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a b s t r a c t

The recent successful commercialization of depth sensors has made it possible to effectively capture depth

images in real time, and thus creates a new modality for many computer vision tasks including hand ges-

ture recognition and activity analysis. Most existing depth descriptors simply encode depth information as

intensities while ignoring the richer 3D shape information. In this paper, we propose a novel and effective de-

scriptor, the Histogram of 3D Facets (H3DF), to explicitly encode the 3D shape information from depth maps.

A 3D Facet associated with a 3D cloud point characterizes the 3D local support surface. By robust coding and

circular pooling 3D Facets from a depth map, the proposed H3DF descriptor can effectively represent both 3D

shapes and structures of various depth maps. To address the recognition problems of dynamic actions and

gestures, we further extend the proposed H3DF by combining it with an N-gram model and dynamic pro-

gramming. The proposed descriptor is extensively evaluated on two public 3D static hand gesture datasets,

one dynamic hand gesture dataset, and one popular 3D action recognition dataset. The recognition results

outperform or are comparable with state-of-the-art performances.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

3D shape representation is a significant component of object cat-

gorization and action recognition. Compared to 2D image-based

ppearance representation, 3D depth-map-based representation is

ore robust to viewpoint and pose changes and holds great promise

or modeling physical-related attributes such as positions, poses,

hapes, and scene contexts. Over the last few years, the success-

ul commercialization of depth sensors and corresponding devel-

pment toolkits have made 3D shape information more accessible

or computer vision applications [4,8,9,11]. Compared to traditional

GB cameras, RGBD cameras provide more information about object

izes, shapes, poses, and positions and capture strong boundary clues

nd spatial layouts, especially in environments with cluttered back-

rounds and large illumination changes. The depth sensors have mo-

ivated recent research efforts to explore object and human gesture

ecognition by using 3D information [5,6,10]. However, these meth-

ds for 3D depth-map-based hand gesture recognition have only ap-

lied the existing 2D feature descriptors to the depth images, such as

abor filter bank [5] or contour matching [6].
✩ This paper has been recommended for acceptance by Tinne Tuytelaars.
∗ Corresponding author.
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In order to directly and effectively capture and encode 3D shape

nformation from depth maps, we propose a novel characteristic de-

criptor named Histogram of 3D Facets (H3DF). In 3D depth maps, a

D cloud point together with its surrounding points is defined as a

3D Facet”, which includes the informative local surface pattern sur-

ounding the cloud point. Each facet is modeled by a small plane.

hen a spatial centric pooling strategy is applied to organize the

ollection of facet planes based on their normal orientations to de-

cribe the current region of interest (ROI), which forms the final H3DF

escriptor. In applications of hand gesture recognition and human

ctivity recognition, a region of interest may be an image patch de-

cribing a hand gesture or a body part. To integrate the static depth

ap descriptor with temporal information in depth video sequences,

e propose two approaches: (1) we approximate the depth video se-

uence as an ordered collection of a number of representative frames.

he optimal collection of representative frames is selected by min-

mizing a sequential loss function defined by using only selected

rames to represent the whole video using Dynamic Programming

DP). (2) We capture and represent the local temporal structure pat-

erns via N-gram modeling. The N-gram model can be viewed as a

ollection of “visual word transitions,” which is insensitive to differ-

nt temporal structures caused by different execution rates.

Compared to existing depth-map descriptors, our proposed H3DF

epth-map descriptor has three advantages: (1) it explicitly captures

he 3D shape patterns conveyed by depth maps. (2) It applies a com-

act representation to describe a depth map compared to other 2D

http://dx.doi.org/10.1016/j.cviu.2015.05.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.05.010&domain=pdf
mailto:czhang10@citymail.cuny.edu
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feature descriptors, e.g. Histogram of Orientated Gradients (HOG) [1].

3) Compared to existing surface normal-based descriptors such as

HONV [20] and HON4D [18], H3DF utilizes a circular grid for spatial

pooling to encode more information such as shape and local depth

patterns, which implicitly manifests the importance of the center

part and makes the descriptor more robust to external contour defor-

mations. Compared with the earlier conference version of this paper

[21] which only demonstrated the effectiveness H3DF for static hand

gesture recognition, we further extend the proposed H3DF descrip-

tor to handle temporal sequences for recognizing dynamic hand ges-

tures and human activities. By utilizing dynamic programming-based

temporal segmentation and N-gram-based representation [22], we

generate more robust representations for depth video sequences by

combining H3DF with temporal structure information. We evalu-

ate the proposed descriptor on two public datasets of hand ges-

ture recognition: the NTU hand digits dataset [6] and the ASL fin-

ger spelling dataset [5]; one dynamic hand gesture data set: the MSR

3D gesture dataset [16], and one popular action recognition dataset:

the MSRAction3D [4]. The recognition results on all the tasks demon-

strate that our approach outperforms or is comparable to state-of-

the-art methods.

The rest of this paper is organized as follows. Section 2 reviews

the related work on depth map-based human action and hand ges-

ture recognition. Section 3 describes the procedures of computing

the H3DF descriptor and how to apply H3DF to static image-based

hand gesture recognition. Section 4 presents the modeling and im-

plementation details of dynamic programming-based temporal seg-

mentation and N-gram-based temporal pattern exploration with the

proposed H3DF. Section 5 provides the implementation of H3DF for

sparse representation-based hand gesture and human action recogni-

tion. Experimental results and discussions are presented in Section 6.

Finally, we conclude the remarks of this paper in Section 7.

