol in [11].

densely sampling multi-scale occlusion patches, we can accumulate an error map,
which implies the responsible region of every attribute. Some results are shown
in Figure 6. By comparing results generated by “group lasso” (top) and ours, our
method locates more accurately for regions responsible for a specific action at-
tribute than “group lasso”. For example, in action “hand clapping”, the attribute
detector for “arm-motion” in “group-lasso” concentrates on the lower-body and
ours covers more on the hand area. This experiment further demonstrates that our
proposed method is more suitable for feature selection in action attribute learning
and it can locate the right part for a specific attribute.

6. Conclusion

In this paper, a novel joint action attribute learning algorithm for depth videos
is discussed. A multi-stream deep neural networks based attribute learning frame-
work is proposed. To model complex semantics in action attributes, a pre-defined
undirected graph is integrated in the formulation of attribute learning. Exten-
sive experiments demonstrate that the proposed method is effective in learning
action attributes for depth videos. Experiment results based on our method out-
perform existing state-of-the-art methods in action attribute detection, zero-shot
action recognition and conventional action recognition. Our future work will fo-
cus on exploring the dynamic semantic organization methods for attributes and
novel attribute discovery from deep activations.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grants EFRI-1137172 and IIS-1400802.

18

G
ro

u
p

 L
a

ss
o

 [
6

]
P

ro
p

o
se

d
Pick up Hand clapping Throw Sit down

Torso up-down motion Arm motion Arm pendulum-like motion Torso down-ward motion

Figure 6: Sample results showing the responsible regions for attributes from UTA dataset. The top
row shows the results generated by [21], the bottom row shows ours.

References

[1] J. Liu and M. Shah, “Learning human actions via information maximiza-
tion,” in CVPR, pp. 1–8, IEEE, 2008.

[2] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos in
the wild,” in CVPR, pp. 1996–2003, IEEE, 2009.

[3] K. K. Reddy, J. Liu, and M. Shah, “Incremental action recognition using
feature-tree,” in ICCV, pp. 1010–1017, IEEE, 2009.

[4] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning realistic
human actions from movies,” in CVPR, pp. 1–8, IEEE, 2008.

[5] L. Xia, C.-C. Chen, and J. Aggarwal, “View invariant human action recogni-
tion using histograms of 3d joints,” in CVPR Workshops, pp. 20–27, IEEE,
2012.

[6] M. Zanfir, M. Leordeanu, and C. Sminchisescu, “The moving pose: An effi-
cient 3d kinematics descriptor for low-latency action recognition and detec-
tion,” in ICCV, pp. 2752–2759, IEEE, 2013.

19

[7] R. Vemulapalli, F. Arrate, and R. Chellappa, “Human action recognition by
representing 3d skeletons as points in a lie group,” in CVPR, pp. 588–595,
IEEE, 2014.

[8] X. Yang, C. Zhang, and Y. Tian, “Recognizing actions using depth mo-
tion maps-based histograms of oriented gradients,” in ACM Multimedia,
pp. 1057–1060, ACM, 2012.

[9] J. Wang, Z. Liu, Y. Wu, and J. Yuan, “Mining actionlet ensemble for action
recognition with depth cameras,” in CVPR, pp. 1290–1297, IEEE, 2012.

[10] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, “Robust 3d action recog-
nition with random occupancy patterns,” in ECCV, pp. 872–885, Springer,
2012.

[11] O. Oreifej and Z. Liu, “Hon4d: Histogram of oriented 4d normals for activity
recognition from depth sequences,” in CVPR, pp. 716–723, IEEE, 2013.

[12] X. Yang and Y. Tian, “Super normal vector for activity recognition using
depth sequences,” in CVPR, 2014.

[13] A. W. Vieira, E. R. Nascimento, G. L. Oliveira, Z. Liu, and M. F. Campos,
“Stop: Space-time occupancy mail patterns for 3d action recognition from
depth map sequences,” in Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, pp. 252–259, Springer, 2012.

[14] S. Ohayon, W. A. Freiwald, and D. Y. Tsao, “What makes a cell face se-
lective? the importance of contrast,” Neuron, vol. 74, no. 3, pp. 567–581,
2012.

[15] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and
time series,” The handbook of brain theory and neural networks, vol. 3361,
1995.

[16] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using convolu-
tional networks,” arXiv preprint arXiv:1312.6229, 2013.

[17] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Dar-
rell, “Decaf: A deep convolutional activation feature for generic visual
recognition,” arXiv preprint arXiv:1310.1531, 2013.

20

[18] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in ECCV 2014, pp. 818–833, Springer, 2014.

[19] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in NIPS, 2014.

[20] J. Liu, B. Kuipers, and S. Savarese, “Recognizing human actions by at-
tributes,” in CVPR, pp. 3337–3344, IEEE, 2011.

