
Book chapter for Artificial Intelligence for Maximizing Content Based Image Retrieval

Event detection, query, and retrieval for video surveillance

Ying-li Tian, Arun Hampapur, Lisa Brown, Rogerio Feris,
Max Lu, Andrew Senior, Chiao-fe Shu, and Yun Zhai

IBM T. J. Watson Research Center,

PO Box 704, Yorktown Heights, NY 10598

Abstract

Video surveillance automation is used in two key modes: watching for known threats in
real-time and searching for events of interest after the fact. Typically, real-time alerting
is a localized function, e.g. an airport security center receives and reacts to a “perimeter
breach alert,” while investigations often tend to encompass a large number of
geographically distributed cameras like the London bombing, or Washington sniper
incidents. Enabling effective event detection, query and retrieval of surveillance video
for preemption and investigation involves indexing the video along multiple dimensions.
This chapter presents a framework for event detection and surveillance search that
includes: video parsing, indexing, query and retrieval mechanisms. It explores video
parsing techniques that automatically extract index data from video, indexing which
stores data in relational tables, retrieval which uses SQL queries to retrieve events of
interest and the software architecture that integrates these technologies.

1. Introduction

Video analysis and video surveillance are active areas of research. The key challenges
are video-based event detection and large-scale data management and retrieval. While
detecting and tracking objects is a critical capability for smart surveillance, the most
critical challenge in video-based surveillance (from the perspective of a human
intelligence analyst) is retrieval of the analysis output to detect events of interest and
identify trends. In this chapter, we describe a specific system, the IBM Smart
Surveillance Solution, in order to detail an open and extensible framework for extracting
events in video which can be used for real-time alerting, searching during investigations
with unpredictable characteristics, or exploring normative (or anomalous) behaviors.

Current systems have begun to look into automatic event detection. These are often

point solutions for detecting license plate numbers, abandoned objects, or motion in
restricted locations. However, the area of context-based interpretation of the events in a
monitored space is still in its infancy. Challenges here include: using knowledge of time
and deployment conditions to improve video analysis, using geometric models of the
environment and other object and activity models to interpret events, and using learning
techniques to improve system performance and detect unusual events. The first hurdle
that must be overcome is to provide extensible search capabilities based on the broadest

possible set of meaningful event metadata which can be provided by state-of-the-art point
solutions.

This chapter explores these issues using as an example the IBM Smart Surveillance

Solution. Its architecture is outlined as an example of a system which addresses the
problems of indexing event metadata and providing extensible search. Its components
provide examples of video parsing, indexing and retrieval methods which are deployed
by the system. Lastly, its interface shows many examples of how an end-user may search
for specific information regarding a real-world investigation.

2. Background

 Video surveillance systems which run 24/7 (24 hours a day and seven days a week)

create a large amount of data including videos, extracted features, alerts, statistics etc.
Designing systems to manage this extensive data and make it easily accessible for query
and search is a very challenging and potentially rewarding problem. However, the vast
majority of research in video indexing has taken place in the field of multimedia, in
particular for authored or produced video such as news or movies, and spontaneous but
broadcast video such as sporting events. Efforts to apply video indexing to completely
spontaneous video such as surveillance data are still emerging.

The work in video indexing of broadcast video has focused on such tasks as shot

boundary detection, story segmentation and high level semantic concept extraction. The
latter is based on the classification of video, audio, and text into a small (10-20) but
increasing number of semantically interesting categories such as outdoor, people,
building, road, vegetation, and vehicle. For broadcast video, the goal is to find a high
level indexing scheme to facilitate retrieval. The task objectives are very different for
surveillance video. For surveillance video, the primary interest is to learn higher level
behavior patterns. In both broadcast and surveillance video, there exists a semantic gap
between the feasible low level feature set and the high level semantics or ontology
desired by the system users.

 Because of its practical nature, surveillance video analysis has been extensively
explored. However, compared to the vast amount of research in broadcast video search,
such as (Hauptmann, 2006; Naphade, 2004), very few systems address the issue of search
in surveillance video. Lee (2005) describes a user interface to retrieve simple
surveillance events like presence of person and objects. Stringa (1998) proposed a
content-based retrieval system for abandoned objects detected by a subway station
surveillance system. In their system, similar abandoned objects can be retrieved using
feature vectors of position, shape, compactness, etc. Berriss (2003) utilized the MPEG-7
dominant color descriptor to establish an efficient retrieval mechanism to search for the
same person from surveillance systems deployed in retail stores. Meesen (2006) analyzed
the instantaneous object properties in surveillance video key-frames, and performed
content-based retrieval using a generic dissimilarity measure which incorporates both
global and local dissimilarities between the query and target video key-frames. There is
significant effort in industrial surveillance systems (ObjectVideo; PyramidVision)

targeted toward real-time event detection. Very few of these systems have focused on
video search. 3VR (3VR) does provide capabilities to search for a person based on face
recognition. In summary, there is a very limited number of both research and commercial
systems focused on searching surveillance video. As surveillance systems grow in scale
and utility, there is an increasingly critical need to provide the corollary search
capabilities.

While applying video analytics to provide real-time alerting based on predetermined

event definitions, such as “tripwire,” has been explored both in the research literature and
in commercial systems, the challenges of searching through surveillance video remain
largely unaddressed. While video analysis and pattern recognition technologies are at the
core of “intelligent” or “smart” surveillance, effective search of surveillance video
requires research into searchable meta-data representations for video based features, data
models for indexing and correlating diverse types of meta-data, and architectures for
integrating technologies into large scale systems.

 Searching surveillance video essentially revolves around the following key search
criteria: (1) Specific search for people and vehicles and (2) Generic search for objects and
events of interest. Search applications require a combination of these criteria to create
composite queries and the ability for the search to be applied across multiple cameras
distributed over a spatial region.