2. Related work

Due to the explicit 3D structure representation of objects and hu-

man body parts from depth maps, many research efforts have been

made in depth map-based hand gesture recognition and human ac-

tivity recognition. This is especially true since the release of low-cost

3D sensors (e.g. Microsoft Kinect) and associated software develop-

ment kits (e.g. Microsoft Kinect SDK) and the success in real-time

body joints position estimation [9]. Early research has focused on

applying existing 2D image representations on 3D depth data, such

as bag-of-3D-points by Li et al. [4], which samples representative

3D cloud points from depth maps for action recognition; Histogram-

of-3D-gradient-orientations (derived from Histogram-orientation-

gradients (HOG) [1]); and extending 2D interest point detectors to

depth maps [33]. In [13], projections of 3D depth maps onto three

2D orthogonal planes are stacked as three depth motion maps, and

then HOG descriptors were computed from the depth motion maps

as the global representations of human actions. This method trans-

fers a sequence of 3D depth maps to a 2D image that is further treated

as a gray image without explicitly encoding 3D shape information.

Recently, researchers have paid more attention to intrinsic features

from depth images. Surface-normal, as a natural and explicit descrip-

tion of a local 3D volume, has been used in depth image descriptors

[18,20] and graphics [31], and has demonstrated its potentials in ac-

tivity recognition [18] and object recognition [20]. Our work builds

upon this technique.

Hand gestures serve as a significant component of human com-

puter interaction (HCI) because they convey information that covers

multiple function categories in communication [12]. As a first step

of hand gesture recognition, hand detection and tracking is either

done by skin color or shape-based segmentation, which can be in-

ferred from the given RGB images [2]; or directly resolved by leverag-

ing the depth information [24,34,35]. Based on detection and track-
ng of hand regions, both dynamic and semantic features are ex-

racted and utilized for gesture recognition [12]. Because of its in-

rinsic vulnerability to background clutter and illumination variation,

GB-based hand gesture recognition usually requires a clean back-

round, which limits its application. Bergh and Gool [10] success-

ully used a Time of Flight (ToF) camera combined with RGB camera

o recognize four simple hand gestures. In [6], Ren et al. employed

template matching-based approach and recognized hand gestures

sing a histogram distance metric of finger-Earth mover’s distance

ith near-convex estimation [7]. Pugeault and Bowden [5] employed

abor filter features at different scales and orientations to recognize

haracters in American Sign Language (ASL). However, none of these

ethods makes use of the rich geometry information conveyed by

he depth maps.

Our proposed method can be categorized as a crafted feature

everaging surface normals. Extensive experiments demonstrate that

ur method, with robust coding and two-dimensional circular pool-

ng, can capture the ample 3D surface geometry information and is

iscriminative in the representation of static or dynamic hand ges-

ure recognition and action recognition. Compared to previous work,

ur descriptor is as discriminative as the learned features but has the

dvantage of keeping a very compact (low-dimensional) size.

. Histogram of 3D Facet (H3DF)

The computation procedures of the new 3D feature descriptor,

istogram of 3D Facets (H3DF) is illustrated in Fig. 1. Given a depth

mage, we first delimit its in-plane rotation by normalizing the dom-

nant orientation of the depth image. Then for each 3D point of the

mage associated with its neighbor points (a 3D Facet), we compute

ts normal vector and then encode the normal vector to represent the

urrent 3D Facet. The encoding is processed by projecting the nor-

al vector onto three orthogonal planes (i.e. xy, yz, xz) and quantizing

ach projection. To generate a compact description of the whole im-

ge, we design a concentric spatial pooling to organize all encoded 3D

acets into a compact descriptor vector to capture the spatial layout

nd local structure of the depth image.

.1. Gradient-based orientation normalization

One challenge of hand gesture recognition is the large appearance

ariations when hand rotates. To make H3DF rotation invariant, we

onduct gradient-based orientation normalization for an input depth

mage or patch. For each depth patch as shown in Fig. 2(a), the domi-

ant orientation (denoted as θ ) of the hand depth patch is first com-

uted based on its shape and gradients. We then rectify the 3D cloud

oints set (denoted as P) to obtain orientation-corrected 3D cloud

oint set P′ of its salient orientation with the following equation:

′ = PR(θ )T , (1)

here P and P′ are K × 3 matrices as the collection of K 3D points;

(θ )T = R(−θ ) represents an in-plane correction rotation matrix.

Let D be the depth image patch before orientation correction, we

efine a pixel-to-point mapping I(·), as it takes a 2D coordinate as

nput and outputs a 3D coordinate, where P = I(D), and its inverse

apping I−1(·), vice versa, where D = I−1(P). Together with Eq. (1),

e have the corrected patch as:

′ = I−1(I(D)R(θ )T ), (2)

hich provides the orientation correction of a depth image patch of

ominant orientation θ . As illustrated in Fig. 2(a), depth images (D) of

he same hand gesture may significantly vary due to rotation. Dom-

nant orientations (see Fig. 2(b)) can be detected based on Gradient

onsensus to rectify the images to more similar corrected images (D′)
s shown in Fig. 2(c).



C. Zhang, Y. Tian / Computer Vision and Image Understanding 139 (2015) 29–39 31

Fig. 1. Pipeline of the proposed Histogram of 3D-Facets (H3DF) modeling for single depth frame. H3DF utilizes surface normals and centric spatial pooling together to encode a

depth frame.

(a)

(b)

(c)

Fig. 2. Examples of gradient-based orientation correction results of hand gestures. (a)

Significant appearance variations of the same hand gesture when hand rotates. (b) Es-

timated dominant orientations are illustrated as yellow orientated circles. (c) Orienta-

tion normalized depth patches with removed appearance variations.For interpretation

of the references to color in this figure legend, the reader is referred to the web version

of this article.
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In order to estimate the dominant orientation θ and achieve in-

lane rotation invariance, we compute the dominant depth gradient

rientation as the normalization used by most local image descrip-

ors [3]. A dominant orientation corresponds to the largest bin of the

istogram of gradient angles, weighted by gradient magnitudes and

moothed by a Gaussian filter. As suggested in [3], each local maxi-

um bin with a value above 80% of the largest bin is retained as well.

hus, each depth image might be associated with multiple orienta-

ions which are considered as multiple samples in our training set. As

or a testing image with multiple dominant orientations, to avoid de-

ision ambiguity, we choose only the key angle corresponding to the

argest gradient angle bin.

