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Abstract 
 

    Moving object detection is very important for video 
surveillance. In many environments, motion maybe either 
interesting (salient) motion (e.g., a person) or 
uninteresting motion (e.g., swaying branches.) In this 
paper, we propose a new real-time algorithm to detect 
salient motion in complex environments by combining 
temporal difference imaging and a temporal filtered 
motion field. We assume that the object with salient 
motion moves in a consistent direction for a period of 
time. No prior knowledge about object size and shape is 
necessary. Compared to background subtraction 
methods, our method does NOT need to learn the 
background model from hundreds of images and can 
handle quick image variations; e.g., a light being turned 
on or off. The average speed of our method is about 
50fps on images at size 160x120 in 1GB Pentium III 
machines. The effectiveness of the proposed algorithm to 
robust detect salient motion is demonstrated for a variety 
of real environments with distracting motions such as 
lighting changes, swaying branches, rippling water, 
waterfall, and fountains.  

1. Introduction 
    Detection of moving objects in video streams is known 
to be a significant and difficult research problem [12]. In 
many real environments, the motion is caused by both 
interesting (salient) and uninteresting motion. As in [13], 
salient motion is here defined as motion from a typical 
surveillance target (a person or a vehicle) as opposed to 
other distracting motions such as the scintillation of 
specularities on water and the swaying of vegetation in 
the wind. The distracting motions in the complex 
environments make the problem of motion detection 
more challenging.  

    Background subtraction is a conventional and effective 
approach to detect moving objects in the stationary 
background. To detect moving objects in a dynamic 
scene, adaptive background subtraction techniques have 
been developed [8, 9, 11]. Ren et al. [9] proposed a 

spatial distribution of Gaussians (SDG) model to deal 
with moving object detection having motion 
compensation which is only approximately extracted. 
Their results demonstrated the capability of the system to 
detect small moving objects with a highly textured 
background with pan-tilt camera motion. Stauffer et al. 
[11] modeled each pixel as a mixture of Gaussians and 
used an on-line approximation to update the model. Their 
system can deal with lighting changes, slow-moving 
objects, and introducing or removing objects from the 
scene. Monnet et al. [8] proposed a prediction-based 
online method for the modeling of dynamic scenes. Their 
approach has been tested on a coast line with ocean 
waves and a scene with swaying trees. However, they 
need hundreds of images without moving objects to learn 
the background model, and the moving object cannot be 
detected if they move in the same direction as the ocean 
waves. Recently, some hybrid change detectors are 
developed which combine temporal difference imaging 
and adaptive background estimation to detect regions of 
change [1, 5].  Huwer et al. [5] proposed a method of 
combining a temporal difference method with an adaptive 
background model subtraction scheme to deal with 
lighting changes. However, none of these methods can 
adapt to quick image variations such as a light turning on 
or off. The major drawbacks of adaptive background 
subtraction are summarized as following: 

• It makes no allowances for stationary objects in 
the scene that start to move.  

• It needs hundreds images to learn the 
background model. 

• It cannot handle quick image variations and 
large distracting motion. 

    Motion based methods for detecting salient motion 
have also been developed [13, 14].  Wildes [13] proposed 
a measure of motion salience using spatiotemporal 
filtering and assumes the object is moving with a certain 
velocity due to the velocity-dependent nature of the 
spatiotemporal filters. This method didn’t work for a slow 
moving object. Wixson [14] presented a method to detect 
salient motion by accumulating directionally-consistent 



flow. They calculated subpixel optical flow and 
integrated frame-to-frame optical flow over time for each 
pixel to compute a rough estimate of the total image 
distance it has moved. On each frame, they update a 
salient measure that is directly related to the distance over 
which a point has traveled with a consistent direction. 
However, their method was very time consuming and 
have the salience “trails” left by objects.  
    In this paper, we propose a real-time algorithm to 
detect salient motion in complex environments by 
combining temporal difference imaging and temporal 
filtered optical flow. Similar to [14], we assume that the 
object with salient motion moves in an approximate 
consistent direction in a time period. The motion is 
calculated by the Lucas-Kanada optical flow algorithm. 
The temporal difference imaging helps to detect slow 
moving objects, to give better object boundaries, and to 
speed up the algorithm because the temporal filter of 
optical flow is only applied to the regions of change 
which are detected by temporal difference imaging. In 
that region, for each pixel, the motion is salient motion if 
the pixel and its neighborhood move in the same 
direction in a period of time. Compared with [14], our 
method is faster and more robust. Our method runs in 
15fps to 60fps (depending on the size of the region of 
changes which is detected by temporal differencing) in 
1GB Pentium III 1 processor machines. The effectiveness 
of the proposed algorithm robustly to detect salient 
motion is demonstrated in Section 3 for a variety of real 
environments with distracting motion such as lighting 
changes, swaying branches, rippling water, waterfall, and 
fountains. 