 In this chapter, we use the IBM Smart Surveillance System (SSS) as an example
system for discussing various aspects of the technology involved in event detection,
query and retrieval. The IBM Smart Surveillance Solution (SSS) is an IBM service
offering for use in surveillance systems and provides video based behavioral analysis
capabilities. It offers not only the capability to automatically monitor a scene but also the
ability to manage the surveillance data, perform event based retrieval, receive real time
event alerts through a standard web infrastructure and extract long term statistical
patterns of activity. The IBM SSS is an open and extensible framework designed so that
it can easily integrate multiple independently developed event analysis. Section 2
describes the architecture of the IBM SSS including a description of the two main
components: the SSE (Smart Surveillance Engine) which takes the camera inputs and
produces event metadata, and MILS (Middleware for Large Scale Surveillance) which
provides data management and retrieval capabilities. Section 3 presents the underlying
processes which comprise the video parsing (or analytics) performed by the SSE to create
event metadata. Section 4 describes MILS in more detail including the services it
provides and the data structure used. Section 5 presents the user interface of the system.
Sections 6 and 7 explore the various aspects of searching for people, events and objects.
Sections 8 and 9 present examples of compound queries and the concept of spatio-
temporal searching. Section 10 shows some performance results for searching in the
Smart Surveillance System. We conclude the chapter with a discussion of the significant
research challenges that remain in enabling large scale searching of surveillance video.

3. The IBM SSS

The IBM SSS includes two components: (1) Smart Surveillance Engine (SSE) which
provides video analysis capabilities; (2) Middleware for Large Scale Surveillance
(MILS) which provides data management and retrieval capabilities. These two
components support the following features:

• Local Real-time Surveillance Event Notification: This set of functions provides real-

time alerts to the local application.
• Web-based Real-time Surveillance Event Notification: This set of functions provides

a web-based real-time event notification within 3 seconds of the occurrence of a
specified event in the monitored area; for example “Speeding Vehicle.”

• Web-based Surveillance Event Retrieval: This set of functions provides the ability to
retrieve surveillance events based on various attributes like object type, speed, or
color.

• Web-based Surveillance Event Statistics: This set of functions provides the ability to
compute a variety of statistics on the event data. For example the distribution over
time of arrivals and departures from a building over a day.

Figure 1: An open and extensible architecture for IBM SSS. The smart surveillance
engine (SSE) provides a plug and play framework for video analytics. The event meta-
data generated by the engines are sent to the database as XML files. Web services
API’s allow for easy integration and extensibility of the meta-data. Various
applications like event browsing and real time alerts can use an SQL-like query
language through web services interfaces to access the event meta-data from the data
base.

Figure 1 shows the software architecture of IBM SSS. For details, refer to Shu (2005).
which supports the above four features with the following software components:

Smart Surveillance Engine (SSE) The SSE is designed to process one stream of video
in real-time, extracting object meta-data and evaluating user defined alerts. The SSE

uploads messages in XML to the central data repository. The SSE provides the software
framework for hosting a wide range of video analytics like behavior analysis, face
recognition, license plate recognition etc. One computer can run multiple analytics on
multiple channels of video.

Middleware for Large Scale Surveillance (MILS) MILS provides the algorithms
needed to take the event meta-data and map it into tables in a relational database.
Additionally, MILS provides event search services, meta-data management, system
management, user management and application development services. MILS uses off the
shelf data management (IBM DB2), a web server (IBM Websphere Application Server)
and messaging software (IBM MQ) to provide these services.

Solutions These are mainly web applications (written in HTML, Java, JSP, applets,
Javascript, and AJAX) which use the web services provided by MILS to provide the
functionality needed by the user to query the database and view the results.

The data flow in the IBM SSS architecture is summarized as following:
1. Sensor data from a variety of sensors is processed in the Smart Surveillance Engines

(SSEs). Each SSE can generate real-time alerts and generic event meta-data.
2. The meta-data generated by the SSE is represented using XML. The XML documents

have some set of fields which are required and common to all engines and others
which are specific to the particular type of analysis being performed by the engine.

3. The meta-data generated by the SSEs is transferred to the backend MILS system. This
is accomplished via the use of web services data ingest APIs provided by MILS.

4. The XML meta-data is received by MILS and indexed into predefined tables in the
IBM DB2 database. This is accomplished using the DB2 XML extender. This allows
for fast searching using the primary keys.

5. MILS provides a number of query and retrieval services based on the types of meta-
data available in the database.

4. Video Parsing Performed by the SSE

In the first item in the data flow of the architecture of the SSS, the Smart Surveillance
Engine (SSE) processes the sensor data (typically video from a camera) to generate real-
time alerts and generic event meta-data. The basic approach used to extract alerts and
events from surveillance video involves detection and tracking. The specific nature of the
detection and tracking vary based on the type of video analysis technique used. For
example, as a car (person) enters a camera’s view, the SSE would detect the entry of the
license plate (or face) and recognize and track it until the car (or person) leaves the
camera field of view. In the IBM SSE, the following main steps are followed to extract
important features for event detection from video and non-video information. In this
chapter, we will only focus on the video-based event detection:

• Camera Stabilization
• Moving Object Detection and Tracking
• Object Classification

• Color Classification
• Alert Detection
• Compound Spatio-Temporal Event Detection
• Face Capture and Tracking
• People Counting
• Behavior Analysis

4.1 Camera Stabilization

In order to achieve robust event detection results for complex environments such as
outdoor video surveillance on windy days, camera stabilization techniques (Jin, 2001)
have been applied to the input video streams to correct the subtle camera motion. We use
a point tracking method (tracking salient feature points from frame to frame) similar to
the method used by Lucas (1981) and motion compensation to estimate the camera
movement and output stabilized video for further processing.

4.2 Moving Object Detection and Tracking

The most widely applicable form of surveillance video parsing uses moving object
detection and tracking. In common with most video surveillance systems, we use
background subtraction (Tian, 2005) to detect changes in a video stream. Background
subtraction works by maintaining a statistical model of the observed values of a pixel and
modeling the variations to distinguish a change caused by a moving object from changes
due to lighting changes or camera vibrations. The detected objects are tracked over their
life within a single camera using a tracking system (Senior, 2006). The tracker associates
multiple detections of the same object over time and constructs tracks which each
represent the movement of a single object (or sometimes the coherent motion of a group
of objects). Since it corresponds to a physical object, the track (which designates a time
interval) is the fundamental representation in the database. For a given object, we can
derive characteristics, such as the object’s type, appearance and identity, which are
assumed to be constant over time, although our estimates of these characteristics may be
derived from accumulations of multiple observations of the object over time. The
following sections discuss how the various attributes of objects can be extracted to enable
searching.