.2. Defining a 3D Facet

To model a 3D object in a depth image, in addition to the outer

ontour, 3D surface properties and different shape patterns such as

umps and grooves provide rich and discriminative information. In

ome cases, the outer contour cannot be defined, and features inside

he contour convey relative plentiful details. Unlike previous research

y applying existing 2D visual descriptors to obtain a compact rep-

esentation we propose a novel 3D surface feature descriptor which

an directly represent the rich information conveyed by 3D object

urfaces.

As shown in Fig. 3, we propose 3D Facets to model the shape de-

ails of a 3D surface. A 3D Facet associated with a cloud point q is de-

ermined by a local support surface defined by its surrounding cloud

oint set fp:

fp = {q′|q, q′ ∈ Q,‖q′ − q‖p ≤ σ }, (3)

here σ is a threshold to control the size of the support region

round the cloud point q, applying a locality constraint that only
eighbor points can contribute to fq. We then fit a plane Sq accord-

ng to fq such that the sum of distances between each point in fq and

he fitted plane is minimized. The normal vector n of a fitted plane

q is then calculated as the representation of a 3D Facet. The normal

tting can be computed as a least-squares solution to the stack of N

quations of the form nT pi = 1 where N is the number of cloud points

i in the 3D Facet fq. When we set N equal to 4, there is an analytical

olution for the normal, which will be discussed in later sections.

Additionally, in Eq. (3), the parameters p together with threshold

can jointly control the granularity of sampling surrounding points

f q. In this work, we utilize two particular forms of them:

• (p, σ ) = (1, 1): Bi-linear (analytical solution) or 4-neighbor (least-

squares solution)
• (p, σ ) = (inf, a): a × a patch. (least-squares solution)

In the first case, the difference between “Bi-linear” and “4-

eighbor” is that the former one excludes the center point (i.e., q)

here the latter one does not. In the second case, the Chebyshev (l∞)

istance is used to define the supporting area as a patch in the cor-

esponding 2D depth map. The difference of different selections of

p, σ ) will be discussed in Section 3.4.

.3. 3D Facet coding

A 3D Facet can be represented by using [nx, ny, nz, d]T, where the

rst three coefficients are the normal vector n = [nx, ny, nz]T of the

acet plane and the forth attribute d is the Euclidean distance from

rigin point to the plane. Although all four coefficients are used to

x a plane, in this paper we focus on the orientation rather than the

istance of the plane, thus d is not coded and is highly dependent on

he distance of an object to a camera. Therefore, a 3D Facet is only

oded by its normal vector. The procedure of coding is angular-based

sing the orientation of each 3D Facet as illustrated in Fig. 3 (b–d).

First, the normal vector (the vector n colored in red in Fig. 3(b))

s projected into three orthogonal planes, i.e., xy, yz, and xy planes as

hown in Fig. 3(c and d). Since the 3D point set is mapped from a 2D

epth image, every cloud point corresponds to a pixel in the 2D depth

mage. Consequently, all the 3D points actually locate in front of the

urface they formed (namely, the normal is pointing outward). So we

an safely assert that all the normal vectors are pointing outward, in

ther words, their z-attributes are always non-negative.

Then, we evenly deploy m (for xz and yz planes) and n (for xy

lane) bin centers on different planes. Each normal projection votes

o two nearest bin centers (indices are colored red in Fig. 3(c and d)).

he benefit of this local soft assignment strategy over a hard assign-

ent (in which each normal projection only votes to the nearest bin

enter) is that the loss of information can be significantly reduced and

hus the coded feature vector is much more informative. The weights

f each normal vector assigned to the two nearest bin centers are

iven as:

i = sinθ j

�ksinθk

, i, j, k ∈ I2, j �= i, (4)

here θ i is the angular offset between the normal projection and the

in center indexed i. I is the bin center indices that composed by
2
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Fig. 3. (a) Computing the 3D Facet Sq of a cloud point q according to its neighbor cloud point set fq . The pink plane is the fitted plane Sq and the blue region indicates the local

constraint. The normal vector n is used as the representation of the 3D Facet. (b) The normal vector n is encoded by projecting onto three orthogonal planes in (c) (xz and yz) and

(d)(xy). As nz is non-negative, the projected normal orientation ranges in xz and yz (c) are both [0, π ], but [0, 2π ] in the x − y plane (d). A soft assignment strategy is employed to

weight the two nearest orientation bins as shown in (d).For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.

Algorithm 1: DP temporal segmentation, (c, Ŝ) = DP_TS(V, K).

Input: video sequence V, number of partitions K

Output: optimal partitions Ŝ, cost c

1 if K==1 then

2 Ŝ = ∅;

3 c = ∑
v∈V ‖v − μ(V)‖2

2;

4 return Ŝ, c

5 end

6 c = ∞;

7 for i ∈ {1, . . . , |V| − 1} do

8 (c1, S1) = DP_TS(V(1 : i), K − 1);

9 (c2, S2) = DP_TS(V(i + 1 : end), 1);

10 if c1 + c2 < c then

11 c = c1 + c2;

12 Ŝ = [S1, i, S j];

13 end

14 end

15 return c, Ŝ
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1 http://media-lab.engr.ccny.cuny.edu/˜zcy/#Code4Fun
two nearest bin centers (c1, c2). Therefore the encoded 3D Facet is

represented as a vector of length 2m + n, in which there are up to

six non-zero elements.