2.  Salient Motion Detection Method  
     As shown in Figure 1, background subtraction does 
not work well and provides many false positives for the 
environment with motions not only caused by the objects 
of interest but also distracting motion such as 
specularities on water and vegetation in the wind. In this 
sequence, when a person walks in front of the oscillated 
branches in the strong wind, both the person and the 
moving leaves are detected as foreground by the 
background subtraction methods. Figure 1(b) shows an 
example of the method which is described in paper [4]. 

    Generally, interesting moving objects tend to have 
consistent moving directions over time. In order to detect 
the objects with salient motion, we perform five steps: (1) 
the temporal difference of subsequent images are 
subtracted to get the region of change; (2) the frame-to-
frame optical flow is calculated; (3) the temporal filter is 
applied to the region of changes which is detected by the 
first step to detect the pixels continually move in the same 
direction (either in X-component or in Y-component); (4) 
the pixels which continually move in the same direction 

are used as seed pixels for the X-component and Y-
component of optical flow respectively and then grows 
the pixels to form larger region if its NXN neighborhood 
move in the same direction; (5) the objects with salient 
motion are finally detected by combining all the temporal 
difference imaging, temporal filtered motion, and region 
information.   

 
Figure 1: In this sequence, a person walks in front of 
the oscillating branches in a strong wind. Background 
subtraction [4] does not work for sequences with 
distracting motion, both the person and the moving 
leaves are detected as foreground. (a) original image, 
(b) result of background subtraction [4]. The green 
regions present the detected foreground. 
    

2.1 Temporal Difference 
    Temporal difference is the simplest method to extract 
moving objects and adapt to dynamic environments, but 
cannot detect the entire shape of a moving object with 
uniform intensity. In this paper, subsequent images 

),,( tyxI  and )1,,( +tyxI  are subtracted and the 
difference image is thresholded to get the region of 
changes. The threshold dT  can be derived from image 

statistics. In order to detect cases of slow motion or 
temporally stopped objects, a weighted accumulation 
with a fixed weight for the new observation is used to 
compute the temporal difference image 

),,( tyxI difference as shown in following equations: 
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where accumW  is the accumulation parameter which 

describes the temporal range for accumulation of 
difference images. )1,,( −tyxI accum is initialized to an 

empty image. In our system, we set dT = 15 and accumW  = 

0.5 for all the results. 



 

A rectangular region of changes in the image now is 
available. The size of the region can change from (0, 0) to 
(w, h), where w and h is the width and height of the input 
image respectively. The size of the original image is 
320x240 pixels. In order to speed up the whole system, 
we first downsample it to 160x120 pixels. Instead of 
using the whole image, this region of changes will be 
used later to apply the temporal filter for motion.  

 

2.2 Motion Extraction 
    To extract a 2D motion field, we employ a modified 
Lucas-Kanade method to compute optical flow in our 
system because of its accuracy and efficiency. Barron et 
al. [2] compared the accuracy of different optical flow 
techniques on both real and synthetic image sequences, 
they found that the most reliable was the first-order, local 
differential method of Lucas and Kanade. Liu et al. [6] 
studied the accuracy and the efficiency trade-offs in 
different optical flow algorithms.  They focused on the 
motion algorithms implementations in real world tasks. 
Their results showed that Lucas-Kanade method is pretty 
fast. Galvin et al. [3] evaluated eight optical flow 
algorithms. They found that a modified version of Lucas-
Kanade algorithm has superior performance but sparse 
flow maps. The Lucas-Kanade method consistently 
produces accurate depth maps, has a low computational 
cost, and good noise tolerance. In our system, to identify 
an incorrect flow between two frames, a forwards-
backwards checking is performed to examine whether the 
flow fields map to the same points.  