4.3 Object Classification

After moving object detection and tracking have been performed, object classification is
used to determine if object tracks belong to people or vehicles. We deploy a two-phase
system in order to achieve classification for an arbitrary scene. In the first phase,
human/vehicle recognition is attained using classical feature-based classification based
on shape and motion of the detect object. Classical features include the aspect ratio,
compactness (ratio of perimeter squared over area), speed and variation in speed. This
phase is used to initialize view-normalization parameters by recording the observed sizes
of confidently classified objects (whose real-world size is thus known or assumed) for
each view. The parameters allow the second phase to perform improved classification
based on normalized features, i.e, features which are scaled according to the view. The

normalization also enables absolute identification of size and speed which can be used in
various ways including identifying vehicles of a given (real-world) size and searching for
objects traveling at specific speeds across different locations in the image and across
different viewpoints/cameras.

4.4 Color Classification

Tracked objects are also classified as one of six colors: red, yellow, green, blue, black or
white. Color is computed incrementally over the life of the object. When the object first
appears, a color histogram is initialized. This histogram is updated periodically if the
object remains in the scene. The histogram is computed based on (1) converting RGB to
HSI color space and (2) quantizing HSI space to the six colors based on user-defined
parameters. These parameters include the thresholds used to determine if saturation is
high enough for different bands of intensity. The ultimate dominant color of the object is
determined based on ad hoc rules which take into account object type (vehicle, person)
and lighting conditions. These rules are based on thresholds for each color and the
balance between black and white. If the object contains large amounts of black (because
of shadows or object type) then the balance between black and white can be modified.
Similarly, if only a small amount of hue is necessary for it to be the dominant color of an
object (as in the case of vehicles) these thresholds can be lowered accordingly.

4.5 Alert Detection

Based on the object detection and tracking outputs, eight types of basic alerts can be
currently detected in our system. The parameters of these alerts can be specified on the
user interface.

Motion detection: Defines an event where a specified number of moving objects,
satisfying the specified parameter values, is detected in a region of interest (ROI). The
parameters for this event are the ROI, the minimum and maximum sizes for the detected
objects, minimum number of frames the motion should last, and the minimum number of
moving objects to detect.

Directional motion: Defines an event where a moving object is detected in the specified
region and in the specified direction. The parameters are the ROI, the direction of motion
in that region, and the tolerance in direction angle.

Abandoned object: Defines an event where an object satisfying the desired parameters is
left in the specified region. The parameters are the region of interest, the minimum and
maximum detected object sizes, and the waiting time before considering the object
abandoned.

Object removal: Defines an event where an object, selected by drawing a region around
it, is removed. The parameters are the region drawn around the object, and the sensitivity
level. The sensitivity level is the threshold used to determine if the object is removed.
This threshold is based on the amount of change measured in the region.

Trip wire: Defines an event where the line drawn is crossed in the specified direction.
The parameters are the line of interest, the direction of crossing, and the minimum and
maximum object sizes

Region alert: This alert detects which part of the moving object enters or leaves the
specified region.

Camera blind/camera moved: This primitive event detects if/when the camera is moved
or blinded.

Camera motion stopped: This primitive event detects if/when a moving camera is
stopped.

4.6 Compound Spatio-Temporal Event Detection

We define multiple events or activities which may occur across different times or
multiple cameras based on heterogeneous meta-data as compound events. Examples
include: a person leaving a building (seen from one camera) and entering a region (seen
in another camera) or tailgating (one person entering using a badge entry system,
followed by another not using the badge entry system). In order to provide the flexibility
to specify customized events with varying complexity, and enter them to the database in a
generic way, we introduce a spatio-temporal event detection system which lets the users
specify multiple composite events of high-complexity, and then detects their occurrence
automatically. Events can be defined on a single camera view or across multiple camera
views. Semantically higher level event scenarios can be built by using building blocks
which we call primitive events (such as the basic alerts). Primitive events are connected
to each other by an operator using a user-friendly interface. Operators include: AND, OR,
SEQUENCE (one event follows another), and XOR. More importantly, the newly
defined composite events can be combined with each other. For example, an event may
be defined as either a car OR a person in a certain region. Another example could be an
event defined as a car in region 1 AND a person crossing into region 2. This layered
structure makes the definition of events with ever higher complexity possible. The event
definitions are written to an XML file, which is then parsed and communicated to the
tracking engines running on the videos of the corresponding cameras. For example, when
multiple events are combined by a SEQUENCE operator, a time interval can be defined
among them. With the proposed system, we can not only detect “a person exiting the
building,” we can also detect “a person coming from the south corridor and then exiting
the building.” Later in Section 10 of this chapter, the interface and results for an example
of a compound spatio-temporal event are shown.

4.7 Face Capture and Tracking

Faces are key to identifying people. Automatically recognizing people from surveillance
cameras still remains a challenging problem for face recognition technologies (FRVT,
2006; Senior, 2007). The first step in achieving automatic face recognition is the indexing
of video with a “presence of people” index. While face-based people detection is

valuable, in most realistic scenes, it isn’t sufficient to enable people searching because
people:
• people could be facing away from the camera, in which case face capture /

recognition will fail
• could be entering the scene with a pose which limits the visibility of the face from the

camera,
Our approach to creating a “presence of people” index uses a combination of face and
person detection to ensure a very low rate of false negatives.
 Our face detection method relies on extracting adapted features to encode the local
geometric structures of training samples prior to learning. Local feature adaptation is
carried out by a non-linear optimization method that determines feature parameters such
as position, orientation and scale in order to match the geometric structure of each
training sample. This non-linear optimization is similar to the Levenberg-Marquadt
method which is a well-known numerical method which minimizes an objective function
over a space of parameters of the function. In a second stage, Adaboost learning is
applied to the pool of adaptive features in order to obtain general features, which encode
common characteristics of all training face images and thus are suitable for detection.
Compared to other techniques e.g., Viola (2001), our method (Feris, 2007) offers faster
learning time and improved detection rate for quantitative evaluation on standard
datasets).
 As described in Feris (2007), after detecting a face in the field of view of a
surveillance camera, we apply a correlation-based tracking algorithm to track the face in
the subsequent video frames. More specifically, when a face is detected, the correlation-
based tracker is triggered. For the subsequent frame, if the face detection fails, tracking is
updated with the window given by the correlation tracker, i.e. the window with highest
correlation to the previous window. Otherwise, if the face detector reports a window
result with a close position and size to the current tracking window, then this face
detection window result is used to update tracking. This mechanism is important to avoid
drifting. Continuous face detection is used to re-initialize the tracker, using multiple
view-based classifiers (frontal and profile) interleaved along the temporal domain in the
video sequence. Each view-based classifier is based on the two stage Adaboost learning
method described above – one for frontal views and another for profile views. By using
two classifiers, the face detector will more robustly detect all faces regardless of pose.