3.4. 3D Facet pooling to generate H3DF

Once all encoded 3D Facets are computed, we design a concentric

spatial pooling scheme to group these 3D Facets from the image patch

into a compact H3DF descriptor as shown in Fig. 4. Another perspec-

tive of the proposed spatial pooling is to capture the information of

facets arrangement coordinated in the center. In this phase, we ad-

dress the boundary information as in [6].

For a spatial grid centered at (px, py), the bin index (a, b) of a pixel

in the depth image D(i, j) can be determined by the spatial distance

‖i − px, j − py‖2 and the angle arctan(( j − py)/(i − px)), where a ∈
[1, A] and b ∈ [1, B] and A, B are the spatial bin dimensions. Therefore,

the dimension of the final H3DF descriptor of the image patch is A ×
B × (2m + n).

The proposed pooling strategy is inspired by the invariant prop-

erty of shape context in modeling rotations and scales of exterior

contours [32]. However, our usage of circular bins is beyond mod-

eling exterior contours. Circular bins intrinsically put more weight in

modeling interior parts of a depth object and thus it enables H3DF to

capture more local depth patterns such as holes and bumps. Besides,

bigger outer bins are capable to capture the shape information and

robust to subtle shape variants. The usage of circular bins is a key dif-

ference between other surface normal-based descriptors [18,20] by

discriminating information intrinsically from interior parts and exte-

rior parts of a depth object.

4. Representing temporal sequence using H3DF

Traditionally, Temporal Pyramid (TP) is used to extend an im-

age representation model (e.g., bag of words) to represent a video

sequence. However, TP is sensitive to time, speed, and state-

composition variances within each video sequence. The phenomenon

can be intuitively illustrated in Fig. 6. In particular, if two sequences

share very similar contents but are not well aligned, they will be far

from each other in the metric space generated by temporal pyramid

matching.

To overcome this issue and adapt H3DF to accommodate var-

ied temporal structures, we propose two methods: 1) Dynamic

Programming-based (DP) temporal segmentation to dynamically par-

tition a video into cohesive sub-sequences and 2) N-gram bag-of-

phrase-based representation [Ngram].
.1. Dynamic programming-based representation

The pipeline of DP-based representation is illustrated in Fig. 5. Let

= {vec(I1), vec(I2), . . ., vec(It )} be a sequential set of t frames with

ach frame Ii of dimension M × N, i.e., vec(Ii) ∈ R
d, Ii ∈ R

M×N . A K-

egmentation S of the video is a partition S of the frames into K non-

verlapping contiguous segments, i.e., S = (s1, . . . , sk), s.t.
⋂k

i=1 si =
,
⋃k

i=1 si = V . The optimal segment Ŝ is defined as:

ˆ = argminS

(∑
s∈S

∑
t∈s

‖t − μs‖2
2

)
, (5)

here μs is the mean of samples in each segment s.

This optimization problem is well-known to be efficiently solved

y dynamic programming [15]. We implement the DP-based tempo-

al segmentation in a recursive manner, as is detailed in Algorithm 1.

he algorithm can be practically accelerated by using a cache to store

ntermediate solutions to sub-problems. The source code is available

t our research website 1.

This description is robust to dynamic warping of a video sequence.

or example, as shown in Fig. 6, since the initial hand gesture occu-

ies 50% of total frames, the evenly TP-based method generally as-

igns a large weight to the initial pose. However, because the overall

http://media-lab.engr.ccny.cuny.edu/~zcy/\043Code4Fun
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(a) (b) (c)

Fig. 4. Illustration of the first phase spatial pooling for creating H3DF descriptors. The region of interest of the depth image or patch is divided into 4 × 8 bins which are determined

by both radial and angular offsets. (a), (b), and (c) are from three different hand gestures. Red line segments illustrate angular bin boundaries, yellow circles illustrate off-center

radial distance bin boundaries, and green line segment shows the normalized patch orientation.For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.

Fig. 5. Pipeline of the proposed DP-based video sequence representation example. DP-based temporal segmentation is used to partition each depth video sequence into a fixed

number of segments, while the sum of within-segment intra-variances is minimized. A compact video representation is the concatenation of pooled H3DF codes of all segments.

Fig. 6. For a depth video sequence, dynamic programming-based temporal segmentation computes an optimal segmentation in terms of minimum representative error. We

illustrate the idea with a dynamic American Sign Language (ASL) gesture for character “j” and two segmentations with number of segments, K, set to 3 (middle row) and 4 (bottom

row) respectively. In particular, the DP-based segmentation is a better representation than the temporal pyramid since it can overcome the uneven gesture distribution, e.g. in the

example case, initial pose occupies almost 50% of total frames.
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epresentative error is minimized (Eq. 5) in our proposed DP-based

emporal segmentation, only the most representative frames are se-

ected, while dynamically tuning the partition boundaries and thus

he selected representatives are more informative and generic.

.2. N-gram bag-of-phrase based representation

In the N-gram bag-of-phrase model, instead of building a global

epresentation of the whole temporal structure of a time sequence T,

e attempt to discover local patterns of the time sequence. Using the

ame notation as in the previous section for DP, the time sequence

= (t1, . . . , tn) is characterized by its local N-grams, i.e., the tuples

onstructed by every consecutive N signals. For example, if N = 2, the

i-grams of the time sequence are {(t1, t2), (t2, t3), . . . , (tn−1, tn)}.