[21] D. Jayaraman, F. Sha, and K. Grauman, “Decorrelating semantic visual at-
tributes by resisting the urge to share,” in CVPR, IEEE, 2014.

[22] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of 3d
points,” in CVPR Workshops, pp. 9–14, IEEE, 2010.

[23] C. Wang, Y. Wang, and A. L. Yuille, “An approach to pose-based action
recognition,” in CVPR, pp. 915–922, IEEE, 2013.

[24] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,
M. Cook, and R. Moore, “Real-time human pose recognition in parts from
single depth images,” Communications of the ACM, vol. 56, no. 1, pp. 116–
124, 2013.

[25] W. Li, Z. Zhang, and Z. Liu, “Expandable data-driven graphical modeling
of human actions based on salient postures,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 18, no. 11, pp. 1499–1510, 2008.

[26] L. Xia and J. Aggarwal, “Spatio-temporal depth cuboid similarity feature for
activity recognition using depth camera,” in CVPR, pp. 2834–2841, IEEE,
2013.

[27] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, “Large-scale video classification with convolutional neural networks,”
in CVPR, 2014.

[28] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical
invariant spatio-temporal features for action recognition with independent
subspace analysis,” in CVPR, pp. 3361–3368, IEEE, 2011.

21

[29] M. S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, and G. Mori, “A hi-
erarchical deep temporal model for group activity recognition,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1971–1980, 2016.

[30] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural network for
skeleton based action recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1110–1118, 2015.

[31] H. Rahmani, A. Mian, and M. Shah, “Learning a deep model for human
action recognition from novel viewpoints,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[32] A. Shahroudy, T.-T. Ng, Y. Gong, and G. Wang, “Deep multimodal feature
analysis for action recognition in RGB+ D videos,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.

[33] Y. Shi, Y. Tian, Y. Wang, and T. Huang, “Sequential deep trajectory de-
scriptor for action recognition with three-stream cnn,” IEEE Transactions
on Multimedia, 2017.

[34] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen
object classes by between-class attribute transfer,” in CVPR, pp. 951–958,
IEEE, 2009.

[35] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects by
their attributes,” in CVPR, pp. 1778–1785, IEEE, 2009.

[36] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev, “Panda:
Pose aligned networks for deep attribute modeling,” arXiv preprint
arXiv:1311.5591, 2013.

[37] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature
detectors,” arXiv preprint arXiv:1207.0580, 2012.

[38] F. Song, X. Tan, and S. Chen, “Exploiting relationship between attributes for
improved face verification,” CVIU, vol. 122, pp. 143–154, 2014.

[39] A. Evgeniou and M. Pontil, “Multi-task feature learning,” NIPS, vol. 19,
p. 41, 2007.

22

[40] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1,
pp. 1–122, 2011.

[41] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank rep-
resentation,” in ICML, pp. 663–670, 2010.

Appendices
A.1 Depth Video Representations and CNN Configurations
This section provides additional details for Sections 3 and 4 in the paper.

1D Representation: Although “1D representation” actually uses a 2D matrix
of dimension 120 × T for storage, we name it “1D representation” because we
treat each 120 × 1 vector as an element in the time sequence and apply 1D tem-
poral convolution on that sequence in CNN. For a given skeleton joint sequence
{K1, K2, .., KT}, where T is the temporal dimension of the sequence, each skele-
ton comprises of 20 skeleton joints, such as “head”, “chest”, “left shoulder”, etc.
For the ith joint in the tth skeleton, there are two coordinates in the image coor-
dinate system: Kx

t,i and Ky
t,i. Each joint is mapped to a 6-dimensional space as

following:
Kmotion
t,i = (Kx

t,i −Kx
t−1,i, K

y
t,i −K

y
t−1,i),

Koffset
t,i = (Kx

t,i −Kx
1,i, K

y
t,i −K

y
1,i),

Kstructure
t,i = (Kx

t,i −Kx
t,chest, K

y
t,i −K

y
t,chest),

(9)

where Kmotion
t,i , Koffset

t,i and Kstructure
t,i model the motion (translation of a specific

joint for two consecutive skeletons), offset (translation compared with its coun-
terpart in the initial skeleton), and structure (translation compared to the anchor
joint, i.e., chest, in current skeleton) information, respectively.

Since the lengths of videos for different datasets are different, we use T = 39
for the MSR Action 3D dataset [22] and T = 20 for the MSR Action Pairs dataset
[11]. Since the UTA Action 3D dataset [26] has no skeleton joint information, we
do not use 1D representation for this dataset.