4.8 People Counting

Automatic counting of people, entering or exiting a region of interest, is a very important
feature for video surveillance systems. We developed an automatic and robust people
counting system which can count multiple people who interact in the region of interest,
by using only one camera mounted overhead. Two-level hierarchical tracking is
employed. An example of hierarchical tracking can be found in Funahashi (2005). For
cases not involving merges or splits, a fast blob tracking method is used. See Francois
(2004) as a related example. In order to deal with interactions among people in a more
thorough and reliable way, the system uses the mean-shift tracking algorithm (Comaniciu,
2000). Using the first-level blob tracker in general, and employing the mean shift tracking
only in the case of merges and splits makes the system more computationally efficient.
The system setup parameter can be automatically learned in a new environment from a 3

to 5 minute video with people going in or out of the target region one at a time. We tested
the proposed method with video sequences which contain many interactions (such as
merges/splits, shaking hands, and hugging) between people in the ROI. Most of these
interactions occur right in the vicinity of the entry/exit line, thus successfully resolving
them is essential to determine direction and perform counting accurately. The system
runs at about 33fps on 320x240 images without code optimization on 2GHz Pentium
machines. Average accuracy rates of 98.5% and 95% are achieved on videos with normal
traffic flow and videos with many cases of merges and splits, respectively. More details
of the algorithm can be found in paper by Velipasalar (2006a).

4.9 Behavior Analysis

In IBM SSS, we have a preliminary structure for detecting trajectory anomalies. This
system shown in Figure 2 analyses the paths of tracked objects, learns a set of repeated
patterns that occur frequently, and detects when an object moves in a way inconsistent
with these normal patterns.

0

50

100

150

200

250

7AM 9AM 11AM 1PM

Mon
Tue
Wed

0

50

100

150

200

250

7AM 9AM 11AM 1PM

Mon
Tue
Wed

 (a) (b) (c)
Figure 2 (a): Summary view showing the retrieval of trajectories all events that occurred in
the parking lot over a 24 hour period. Trajectory color coding, start white and end is red.
(b): Activity distribution over extended time period, x-axis is time, y-sxis is the number of
people in the area. Each day of the week is shown with a different line. (c): Unsupervised
behavior analysis. Object entrance/departure zones (green ellipses) and prototypical
tracks (brown curves) with typical variation (crossbars).

The system begins by detecting object entrance and exit locations. Here the start and
end points of tracks are clustered to find regions where tracks often end or begin. These
points will tend to be where paths or roads reach the edge of the camera’s field of view.
Having clustered these locations, we have a simple classification for trajectories by
labeling a track with its start and end location (or as an anomaly when it starts or ends in
an unusual location such as a person walking through the bushes). For example, when we
cluster trajectories for our camera which views the entrance to our building, trajectories
are classified into one of 5 classes – entering/exiting into the left side (from the road on
the left or from the center), enter/exiting to the right side (from the road on the right or
from the center), or moving horizontally across the road. We then apply a secondary
clustering scheme to further detect anomalous behavior. This scheme operates as
follows: the trajectories of all tracks with a given start/end location labeling are
resampled and clustered together. This gives an average or “prototypical track” together
with standard deviations, as shown in Figure 3. Thus most tracks from a given entry
location to a given exit will lie close to the prototypical track, with typical normal

variation indicated by the length of the crossbars. Tracks that wander outside this normal
area can be labeled as anomalous and may warrant further investigation. Principal
components of the cluster can also indicate typical modes of variation or “eigentracks”
giving a more accurate model of normal vs. abnormal.

5. The IBM Middleware for Large Scale Surveillance

In the previous section, we described the components of the IBM Smart Surveillance
Engine (SSE) which extracts event metadata from the camera input. In this section, we
describe the other major component of the IBM Smart Surveillance Solution (SSS), the
IBM Middleware for Large Scale Surveillance or MILS. We first describe in 5.1 the
services provided by MILS which comprise the MILS Application Programming
Interface. In subsection 5.2 we describe the data structures used within MILS to store the
information used to index the data and perform relevant searches.

5.1 Services Provided by the MILS

MILS provides the data management services needed to build a large scale smart
surveillance application and to enable extensive search capabilities. While MILS builds
on the extensive capabilities of the IBM DB2 database system, it is essentially
independent of this product and can be implemented on top of 3rd party relational
databases. It supports the indexing and retrieval of spatio-temporal event data. MILS also
provides analysis engines with the following support functionalities via standard web
services interfaces using XML documents.

A: Meta-data Ingestion Services: These are web services calls which allow an engine to
ingest events into the MILS system. There are two categories of ingestion services

A.1: Index Ingestion Services
A.2: Event Ingestion Services

B: Schema Management Services: These are web services which allow a developer to
manage their own meta-data schemata. A developer can create a new schema or extend
the base MILS schema to accommodate the metadata produced by their analytical engine.
C: System Management Services: These services provide a number of facilities needed
to manage a surveillance system including

C.1: Camera Management Services
C.2: Engine Management Services
C.3: User Management Services
C.4: Content Based Search Services

5.2 Data Structures in MILS

The MILS system has three types of data structures, namely, (1) the system data structure
which captures the specification of a given monitoring system, including details like
geographic location of the system, number of cameras, physical layout of the monitored
space, etc. (2) the user data structure which contains user names, privileges and user
functionality, (3) the event data structure which contains the events that occur in a

specific sensor or zone in the monitored space. Each of these data structures is briefly
described in the following subsections.

A) System Data Structure

The system data structure has a number of components, listed below.

A.1: Sensor/Camera Data Structure
A.2: Engine Data Structures

B) User Data Structure

The user data structure captures the privileges of a given user. These include
• selective access to camera views
• selective access to camera / engine configuration and system management

functionality
• selective access to search and query functions.