The N-gram model has been successfully used in speech recog-

ition and natural language processing [22]. In computer vision,

he N-gram model is used to generate bag-of-phrases model [23]

nd is effective in image retrieval because it conveys more tem-

oral information than the traditional bag-of-words model. In our

ork, as shown in Fig. 7, we propose to use the bag-of-phrases

odel to represent video sequences, with each N-gram (a visual and

hrase) describing a local pattern of the action. In particular, with

= 2, let B = {b1, b2, . . . , bt} be the sequence of image (frame) rep-

esentations, b is the bag-of-visual-words representation of frame
i
, the sequence B is then modeled as a non-sequential set of tuples

(b1, b2), (b2, b3), . . . , (bt−1, bt )}. Each tuple (bi, bi+1) is simply rep-

esented by their concatenation [bT
i
, bT

i+1
]T . To fix the dimensions of

epresentations of video sequences, we compute the codewords of

he set of concatenations using Sparse Coding and then use a max-

ooling to generate a histogram of codewords for each video.

. Implementation details

To evaluate the effectiveness of the proposed H3DF, we applied

t to the applications of hand gesture recognition and human action

ecognition. Here, we introduce the implementation details of H3DF.

.1. Pooling center selection

In both hand gesture representation and human action recogni-

ion, how to select the center point (px, py) for the hand or a body part

s an essential step which can greatly affect the recognition. An ideal

enter point should be relatively stable for similar objects and robust

o minor shape changes. One option is to use the centroid of the con-

ex hull of a shape. We prefer to find a center on the object rather

han on the background, while centroid cannot be ensured when the

hape is neither convex nor near-convex (as shown in Fig. 8). There-

ore, we propose to use an interior center instead. The procedure of
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…

f1f2f3 ft

frame 
level 

coding

N-gram 
aggregation

…

{(       ), 
 (       ),  }…

video level 
coding

Fig. 7. Illustration of a two-layer bag-of-phrases model for video description. Firstly, a bag-of-words model based on K-means is used to generate a representation vector for each

frame in the video (frame level coding). Secondly, a bag-of-phrases model based on Sparse Coding is used to generate a representation vector for the video (video level coding). The

final output is a histogram of N-gram codewords.

(a) (b) (c) (d)
Fig. 8. (a) and (c) are two depth images of hand gestures and associated convex hulls. (b) and (d) are the Euclidean distance transform maps of (a) and (c), respectively. For

near-convex shapes such as in (a), the centroid and interior center are similar, but for non-convex shapes such as in (c), the interior center can be ensured to locate within the

object and robust to extensions and branches, such as fingers. Brightness of pixels in distance maps (b,d) indicates the Euclidean distance from the nearest boundary pixel to the

corresponding pixel locations.
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computing the interior center is as: first the depth map is transferred

to a binary map(setting foreground pixels as 1 and background pix-

els as 0), second Euclidean distance transform [17] is applied on the

binary map and the “brightest” point is selected as the interior cen-

ter. The benefit of selecting the interior center rather than the cen-

troid is that the center locates inside the boundary and the major part

thus is more robust to minor shape changes such as extensions and

branches.

5.2. Normal estimation methods

Here we discuss two estimation methods of the normal vector of

a 3D Facet: bilinear estimation (analytical) and least-squares (plane-

fitting) estimation. Bilinear normal estimation is suitable for a grid-

organized 3D point set (or 2D depth image). Similar to bilinear inter-

polation, it takes the four neighbors and calculates the two orthogo-

nal line segments that each connects two of them. Given the 3D Facet

whose center is at (i, j, di, j), it computes a vector as the normal of this

3D Facet such that this vector is orthogonal to two line segments, one

which connects points (i − 1, j, di−1, j) and (i + 1, j, di+1, j), while the

other connects points (i, j − 1, di, j−1) and (i, j + 1, di, j+1). This ap-

proach is simple to implement and suitable for depth image calcu-

lation where 3D points are organized as gridded depth pixels. How-

ever, when considering 3D point clouds with non-uniform density,

this approach will not work.

Plane fitting-based normal (least squares) estimation is more gen-

eral and can be used in the situations where point density is non-

uniform. It takes the center of a 3D Facet along with its neighbor

points in a certain range, which we define as its local support sur-

face. Then a plane is fitted using them. Despite its ability to general-

ize, there is a risk of losing detail when the size of the local support

surface is enlarged.

5.3. Sparse representation based classification

To further explore the discriminative power of the proposed H3DF

descriptor and its compatibility with different classification schemes,
e apply two classification methods with H3DF to recognize hand

estures or human actions: linear-SVM and Sparse representation-

ased Classification (SRC), which is proposed by Wright et al. [14]

ith good performance in face recognition. A brief review of SRC

s provided as follows: given C as the set of class labels, we have

= [AC1
, AC2

, . . . , ACc
] as the dictionary of training samples. In our

pproach, A is the matrix of vectored H3DF descriptors, i.e., ACi∈C =
vec(x

Ci
1
), vec(x

Ci
2
), . . . , vec(x

Ci
n )], where x

Ci
j

is the jth H3DF vector of

esture or action class i. For a query descriptor y, the SRC via

1-minimization is:

ˆ = argmin
α

‖α‖1 s.t. ‖y − Aα‖2 ≤ λ. (6)

herefore, the classification rule is:

dentity(y) = argmin
Ci

rCi
(y), (7)

here the class-wise reconstruction residual rCi
(y) is computed as:

Ci
(y) = ‖y − AδCi

(α̂)‖2, (8)

here δCi
is the characteristic function that selects the coefficients

ssociated with that class.

Runtime of H3DF: computing an H3DF descriptor is fast. Without

reprocessing, calculation of the H3DF for a 100 by 100 depth patch

s about 2 ms with a Matlab implementation on one Intel Xeon Core

2.13 GHz). H3DF is thus feasible for real-time applications.

. Experimental results

.1. Static hand gesture recognition

.1.1. Datasets and experiment set-up

We apply H3DF descriptors for hand gesture recognition from

tatic depth images on two 3D datasets: the NTU hand digits dataset

6] and the ASL finger spelling dataset [5]. Both datasets were cap-

ured by a Kinect camera. The NTU hand digits dataset [6] contains a

otal of 1000 depth images of 10 hand gestures of decimal digits 0–

from 10 subjects with 10 samples for each gesture. The ASL finger
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(a)

(b)
Fig. 9. (a) Sample depth images from the NTU hand digits dataset for digits 0–9 [6]. (b) Sample depth images from the ASL finger spelling dataset for english character from “a” to

“z” (without “j” and “z”) [5].