   The Lucas-Kanade algorithm assumed that intensity 
values of any given region do not change but merely shift 
from one position to another. Consider a moving object 
in the image, the displacement of the object over a nxn 
window from time t to t+1 is d. The above assumption is 
represented by: 

0)()(1 =−++ xIdxI tt  

We wish to find the translation d of this window by 
minimizing a cost function E defined as: 
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and the minimization for finding the translation d can be 
calculated in iterations: 
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where 0d , the initial estimate, can be taken as zero if 

only small displacements are involved. See paper [9] for 
details of the Lucas & Kanade algorithm. In our system, 
the window size is 13x13. 

2.3 Temporal Filter 
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Figure 2: The temporal filter is applied to the 
calculated optical flow of frames in a period time [t, 
t+n].  
 
     As shown in Figure 2, the optical flow of frames 

nttt III ++ ⋅⋅⋅,, 1  in a period time [t, t+n] are represented 

as nFFF ⋅⋅⋅,, 21 . The X-component is xnxx FFF ,,2,1 ,, ⋅⋅⋅  

and the Y-component is ynyy FFF ,,2,1 ,, ⋅⋅⋅  respectively. 

We assume that the object with salient motion moves in a 
consistent direction in a period time on either the X-
component or the Y-component. It means that the optical 
flow of the region with salient motion in the time period 
[t, t+n] should be in same direction. In our system, we 
deal with the X-component and Y-component of optical 
flow separately. 

    For each pixel in the region of changes which is 
detected by temporal differencing, we first build a chain 
of optical flow in the time period [t, t+n]. The pixel  

),( yx  in frame tI  moves to ),( 11 dyydxx ++ in 

frame 1+tI , where 1dx  and 1dy  can be obtained from 

xF ,1  and yF ,1 . If 01 >dx , we define the moving 

direction of this pixel in X-component is positive. 
Otherwise, it is moving in negative direction. In the 
frame ntI +  of this chain, the pixel is in position 

).,( 2121 nn dydydyydxdxdxx +⋅⋅⋅++++⋅⋅⋅+++
 Then, we count the number iXP (the X-component of 

optical flow is positive) and the number iXN  (the X-

component of the optical flow is negative) in the time 
period [t, t+n] by using xnxx FFF ,,2,1 ,, ⋅⋅⋅ , where 

],1[ ni ⊂ . The algorithm to detect whether a pixel 



belongs to an object with salient motion is described as 
following: 
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(3) The pixel belongs the object with salient 
motion if 1TPnX ≥  or 1TN nX ≥ . 

(g) Salient object

(a) Original (b) Difference

(c) X-component flow (d) Y-component flow

(e) Temporal filtered
X-component

(f) Temporal filtered
Y-component

 
Figure 3: An example of the salient motion detection. 
(a) the original image, a green rectangular region 
shows the object with salient motion for display 
purpose only, (b) the accumulated difference image, 
(c) the X-component of optical flow, (d) the Y-
component of optical flow, (e) the X-component of 
flow after temporal filter, (f) the Y-component of flow 
after temporal filter, (g) the final detected object with 
salient motion.  

    For the Y-component, we deal with it in the same way. 

In our system, we set ,10=n 3/1 nnT −= . 
The same parameter settings are used for both X-
component and Y-component and all the experimental 
sequences in our system. Figure 3 shows an example of 
the procedure to detect a person walking behind wildly 
swaying leaves based on the temporal difference imaging, 
the X-component and Y-component of optical flow, and 
the temporal filtered flow components. Figure 3(a) is one 
frame of the sequence. A rectangle is added to show the 
walking person for display purposes. The accumulated 
temporal difference imaging is shown in Figure 3(b). 
Figure 3(c) and 3(d) show the X-component and Y-
component of the optical flow respectively, where the red 
and green color indicate the directions of the flow. The 
X-component and Y-component of temporal filtered flow 
are shown in Figure 3(e) and 3(f). Because the person is 
walking from right to left, the X-component of temporal 
filtered flow dominates the salient motion detection in 
this sequence. The final detected region with salient 
motion is shown in Figure 3(g). 
 