C) Event Data Structure

This data structure represents the events that occur within a space that may be monitored
by one or more cameras or other sensors. IBM SSS uses the timeline data structure
which uses time as a primary synchronization mechanism for events that occur in the real
world between sensors. The basic MILS schema allows multiple layers of annotations for
a given time span. The following is a description of the schema:
• Event: An event is defined as an interval of time.
• StartTime: Time at which the event starts.
• Duration: This is the duration of the event. Events with zero duration are permitted,

for example snapping a picture or swiping a badge through a reader.
• Event ID: This is a unique number which identifies a specific event.
• Event Type: This is a event type identifier.
• Other descriptors: Every analysis engine can generate its own set of tags such as basic

types or more complex types. If the tags are basic types CHAR, INT, FLOAT, they
can be searched using the native search capabilities of the database. However, if the
tag is a special type (for example color histogram) the developer needs to supply a
mechanism for searching the field.

The most fundamental index into surveillance video is the time of occurrence of an

event. The challenge is to automatically derive the time of occurrence of “events of
interest” by analyzing the video. Once an event is detected in video, the time interval of
the event can be annotated with additional meta-data which captures a more detailed
description of the event. Hence, the most basic data structure for surveillance events is a
time interval. Table 1 below shows the basic data model for two types of surveillance
events (1) a car driving through a parking lot captured on camera 23 and (2) the license
plate of a car recognized on camera 35

License Plate #: 525sdsObject Type: Car

Additional Fields: (e.g State of
Origin)

Additional Fields: (trajectory, color,
shape, size, etc)

Video : //mils/xx/file3.wmvVideo : //mils/xx/file1.wmv

Keyframe: 563783.jpgKeyframe: 23567.jpg

End: 9/10/06:02:12:25:453End: 9/10/06:02:22:55:300

Start: 9/10/06:02:12:15:100Start: 9/10/06:02:22:15:100

Unique Event ID: 4926402Unique Event ID: 2379406

Camera ID: 35Camera ID: 23

License Plate Meta -dataBehavior Meta -data

Example Data Models

License Plate #: 525sdsObject Type: Car

Additional Fields: (e.g State of
Origin)

Additional Fields: (trajectory, color,
shape, size, etc)

Video : //mils/xx/file3.wmvVideo : //mils/xx/file1.wmv

Keyframe: 563783.jpgKeyframe: 23567.jpg

End: 9/10/06:02:12:25:453End: 9/10/06:02:22:55:300

Start: 9/10/06:02:12:15:100Start: 9/10/06:02:22:15:100

Unique Event ID: 4926402Unique Event ID: 2379406

Camera ID: 35Camera ID: 23

License Plate Meta -dataBehavior Meta -data

Example Data Models

Table 1. Event time is used as the basis for annotation surveillance events

 Each unique event that occurs within a scene is assigned an event identifier which is
guaranteed to be unique across all cameras that are being indexed into a single database
instance. The event ID is used as the primary key to select from and join across multiple
tables in the database. The time of occurrence of the event is used to correlate events
across multiple cameras that exist in the system. This data structure can easily be
extended to accommodate new types of meta-data as new types of video analytics are
added to the system. If the meta-data is one of the basic types (INT, CHAR, FLOAT
etc.) supported by the database it can be searched using SQL. For special types of meta-
data, like color histograms additional user defined search functions have to be developed.

6. Interface of IBM SSS

Figure 3 – 8 show some screen shots of the IBM SSS interface for the list of camera
views, and the results of searches for car, person, face capture, license plate, and object
color, as well as a summarized view of a day’s traffic. In all the figures, the upper left
region contains a map of the facility showing the locations of the cameras. The upper
right region contains instant alerts. Alerts are updated in real-time as they occur. The
lower left region contains a video player. Initially it contains a live video of the currently
selected camera. But this player can also show a selected alert or event. The lower right
region changes as the user selects what he/she would like to search. This region can
contain either the page to specify the search criteria or the results of a search. In the
figures, the lower right region differs depending on the search criteria.

Figure 3: An Interface showing the various camera views currently available in the system

Figure 4: An Interface showing the Results from a “Find Person” Query

Figure 5: An Interface showing the Results of “Find Faces”

Figure 6: An Interface showing the Results of “License Plate Recognition”

Figure 7: An Interface showing the Results of “Red Car” search

Figure 8: An Interface showing the track summary of one day data

7. Specific People and Vehicle Search

As shown in the user interface, the SSS can be used to search for events based on a large
set of attributes provided by the engines (SSEs) and stored in the database and retrieval
system (MILS). In this section and the next three sections, we detail the search
functionality and search performance of the system. In this section, we describe the
search capabilities for finding people and vehicles and determining the number of people
crossing through a region. In Section 8, we describe the generic search capabilities
including object color, object class, object size, object shape, object location, object
movement, time of event of occurrence and event duration. In Section 9 we give an
example of compound search while in Section 10 we give examples of more complex
searches which we call compound spatio-temporal search. Finally in Section 11 we give
some results evaluating the performance of the system in both precision and recall and for
time to recall for detecting and tracking objects and executing specific search queries.

7.1 Searching for People

After detecting and tracking human faces, we also store a keyframe for each captured
face image in the database, associated with a timestamp. This allows the user to issue
queries like ``Show me all people who entered the facility yesterday from 1pm to 5pm."
An example of this search is shown at the right of Table 2.
 Ideally, for every person passing through the scene, a face keyframe would be
generated and stored in the database. However, due to false negatives in face detection
and face pose and person orientation issues, important events might be missed. We
address this problem by using a keyframe selection technique that combines a face
classifier with a person classifier. If a face is detected and tracked in the video sequence,
a face keyframe is stored in the database. Otherwise, a person keyframe is generated if a
person is detected and tracked in the video.
 We analyzed ten hours of data from one camera, taking video of the busiest hour from
each of ten days. Table 2 shows our results. Out of 445 people entering the facility (not
walking away from the camera), we captured 351 faces, with only 7 false positives. The
reason that some faces were missed is that sometimes people enter the door looking
down, occluding the face from the camera, which is placed on the ceiling. By running our
keyframe selection technique (using face and person detectors), we captured all
remaining 94 persons, as well as 40 persons walking away from the camera, with an
additional 19 false positives.