(a) (b)
Fig. 10. Accuracies of hand gesture recognition on the NTU hand digits dataset [6] of (a) resolutions of hand-patches, and (b) different methods and parameters of normal estima-

tion. Subject Independent (S.I.) and Subject Dependent (S.D.) accuracies of H3DF with both SVM and SRC [14] classifiers are shown.
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pelling dataset [5] captures hand gestures in 24 different categories,

ach of which represents one English character from “a” to “z” while

j” and “z” are excluded since these two characters are performed in

SL using motion. Compared with the NTU hand digits dataset, this

ataset is much larger, containing about 60, 000 depth images from 5

ubjects. Some images of the datasets are shown in Fig. 9. While the

SL finger spelling dataset only provides segmented hand regions, we

btain the hand regions of the NTU hand digits dataset based on the

epth information since the hand is always the most front body part

acing to the camera [21].

For static hand gesture recognition, to explore the effect of subjec-

ive variance, we conduct two types of experiments. One is a subject-

ndependent test, in which we use a “leave-one-out” strategy, i.e., for

dataset with N subjects, we use N − 1 subjects for training and the

est one subject for testing. This process is repeated for each subject

nd the averaged accuracy is reported as the overall accuracy. The

ther is a subject-dependent test in which all subjects appear in both

he training and testing data, but no video appears in both training

nd testing.

Before comparison with the state-of-the-art approaches, we start

y discussing the influences of 1) different approaches to estimate the

ormal of a 3D Facet, 2) different resolutions of extracted depth map,

nd 3) different numbers of grids while pooling encoded 3D Facet

o generate the final descriptor. We discuss the issues using the NTU

and digits dataset [6].
.1.2. Normal estimation and hand patch resolution

Here, we first analyze the influence of different resolutions of ex-

racted depth maps as well as the robustness of proposed descrip-

ors against resolution. We set different resolutions ranging from

50 × 150 to 25 × 25 for the normalized hand regions. As shown in

ig. 10(a), results in terms of overall classification accuracy of both

eave-one-out subject-independent and subject-dependent tests are

bove 90%, which demonstrates the robustness of the proposed H3DF

escriptor for different resolution of the normalized hand regions.

esides, as the resolution decreases, the performances are relatively

table, except in the case of 25 × 25 resolution. In all the following

xperiments of static hand gesture recognition, we use 150 × 150 as

efault patch size unless otherwise noted.

As shown in Fig. 10(b), we also study the influence of different

hoices of normal estimation methods. We compare the bilinear nor-

al estimation method with plane fitting-based method of different

atch sizes (As shown in Fig. 10 (b), the analytical ((1, 1)∗) approach

erforms best ((1, 1)∗) indicates the analytical solution for normal

omputation.) For the plane-fitting approach with different sizes of

ocal support surface, performances of both subject-dependent and

ubject-independent tests decrease and become stable when the size

f the local support surface is greater than 7 × 7. This observation

as demonstrated that for this particular problem, bilinear opera-

or is more suitable and the proposed 3D descriptor favors more de-

ails rather than less noise. We use the bilinear estimation approach
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Fig. 11. Illustration of pooling bins layouts with different radial bin (br) and angular

bin (ba) settings.

Fig. 12. Recognition accuracies of different pooling granularity settings (y-axis for br ,

x-axis for ba) on the NTU hand digits dataset [6].

Table 1

Performance comparison of different methods on the NTU

hand digits dataset [6].

Approach Subj. ind. test(%) Subj. dep. test(%)

Ren et al. [6] 93.9 N/A

HOG [1] 93.1 94.6

H3DF+SVM 94.5 99.2

H3DF+SRC 97.4 99.0

Table 2

Performance comparison of different methods on the ASL finger

spelling dataset [5].

Approach Subj. ind. test(%) Subj. dep. test(%)

Pugeault and Bowden [5] 49.0 N/A

HOG [1] 65.4 96.0

Keskin et al. [24] 84.3 97.8

H3DF+SVM 73.3 99.0

H3DF+SRC 77.2 99.9

denseH3DF+SVM 83.8 100.0
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in all following experiments. In addition, we observe that subject-

dependent tests perform better than subject-independent tests and

are less affected by increases in the local support surface size. Addi-

tionally, proposed H3DF combined with sparse representation-based

classification (SRC) [14] performs better than linear SVM. Thus, the

default classifier is SRC in the rest of this paper, unless otherwise

noted.

6.1.3. Discussion of pooling granularity

To explore how the pooling granularity affects the discriminative

power of our proposed descriptor, we first conduct different settings

of radial bin layouts (number of bins = br) and angular bin layouts

(number of bins = ba). Some of the pooling grids are illustrated in

Fig. 11. Since inside each cell of the pooling grid, the encoded facet

vectors (dimension = 18) are pooled together by taking the average,

thus the total dimension of the final H3DF descriptor is proportional

to the product of br × ba.

The recognition accuracies are illustrated in Fig. 12. We observe

that low pooling granularity (from upper-left corner to bottom-right

corner, pooling granularity increases) associates with relative low

recognition accuracy. As granularity increases, recognition accuracy

tends to increase and gradually reaches a stable value. We set a de-

fault of (br = 4, ba = 10) unless otherwise noted because this is an ap-

propriate trade-off between feature length and discriminative power

based on our experiments.