2D Representation: As described in Section 3 in the paper, we employ Depth
Motion Maps (DMM) [8] for 2D representations. The DMM is computed for
each depth sequence and then normalized to the resolution at 128× 128. Since in

23

Push

Pull

Video Pyramid
Level 1

Level 2

Figure 7: Illustration of the temporal pyramid idea applied to 2D representations. Two actions
are listed as examples: “pull” and “push”, which are temporally opposite to each other. There is
almost no difference in the level 1 representation. In level 2 representation, the temporal orders of
the arm motion directions are manifested.

the UTA Action 3D dataset and the MSR Action Pairs dataset, some action pairs
are composed of two opposite actions in temporal orders (e.g., “pull, push”, “sit-
down, stand-up”,) we employ the idea of temporal pyramid to generate additional
2D representations as illustrated in Figure 7.

In Figure 7, we show an example of the action pair “pull” and “push” from
the UTA Action 3D dataset, performed by the same subject. Level 1 representa-
tions (where DMMs are computed from whole videos) show almost no difference
between these actions. While level 2 representations (where the first DMM is
computed from the first half of the video and the second from the rest half) show
the temporal order as “reaching out the arm” in action “push” and “drawing back
the arm” in action “pull”.

In our work, if temporal pyramid is applied, the temporal grids are sampled
evenly without overlapping. Each level generates a separate 2D representation
which is rescaled to 128×128. For example, if the depth videos from a dataset use
three levels of 2D representations as well as 1D and 3D representations, total of
five representations are generated and each of them is fed into a CNN individually.

3D Representation: As described in Section 3 in the paper, the 3D rep-
resentations are the depth video volumes which resolutions are normalized to

24

128 × 128 × T . The value of T in each dataset is consistent with the value in
the 1D representations for MSR Action 3D dataset and MSR Action Pairs dataset.
For UTA Action 3D dataset, we set T = 20.

Leaning parameters For all three representations, we used the same set pf
hyper-parameters, i.e., learning rate = 1e−4; training stops at iteration 100K or
training accuracy increases for 5K steps, whichever is earliest; dropout is applied
as show in Figure 2.

In Table 5, we list the detailed information of CNN applied in each dataset
for each task and the final dimensions of deep activation vectors. Temporal pyra-
mid organizations are only applied for 2D representations. If a particular task
uses temporal pyramid, the levels are also listed. “Level 1” indicates the whole
video sequence, “level 2” indicates the video is segmented to two even and non-
overlapping segments, and so on.

Table 5: Details of CNN configurations applied in each dataset and for each task. Blue ticks indi-
cate the model is employed in corresponding task and red crosses indicate otherwise. If temporal
pyramid is employed, levels of pyramid are shown in the next column. The dimensions of final
deep activation vectors are shown in the last column.

Dataset Task 1D 2D 3D Pyramid Level(s) Deep Act. Dimension

MRA
Seen 4 4 4 8 N/A 2248

Unseen 4 4 8 8 N/A 1224

UTA
Seen 8 4 4 4 1,2 3072

Unseen 8 4 8 4 1,2 2048

MRP
Seen 4 4 4 4 1,2,3,4 5320

Unseen 4 4 8 4 1,2,3,4 4296

A.2 Action Attribute Definitions and Relationships
Tables 6, 7 and 8 list the action attributes defined in our paper for the MSR Ac-
tion 3D, the UTA Action 3D, and the MSR Action Pairs datasets respectively. In
each table, columns represent actions and rows represent action attributes. Active
attributes are labeled with blue ticks for each action. The relationship graphs for
the attributes are shown in Figures 8, 9 and 10.

Please note that when we implement the method of “group-lasso” for compar-
ison, the grouping of action attributes is obtained in such a manner that attributes
in each green rectangle are grouped together. All other attributes are considered
as separate groups. For example, in Figure 8, “single arm motion” and “dou-
ble arm motion” are considered as one group and “arm pendulum-like motion” is

25

considered as another groups.

Table 6: Attribute defined for MSR Action 3D Dataset. Each column is an action and each row is
an attribute. There are in total 30 attributes defined for 20 actions. Blue ticks indicate presences
of attributes in actions.

hi
gh

ar
m

w
av

e
ho

riz
on

ta
l a

rm
w

av
e

ha
m

m
er

ha
nd

ca
tc

h
fo

rw
ar

d
pu

nc
h

hi
gh

-th
ro

w
dr

aw
x

dr
aw

tic
k

dr
aw

ci
rc

le
ha

nd
cl

ap
tw

o
ha

nd
w

av
e

sid
e b

ox
in

g
be

nd

fo
rw

ar
d

ki
ck

sid
e k

ic
k

jo
gg

in
g

te
nn

is
sw

in
g

te
nn

is
se

rv
e

go
lf-

sw
in

g
pi

ck
-u

p
an

d
th

ro
w

arm pendulum-like motion 4 4 4 4
arm-motion 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