False Positives

Receding

Approaching

Persons captured

False Poitives

Faces Missed

Faces Captured

5.6%Overall People False Positives 26/445

0Overall People False Negatives

19

40

94

134Person Detection

7

94

351Face Detection

40Total # of people receding from camera

445Total # of people approaching camera

False Positives

Receding

Approaching

Persons captured

False Poitives

Faces Missed

Faces Captured

5.6%Overall People False Positives 26/445

0Overall People False Negatives

19

40

94

134Person Detection

7

94

351Face Detection

40Total # of people receding from camera

445Total # of people approaching camera

Table 2: Results obtained from ten hours of surveillance video. Example faces
(frontal and profile) captured by our system (blurred to preserve privacy)

7.2. Searching for Vehicles

Searching for vehicles based on license plates is achieved using license plate recognition
technology, which is more reliable than face recognition. An example system used in the
IBM SSS was developed by Hi Tech Solution (HiTech, website). Unlike human faces,
license plates vary widely based on geography. Variations include language, font,
background and numbering scheme. Typically, there is no single algorithm or company
which can recognize license plates across wide geographies. One approach to handling
this variation is to standardize the interfaces to the license plate algorithms (such as Hi
Tech’s SeeCar algorithm) and standardize the meta-data representation for the license
plate. The software architecture of IBM SSS supports this approach.

7.3 People Count

Figure 9 shows the result of one-week long test in IBM Hawthorne cafeteria, we found:
1) the morning time (8:00am-11:00am) has the lowest traffic load in a day; 2) the lunch
time (11:00am-2:00pm, especially 12:00pm-2:00pm) has the highest traffic load, (as
expected for a cafeteria); 3) Friday has less traffic than other week days.

Morning Time (08:00AM-11:00AM)

69

132
166

132 126

0
50

100
150
200

Mon Tue Wed Thu Fri
Day of Week

A
ve

ra
ge

 H
o

ur
ly

T

ra
ff

ic

Lunch Time (11:00AM-02:00PM)

299
362 344 398

214

0
100
200
300
400
500

Mon Tue Wed Thu Fri
Day of Week

A
ve

ra
ge

 H
ou

rl
y

T
ra

ff
ic

Afternoon Time (02:00PM-05:00PM)

153
110

228
144

50

0

100

200

300

Mon Tue Wed Thu Fri

Day of Week

A
ve

ra
ge

 H
o

ur
ly

T

ra
ff

ic

(b)

(a)

(c)
Figure 9: Results of people counting for a week in the IBM Hawthorne cafeteria

8. Generic Search Criteria
Generic search includes search for objects and behaviors of objects over time. This search
can be qualified by one or more of the following: object color, object class, object size,
object shape, object location, object movement, time of event of occurrence and event
duration.

8.1 Search by Object Color
Object color is determined by (1) converting RGB object colors to a 6 color
Hue/Saturation/Intensity (HSI) space, (2) periodically updating and normalizing the 6
color HSI cumulative histogram over the life of the object and (3) determining the three
dominant colors and their percentages. For vehicle color estimation, the final primary

color is determined based on hue if sufficient (regardless of the amount of achromatic
pixels), and the relative amount of black and white. Table 3 shows the results of color
classification for vehicles entering and exiting our facilities for a total of 8 hours (4 hours
for two days). The overall correct color classification is 80%. Over half the misclassified
vehicles are black or white vehicles misclassified as white or black respectively.
Although this may be improved with parameter tuning taking into consideration the
variations in lighting conditions, the most significant issue here is due to the variable
amount of shadows included in the object segmentation and the percent of the true black
components for each vehicle (i.e. windshield size, tires, accessories etc.) Figure 10 and 11
show illustrative examples of vehicles classified correctly and incorrectly.

COLOR SEARCH ���� GROUND TRUTH

2200000GR

29139138122

7070000BU

1001000YE

180001800RE

10701011023WH

1650102036119BL

GRBUYEREWHBL

COLOR SEARCH ���� GROUND TRUTH

2200000GR

29139138122

7070000BU

1001000YE

180001800RE

10701011023WH

1650102036119BL

GRBUYEREWHBL

C
O

LO
R

 S
E

A
R

C
H
�� ��

R
E

S
U

LT
S

Table 3 Color Results: BL-Black, WH-White, RE-Red, YE-
Yellow, BU-Blue, GR-Green

Figure 10. Retrieved keyframes (cross indexed to video by time) (1) yellow, (2)
green, (3) blue, (4) red, (5) black and (6) white vehicles. (Trajectory color indicates
direction of movement, blue is track start, red is track end).

Figure 11. Keyframes 1,2,3 show errors from searching for black objects.
Keyframes 4,5,6 are results of searching for white objects. For 1,2,3 notice the
dark shadows and color of windows etc which lead to misclassification. In the
keyframe (5), the garbage truck appears to be black on examining the original
video playing , it is seen that the truck’s lower body is white.

8.2 Search by Object Class
Object classification is performed using a view invariant classifier (Brown 2004). An
object can be classified as either a person or a vehicle based on shape features such as
compactness and principal axis ratio, and motion features such as speed and degree of
recurrent motion. Table 4 (left) shows results for vehicles and people entering the front of
our laboratory for 4 hours one morning. (May 16 2007, Camera #2, between 8am and
12pm). Overall 307/334 or 92% of the vehicle/person object tracks were correctly
classified.

Object Class Ground Truth

7324886

53181O

192309P

1077V

OPV

Object Class Ground Truth

7324886

53181O

192309P

1077V

OPV

O
B

JE
C

T
 C

LA
S

S
 R

E
S

U
LT

S

1L-T

SIZE SEARCH ���� GROUND TRUTH

31114320Total

11O

13MS-T

20393C

217P

OL-TMS-TCP

1L-T

SIZE SEARCH ���� GROUND TRUTH

31114320Total

11O

13MS-T

20393C

217P

OL-TMS-TCP

S
IZ

E
 S

E
A

R
C

H
 �� ��

R
E

S
U

LT
S

Table 4 Left: Object Classification Result: V: Vehicles, P: Person, O: Other Right:
Search using object size. P: Person, C: Car, MS-T: Medium Sized Truck, L-T: Large
Truck, O: Other.

8.3 Search by Object Size
Object size is often useful to determine object sub-class for objects moving orthogonal to
the camera viewpoint. Object size was used to distinguish pedestrians from vehicles and
to distinguish standard vehicles (cars, SUVs, minivans) from mid-size vehicles (delivery
trucks, large pickups) and large trucks (such as garbage trucks and tractor trailers) for our

camera looking orthogonal to the entry road. Table 4 (right) shows the results of a size
search used for object classification.

8.4 Search by Object Shape
Currently our system does not support explicit search by shape. However as described in
the object classification section, shape of objects is used to determine the class.