6.1.4. Comparison with the state-of-the-arts

To compare our proposed H3DF feature descriptor with the

benchmark methods as well as traditional 2D HOG descriptor on

both datasets, we compare the proposed H3DF with the benchmark

methods as well as the traditional 2D Histogram of Gradients (HOG)

descriptor on static hand gesture recognition. In our implementation

of HOG, we evenly separate the normalized region of interest into

8 × 8 non-overlapping patches and each patch has eight orientation

bins. Thus the dimension of each HOG descriptor is 2046. The average

accuracies on the NTU hand digits dataset are shown in Table 1. Our

method outperforms the benchmark method and the traditional 2D

HOG descriptor for both subject-independent and subject-dependent

tests. Compared with [6], our H3DF feature descriptor contains more

information, such as folded thumb in palm than only contour
nformation. Our method performs 3.5% higher than [6] and 4.3%

igher than 2D HOG descriptor in the subject-independent test.

s can be predicted, performances in subject-dependent test are

uch higher than in subject-independent test, where our method

chieves 99.2% (H3DF+SVM) and 99.0% (H3DF+SRC) classification

ccuracy. Recently, classification results on this dataset are saturated

99 and 100% reported in [36]) via combining over three kinds of

eatures which are specifically designed for hand-shape only. Since,

he proposed H3DF descriptor is a generic descriptor and can be used

or multiple purposes such as action recognition and object recogni-

ion, we will not directly compare it with the fusion mechanism as

roposed in [36].

Compared with the NTU hand digits dataset [6], the ASL finger

pelling dataset [5] contains more complicated (24 gesture categories

s. 10 gesture categories) and realistic (all gestures are as in American

ign Language (ASL)) hand gestures. The ASL finger spelling dataset

s also much larger (over 60,000 images) than the NTU hand digits

ataset (1,000 images).

We follow the same experiment setting as previous stated. The av-

rage accuracies of both subject-dependent and subject-independent

ests are shown in Table 2. Our descriptor achieves 77.2% average ac-

uracy in the subject-independent test, which significantly outper-

orms [5] with 28.2% higher accuracy, partially because we perform

rientation correction before coding. Compared with the traditional

D HOG descriptor, which is also with orientation correction, our

ethod still achieves 11.8% higher accuracy and demonstrates the ef-

ectiveness of the proposed H3DF descriptor in describing 3D depth

mages than just applying an existing 2D descriptor. The main confu-

ions are cause by gestures with very similar poses or shapes such as

p” and “q” where hand poses are almost the same and the only dif-

erence is the layout of two fingers (see Fig. 9 (b) for hand gestures)

r “m” and “n”, which share quite similar shapes.

To further explore the capability of the proposed H3DF as a local

attern descriptor, we combine the H3DF with dense sampling as

sed in DenseSIFT [30] with an evenly dense sampling grid at mul-

iple scales (denseH3DF). In our experiment, we sample keypoints

very 4 × 4 pixels at scales {8, 12, 16}. In each sampling keypoint, we

ompute the H3DF with radial bin number as 2 and angular bin num-

er as 8. The local descriptor is then encoded using a soft vector quan-

ization with a codebook of 1024 codewords computed from training

et. For spatial pooling, we use a 4 × 4 spatial grid which partition

he sampled points into 16 sets. Within each set, the sampled points

codes) are pooled using max pooling. Thus the resulting dimension

f the feature vector is 4 × 4 × 1024 = 262, 144. We test denseH3DF

sing a linear SVM and the performance achieves 83.8% in subject
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(a)

(b)
Fig. 13. (a) Sample frames from the MSR 3D gesture dataset for dynamic ASL hand gesture recognition. (b) Sample frames of action “Golf Swing”from the MSRAction3D dataset [4].
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Fig. 14. Recognition accuracies of different pooling granularity settings (y-axis for br ,

x-axis for ba) on the MSR 3D gesture dataset.

Table 3

Performance comparison of different meth-

ods on the MSR 3D gesture dataset [16].

Approach Avg. recognition rate(%)

H3GO [19] 85.23

ROP [16] 88.50

DMM [13] 89.20

HON4D [18] 92.45

DP-H3DF 95.00
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ndependent test (Table 2), which is very close to the current best

esult obtained by Keskin et al. [24] (84.3%). However, [24] is specially

esigned only for hand poses, not a generic descriptor as H3DF is.

.2. Dynamic hand gesture recognition and human action recognition

.2.1. Datasets

To validate our H3DF descriptor together with DP-based tempo-

al segmentation for dynamic hand gesture recognition from video

equences, we employ the MSR 3D gesture dataset. This dataset con-

ains 12 dynamic American Sign Language (ASL) gestures performed

y 10 subjects. There is a total of 336 video sequences captured by a

inect camera. The gesture categories cover ASL gesture signs such as

Where”, “Store”, “Pig”, etc. The hand region has been segmented. This

ataset was collected by Wang et al. [16] and state-of-the-art perfor-

ance has been demonstrated by Oreifej and Liu [18]. We normalize

ach image along its height to 50 pixels for efficiency, while keeping

he width/height ratio unchanged. We follow the same setting as in

18], which leaves one subject out for testing and trains on the rest

nd 10 repeats are processed to generate an averaged accuracy as the

eported accuracy.

To further investigate how well our proposed descriptor can cope

ith more complex spatial-temporal feature descriptions, we also

valuate the H3DF for human action recognition on the MSRAction3D

ataset [4], and compare its performance with existing state-of-the-

rt methods. The MSRAction3D dataset includes 20 action categories

uch as “high arm wave”, “hand catch”, etc., which are performed by 10

ubjects facing the camera. Each subject performed each action two

r three times. The actions in this dataset capture a variety of motions

elated to arms, legs, torso, and their combinations. Several samples

rom mentioned datasets are shown in Fig. 13.