arm-forward motion 4 4 4 4 4 4 4 4
arm horizontal motion 4 4 4 4 4 4

arm verticle motion 4 4 4 4 4 4
raise arm 4 4 4 4 4 4 4 4 4 4 4 4 4 4

put down arm 4 4 4 4 4 4 4 4 4 4 4 4 4 4
draw-x 4

draw-tick 4
draw-o 4

arm in-front-of torso 4 4 4 4 4 4 4 4 4
hand above head 4 4 4 4 4 4 4 4
hand below torso 4 4 4 4

torso up-down motion 4 4 4
torso twist 4 4 4 4

bent 4 4 4
single-arm motion 4 4 4 4 4 4 4 4 4 4 4 4

double-arm motion 4 4 4 4 4
leg pendulum-like motion 4 4

leg side motion 4
leg forward motion 4

leg motion 4 4 4 4
repeated 4 4 4 4

symmetric-t 4 4 4 4 4 4 4
symmetric-y 4 4 4
side-motion 4 4 4 4 4 4

forward-motion 4 4 4 4 4 4 4 4 4 4
full-body motion 4 4 4 4 4 4 4

one-phase motion 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
coordinative motion 4 4

26

Table 7: Attribute defined for UTA Action 3D Dataset. Each column is an action and each row is
an attribute. There are in total 19 attributes defined for 10 actions.

w
al

k
sit

D
ow

n
sta

nd
U

p
pi

ck
U

p
ca

rry
th

ro
w

pu
sh

pu
ll

w
av

eH
an

ds
cl

ap
H

an
ds

arm pendulum-like motion 4 4 4

arm-motion 4 4 4 4 4 4 4

arm horizontal motion 4 4 4 4

arm vertical motion 4 4

hand inward motion 4 4 4

hand outward motion 4 4 4 4

arm in-front-of torso 4

hand above head 4

hand below torso 4

torso up-down motion 4 4 4

torso upward motion 4 4

torso downward motion 4 4

body transition 4 4

bent 4

single-arm motion 4 4 4

double-arm motion 4 4 4

leg motion 4 4 4 4 4

full-body motion 4 4 4 4 4

with object 4 4 4 4 4

27

Table 8: Attribute defined for MSR Action Pairs Dataset. Each column is an action and each row
is an attribute. There are in total 16 attributes defined for 12 (6 pairs of) actions.

pi
ck

up
bo

x
pu

t d
ow

n
bo

x
lif

t u
p

bo
x

pl
ac

e d
ow

n
bo

x
pu

sh
ch

ai
r

pu
ll

ch
ai

r
w

ea
r h

at
ta

ke
of

f h
at

pu
t o

n
ba

ck
pa

ck
ta

ke
of

f
sti

ck
po

ste
r

re
m

ov
e p

os
te

r

reach out arm 4 4 4 4 4 4 4 4

draw back arm 4 4 4 4

hold object 4 4 4 4 4 4 4 4 4 4

hand below torso 4 4 4 4

hand above head 4 4

torso motion 4 4 4 4 4 4 4 4

bent 4 4 4 4

leg motion 4 4

body translate 4 4

horizontal motion 4 4 4 4

vertical motion 4 4 4 4 4 4 4 4

withdraw object 4 4 4 4 4 4

deposit object 4 4 4 4 4 4

object-size small 4 4

object-size medium 4 4 4 4 4 4 4 4

object-size large 4 4

28

arm pendulum-like
motion

arm in-front-of torso

arm forward motion

arm horizontal motion

arm vertical motion
raise arm

put down arm

draw-x draw-o

draw-tick

arm above head

arm below torso

arm motion

single arm
motion

double arm
motion

torso up-down motion

bent torso twist

one-phase motion

Coordinative motion

leg-pendulum-like
motion

leg side motion

leg forward motiona

leg motion

repeated

symmetric-t

symmetric-yside-motion

forward-motion

full-body-motion

Figure 8: Semantic relationships among action attributes for the MSR Action 3D Dataset. Every
attribute in the same rectangle is connected to each other. For clarity, we only show connections
across different rectangles with solid lines. For example, action attribute “arm-motion” is con-
nected to each attribute in the bottom rectangle consisting of “single arm motion” and “double
arm motion”; “leg forward motion” is connected to “forward motion”.

29

arm pendulum-like motion

arm-motion

arm horizontal motion

hand inward motion

hand outward motion

arm in-front-of torso

hand above head

hand below torso

torso up-down motion

torso upward motion

torso downward motionbody transition

bent

single-arm motion

double-arm motion

leg motion

full-body motion with object

arm vertical motion

Figure 9: Semantic relationships among action attributes for the UTA Action 3D Dataset.

reach-out arm

draw-back arm

hold object

hand below torso

hand above head

torso motion

bent

leg motion

body translate

horizontal motion

vertical motion

deposit object

withdraw object

object-size small

object-size medium

object-size large

Figure 10: Semantic relationships among action attributes for the MSR Action Pairs Dataset.

30