8.5 Search by Object Movement
Object movement can be qualified by several parameters such as speed, acceleration,
direction, and extended properties of the objects trajectory (like finding all people
walking in a zigzag manner through the parking lot). The SSE computes several of these
parameters for use in evaluating user specified events like directional motion of the
object. At this time, our search interface only provides the ability to search based on the
speed of the object.

8.6 Search by Object Location
This is achieved by storing the entire trajectory of the object into the database. The
tracker (described in 4.2) generates a trajectory for each moving object in the scene in
image coordinates. When the user selects a region of interest (ROI) within an image
(yellow box), this is used to generate an SQL query which retrieves all the objects whose
trajectories intersect the ROI. Figure 12 (left) shows the results of events recovered when
the user selects the yellow region outlined in the image.

Figure 12. (Left) Results of spatial search, showing the trajectories of all objects that
passed through the user-selected yellow region. The user can click on the trajectory
to view the corresponding video clip. (Right) Loitering events (note the long person
trajectories) retrieved by using the event duration query.

8.7 Search by Time of Occurrence of Events
Every event indexed into the database is required to have an event start timestamp and
event end timestamp (see section on data structure). These time stamps are used to

retrieve events within the user specified time of interest. Currently we only support
retrieval of events that occurred: a) before a user specified time b) after a user specified
time c) during a user specified interval.

8.8 Search by Duration of Event
Every event recorded by the system has an associated time duration. The duration of an
event can be used for multiple purposes. Below are sample events from a query for
events of duration longer than 50 seconds. These sample events demonstrate how
loitering can be detected by using the event duration query (figure 12 right).

9. Compound Search

All the criteria discussed above can be combined into a single query to search for events
of greater complexity. Consider the following scenario: Employees at a facility have
registered a complaint that one of the drivers from an express mail company is driving
very fast in the parking lot. Since it is known that the delivery truck is yellow, we can
use the composite query as follows:
FIND ALL, Object Type = “VEHICLE”, Object Size > X1 and Object Size <X2,
Object Color = Yellow, Object Speed > S1
Applying such a query to events over a month would help establish a pattern of speeding
violations committed by the delivery truck, thus narrowing down the specific driver.

10. Compound Spatio-Temporal Search

In a number of applications, the events of interest are a combination of basic events over
space (cameras) and time. Figure 13 shows a detected tailgate event at the entrance by
using the spatio-temporal event detection method. First, the tailgate event is described by
using the building blocks and operators shown in Fig. 13(a). The three primitives here
correspond to the opening of the gate, detection of two cars in the ROI (Region of
Interest) after the gate, and the closing of the gate respectively. The middle primitive
event in Fig. 13(a) is defined so that it will be detected when there are two objects in the
ROI. As can be seen in Figures 13(b) and 13(c), the second and third primitives are
detected successfully. The opening of the gate cannot be detected due to weather
conditions affecting the performance of the background subtraction algorithm. (This
refers to subsection 4.2 on Moving Object Detection and Tracking.)Then, the description
of the scenario was modified as shown in Figure 13(d) where the first primitive is
changed so that it can detect a vehicle right at the gate. In this case, the first primitive can
be detected successfully as well.

Many complex events, such as a person entering the building and then removing an
object or a person jumping over a fence and entering a specified region, can be expressed
in terms of primitive events and detected by using the proposed system. We also tested
our system successfully with several scenarios like people tailgating to enter the building
and a truck following an unusual path defined on the views of four cameras. These events

were defined and introduced to the system by people with no technical expertise by using
the proposed scheme and the interface.

 Figure 13. Detecting a “tailgate” event.

11. Search Performance

The performance of a search system can be characterized along two dimensions:
precision and recall. These dimensions provide a measure of how well the system is
meeting the requirements of the user’s query. The precision and recall of the overall
system is a function of the precision and recall of each of the individual video parsing
mechanisms (face, license plate, etc). The previous sections have presented the results
for people detection. The precision and recall of all of the other retrieval techniques such
as color, size, location, event time, and event duration are dependent on the precision and
recall of the underlying event parsing system (object detection and tracking). A detailed

evaluation of event parsing (detection and tracking) can be found in (Brown 2005a,
2005b)

 Table 5 Table 6

Test Set Description Object Detection Performance Summary

Test Data Set Description with ground truth

90 objects Total # of objects tracks FOV

2964 objects in 2267 framesTotal # of hand marked objects

4 cameras, 10 sequences, 36
minutes (2267 frames)

Data volume

Test Data Set Description with ground truth

90 objects Total # of objects tracks FOV

2964 objects in 2267 framesTotal # of hand marked objects

4 cameras, 10 sequences, 36
minutes (2267 frames)

Data volume

Object Detection or Background Subtraction Results

226 sq-pixelsAvg size of missed object

628 of 2964 = 21.2% False Negatives (missed object)

0.03 objects per frameFalse Positives

Object Detection or Background Subtraction Results

226 sq-pixelsAvg size of missed object

628 of 2964 = 21.2% False Negatives (missed object)

0.03 objects per frameFalse Positives

As shown in Table 5, we used a test set of videos which was hand marked by a person for
objects in each frame and tracks over the sequence. The results of running our base object
detection and tracking algorithms are shown in Tables 6 and 7. At the selected operating
point (set of thresholds of object size, sensitivity of detection thresholds, track match
thresholds, etc.) the base performance of the detection and tracking algorithms is good on
objects that are of significant size (above 169 sq. pixels). The false positives when
measured at a track level tend to be very short lived trajectories (77 frames, less than 3s).
Typically, events that occur in the real world are of significantly longer duration. While
improvement in the base event parsing is always desirable, the current level of
performance is more that adequate for a search and real-time alert in retail and city
surveillance.

 Table 7 Table 8
Object Tracking Performance Summary Retrieval Time Summary

Object Tracking Results

169 sq-pixelsAvg size of missed tracks

24/90 = 26.6% False Negatives (missed tracks)

25 with average length of 77 framesFalse Positives (spurious tracks)

Object Tracking Results

169 sq-pixelsAvg size of missed tracks

24/90 = 26.6% False Negatives (missed tracks)

25 with average length of 77 framesFalse Positives (spurious tracks)
Database Server, Dual Xeon, 3.8Ghz with 4GB Ram running IBM DB2

219 events retrieved in under 5secs Red car search

From Apr 30, 07 to May 14, 07
10997 events over 15 days

Total number of events on Main
Parking Lot Camera

Database Server, Dual Xeon, 3.8Ghz with 4GB Ram running IBM DB2

219 events retrieved in under 5secs Red car search

From Apr 30, 07 to May 14, 07
10997 events over 15 days

Total number of events on Main
Parking Lot Camera

Table 8 shows a summary of retrieval time for the system. This is the time between the
user launching a query and the system responding with results. This time varies widely
based on the type of query, with location searches being the most expensive and searches
based on native SQL types falling into a different bucket. Below is a sample
performance result for color retrieval, which is a native SQL query.