.2.2. Discussion of pooling granularity

Before comparing proposed H3DF descriptor with others on these

wo datasets, we first conduct experiments to investigate both spa-

ial and temporal pooling granularity on MSR 3D gesture dataset. The

xperiment settings for spatial pooling granularity are the same as in

ection 6.1.3 and the temporal segments number (K) is set to 5 for

onsistency. The results are shown in Fig. 14, we can observe similar

atterns as in Fig. 12, which again validate our default settings for ra

nd rb. A second issue is how temporal pooling granularity affects the

ecognition accuracy of dynamic gesture recognition. We compare

he proposed dynamic programming-based temporal segmentation

ith traditional evenly partitioning of different numbers of temporal

egments (K), the accuracies are shown in Fig. 15. We observe that as

increases, more complementary information is modeled which re-

ults in higher accuracies. Five is a good selection for K, because nor-

ally “neutral”, “on-set”, “peak”, “off-set” and “neutral” are the general

tates of a sequence of action. Dynamic partitioning is consistently a
etter strategy than even partitioning (except for K = 4) because dy-

amic partitioning is more robust to variance in temporal sequences

ue to its invariance to action execution speed.

.2.3. Comparison with the state-of-the-arts

Dynamic gesture recognition: We further evaluate the proposed

3DF descriptor together with DP-based temporal partitioning in the

pplication of dynamic hand gesture recognition on the MSR 3D ges-

ure dataset [16]. We compare our proposed descriptor with several

tate-of-the-art algorithms for dynamic hand gesture representation

uch as the Histogram of 3D Gradient Orientations (H3GO) [19] and

istogram of 4D normals (HON4D) [18] which combines surface nor-

als and Fourier transforms to represent spatial-temporal 4D vol-

mes. As shown in Table 3, our framework (DP−H3DF+SRC) outper-

orms all previous methods (the best recognition rate of our method

n the MSR 3D gesture dataset is 95.6% with a different pooling grid

etting, but to be consistent, we report the performance with default

rid setting here).

Human action recognition: We also evaluate the proposed H3DF

escriptor in the application of human action recognition from depth

equences on the MSRAction3D [4] and compare it with existing
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Fig. 15. Recognition accuracies of different temporal strategies and numbers of segments (i.e., x-axis shows K).

Table 4

Performance comparison of different methods on

human action recognition of the MSRAction3D

Dataset [4].

Approach Avg. recognition rate(%)

Bag of 3D points [4] 74.70

HOJ3D [25] 79.00

STOP [26] 84.80

ROP [16] 86.50

Actionlet [27] 88.20

DMM [13] 88.73

HON4D [18] 88.89

DSTIP [28] 89.30

Proposed method 89.45

Pose set [29] 90.00
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state-of-the-art methods. Since the actions are not constraint to hand

gestures in this dataset, instead of extracting hand patches, we com-

pute H3DF around each skeleton joint and use a codebook with 3000

codewords to encode each H3DF. Then each frame is represented by

the max-pooled histogram of all H3DF to generate a bag-of-word rep-

resentation of that frame. Next we use Bi-gram representations as

discussed in Section 4.2 to obtain a set of Bi-grams for each video

sequence. Finally, sparse coding is employed to generate a sparse his-

togram for each video using a dictionary with 1024 basis bi-grams

trained.

Our proposed method has decent performance compared with

state-of-the-art methods (Table 4) and achieves comparable perfor-

mance with the best results [29]. As described in previous sections,

our main goal is to propose a generic depth descriptor to handle both

static and dynamic gesture and human action recognition. In both

dynamic hand gesture and human action recognition, our method

achieves better performance than other counterparts.

Discussion: The proposed two approaches of extending H3DF to

cope with dynamic representation of a video sequence have different

objectives. DP-based partitioning aims to solve the temporal align-

ment problem caused by different execution rates. The N-gram-based

method, on the other hand, is designed to model local transition

patterns. For example, to model a sequence of “raising hand”, the

DP method seeks to end up with 2 (or 3) gestures that can suffi-

ciently summarize the action, i.e., “lowered hand”, (“raising hand”)

and “raised hand”; while N-gram method pursues to capture the mo-

tion during “raising hand”. In other words, the DP-based method gen-

erates “a sequential collection of gestures” while the N-gram-based
ethod generates “a bag of motions”. The two perspectives are both

seful to capture temporal structures and transition patterns. But

n practice, we found that the proposed DP method works better

ith dynamic hand gesture recognition while the proposed N-gram

ethod works better with human action recognition. The reason for

his may be the intrinsic difference between hand gestures and ac-

ion recognition. Hand gestures information is conveyed mainly by

he shape of hand while motion is complementary information and

uman actions are highly performed by drastic motions of body parts.

n addition, the l2 metric used in our DP algorithm is prone to sparse

oise but large in magnitude, which is more common in human ac-

ion recognition.

. Conclusions

In this paper, we have proposed a novel discriminative 3D descrip-

or (H3DF) which can effectively capture and model the rich surface

hape information of the depth maps. Applying orientation normal-

zation, robust coding and concentric spatial pooling, our H3DF de-

criptor is robust to translation, view angle and scaling changes. Lo-

al H3DF is also able to evolve into denseH3DF for modeling more

ocal patterns. To tackle the task of dynamic hand gesture and hu-

an action recognition from depth video sequences, two temporal

xtension approaches are developed: dynamic programming-based

emporal partition and N-gram-based method. The two approaches

re applied to build augmented descriptors with robust represen-

ative description. We have extensively evaluated the effectiveness

f the proposed H3DF descriptor on four public datasets including

tatic hand gesture recognition from single depth image, dynamic

and gesture and human action recognition from depth sequences.

he experimental results demonstrate that our proposed approach

utperforms or achieves comparable accuracy to the state-of-the-art

or action and hand gesture recognition.
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