2.4 Region Growing  
 
   Comparing Figure 3(c) with 3(e), we notice that all the 
distracting motion has been filtered by the temporal 
motion filter. Also the region of salient motion after the 
temporal motion filter is smaller than that in the original 
flow. To avoid the problem of splitting one object into 
several objects, the pixels which are detected by the 
temporal motion filter are used as seed pixels for the X-
component and Y-component of original optical flow and 
then the algorithm grows the pixels to form a larger 
region if its NXN neighborhood moving in the same 
direction. In our system, we use 3X3 neighborhood for 
region growing.  
 
2.5   Multi-sources Fusion 

    The salient motion image ( ),,( tyxI salient ) is obtained 

by combining the image of temporal difference 
( ),,( tyxI differnce ), temporal filtered image 

( ),,( tyxI temporalX −  and ),,( tyxI temporalY − ) and the 

region information of the motion. The output salient 
motion image is obtained by following equations: 
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3. Experimental Results 
     



    In this section, the effectiveness of the proposed 
algorithm to robust detect salient motion is demonstrated 
for a variety of real environments with distracting 
motions such as waterfall, fountain, rippling water, 
swaying branches, and large lighting changes. Notice that 
same parameters were used for all sequences.  
    Figure 4 illustrates the algorithm on a video sequence 
in which a person walks around while a fountain and a 
waterfall are observed in the background. The whole 
sequence includes 882 frames. In Figure 4, the left-top 
image shows one frame of the original image. A green 
rectangular region was added to show the object with 
salient motion for display purpose only. The right-top 
image shows the difference image. The bottom-left image 
shows the X-component of the flow and the final detected 
region with salient motion is shown in the bottom-right. 
The result shows that the person is well detected and the 
waterfall and the fountain are eliminated. The average 
speed for this sequence is about 40fps in 1GB Pentium III 
machines. 

 
Figure 4: A person walks around while fountain and 
waterfall are in background. Left-top: original image, 
a green rectangular region shows the object with 
salient motion for display purpose only; right-top: 
difference image; bottom-left: X-component of the 
flow; bottom-right: final detected region with salient 
motion. 
    Figure 5, 6, and 7 provide more examples of the 
algorithm on five other sequences. In Figure 5, a person 
walks around while there are specularities on water in the 
background. The bottom-right image shows the well 
detected walking person. The average speed for this 
sequence runs 61fps in a 1GB Pentium III machine. 

    In Figure 6, a car (the one in the green rectangular) 
moves from left to right while wildly swaying leaves are 
in the foreground. The average speed for this sequence 
runs only 11Hz because the temporal difference region is 
almost same as the whole image. 

 
Figure 5: A person walks around while there are 
specularities on water in background. Left-top: 
original image; right-top: difference image; bottom-
left: X-component of the flow; bottom-right: final 
detected region with salient motion. 
 

 
Figure 6: A car is moving while wildly swaying leaves 
are in foreground. Left-top: original image, a green 
rectangular region shows the object with salient 
motion for display purpose only; right-top: difference 
image; bottom-left: X-component of the flow; bottom-
right: final detected region with salient motion. 
 

    Figure 7 demonstrates the capability of our algorithm 
to handle lighting changes. A person walks from lower-
right to upper-left to turn off the lighting and then walk 
back. The original images and detected moving person 
are shown when the light is on and off respectively. The 
speed for this sequence runs about 50fps.   

4. Discussions and Conclusions 
 

   We presented a new method for the detection of salient 
motion in complex background with distracting motion 



for real-time surveillance applications. We have assumed 
that the object with salient motion moves in a consistent 
direction in a period time. No prior knowledge about 
object size and shape is necessary. Our method combined 
temporal differencing with temporal filtered optical flow 
to robustly detect object with salient motion in real-time. 
The effectiveness of proposed algorithm to robust detect 
salient motion was demonstrated for a variety of real 
environments with distracting motions such as lighting 
changes, swaying branches, rippling water, waterfall, and 
fountains.  

 

 
Figure 7: A person walks when turn on or off the 
light. Left-top: original image when light is on; right-
top: final detected region with salient motion for the 
frame shown in the left; bottom-left: original image 
when light is off; bottom-right: final detected region 
with salient motion for the frame shown in the left. 
 

    The algorithm has some limitations. First, an object 
that moves in different direction such as moving in zigzag 
cannot be detected because we assume that the object 
with salient motion moves in a consistent direction in a 
period time. Second, if the object stops a while, we will 
lose it. But it can be detected when it stars to move again. 
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