12. Conclusions

Enabling effective search of surveillance video is a challenging problem, as it involves
not only the challenges of extracting events and activities in video, but also the
challenges of generating searchable meta-data, efficient indexing into a database and

intuitive search and visualization mechanisms. The current activities in research and
industry have only begun to scratch the surface of the challenges involved in surveillance
video.

This chapter presented a framework for addressing detection, query and retrieval issues in
surveillance video using the IBM Smart Surveillance System. This system has a broad
range of detection capabilities which can be used to automatically monitor a scene in
real-time including person/vehicle recognition, color identification, complex alert
detection, face capture, and people counting. This framework can also manage the
unwieldy amount of surveillance data, perform event-based retrieval and receive real time
event alerts through a standard web infrastructure. This latter capability enables large
distributive systems which can scale to a large number of cameras and facilities. The
system can also extract long term statistical patterns of activity to facilitate traffic
monitoring and improved understanding of operational conditions. Lastly, the system is
an open and extensible framework which can easily integrate multiple independently
developed event analysis technologies in a common infrastructure.

 Many challenges and research opportunities remain open in the space of surveillance
video analysis and search. Examples include dealing with the challenges of searching for
color across varying scene conditions such as time of day, camera settings, lighting etc.,
searching for people who have been seen earlier (in different cameras, on different days,
under different lighting conditions) or dealing efficiently with indexing large amounts of
video and providing intuitive interfaces for enabling search and interaction. One “Grand
Challenge” is to reduce the time to investigate situations like the London bombings or the
Washington sniper incident and find the perpetrators in a timely fashion.

13. Future Research Directions

We are planning to investigate on-line learning techniques to improve the performance of
our algorithms in specific scenarios. Conventional offline methods are designed for
generic scenarios, often involving large training sets with samples drawn independently
from some probabilistic distribution. Offline training can be very computationally
expensive, like the adaboost learning process for face detection, which can take order of
weeks to be completed in conventional machines. In contrast, on-line learning methods
use one example at a time to update the learning parameters and thus are more suitable to
process large amounts of data. A key advantage of these techniques is adaptation to new
environments. Consider as an example a face detector which is deployed in a particular
camera. With online learning, the detector would continuously tune its parameters to
adapt to the particular camera conditions (like lighting, background, etc.) as new data
arrives.

Currently, our visual object tracker is restricted to a single camera. We plan to extend our
approach to track objects across multiple cameras. This is a very challenging problem, as
objects can change their appearance dramatically from one camera view to another, due
to different camera viewpoints and camera intrinsic properties like different color
responses. Obtaining reliable solutions for this problem will allow us to better monitor

sites such as retail stores, where we may desire to analyze the complete trajectories of
people across multiple cameras.

We also plan to incorporate other computer vision modules in our system, such as face
analysis for gender and age classification, activity recognition (e.g., detection of a person
falling down), more sophisticated trajectory analysis and clustering, tracking and object
classification in crowded environments, and many others. All these new modules can be
easily integrated in our system framework as DLL plug-ins.

Thus far our system relies on static cameras, which allows us to use background
modeling techniques to segment moving objects. In many cases, however, this
segmentation may be very poor due to crowded scenarios or extreme lighting changes. A
more interesting issue happens when we consider moving cameras, rather than static
cameras. In this case, background modeling is meaningless. We are currently
investigating analytics modules that work well in these circumstances.

14. References

3VR, http://www.3vr.com/Products/#smartsearch.

Berriss, W.P., Price, W.G., & Bober, M.Z. (2003) Real-Time Visual Analysis and Search Algorithms
for Intelligent Video Surveillance, International Conference on Visual Information Engineering (pp.
226-229) July 2003.

Brown, L.M. (2004) View Independent Vehicle/Person Classification, ACM 2nd International
Workshop on Video Surveillance and Sensor Networks (pp. 114-123) NY, NY October, 2004.

Brown, L.M., Lu, M., Shu, C., Tian, Y., & Hampapur, A. (2005a) Improving performance via post
track analysis. IEEE International Workshop on Visual Surveillance and Performance Evaluation of
Tracking and Surveillance (pp. 341 – 347) Beijing, China, October 2005.

Brown, L., Senior, A., Tian, Y., Connell, J., Hampapur, A., Shu, C, Merkl, H., & Lu, M. (2005b)
Performance Evaluation of Surveillance Systems Under Varying Conditions, IEEE International
Workshop on Performance Evaluation of Tracking and Surveillance (pp79-87) Breckenridge, CO,
January 2005.

Comaniciu, D., Ramesh, V. & Meer, P. (2000) Real-time tracking of non-rigid objects using mean
shift, in Proc. IEEE Conference on Computer Vision and Pattern Recognition, volume II, (pp. 142–
149.)

Feris, R., Tian, Y., & Hampapur, A. (2007) Capturing People in Surveillance Video, The Seventh
International Workshop on Visual Surveillance (pp. 1-8.)

FRVT, (2006) Face Recognition Vendor Test (FRVT), http://www.frvt.org/FRVT2006/.

Francois, A. (2004) Real-Time Multi-Resolution Blob Tracking, Institute for Robotics and Intelligent
Systems, University of Southern California, Los Angeles, California, from

http://handle.dtic.mil/100.2/ADA447622.

Funahashi, T.; Fujiwara, T.; Koshimizu, H. (2005) Coarse to fine hierarchical tracking system for face
recognition. IEEE International Conference on Systems, Man and Cybernetics, Volume 4, (pp. 3454-
3459.)

Hauptmann, A. (2006) Lessons for the Future from a Decade of Infomedia Video Analysis Research,
International Conference on Image and Video Retrieval (pp. 1-10.)

HiTech, http://www.htsol.com/Products/SeeCar.html.

Jin, J., Zhu, Z., Xu, G. (2001) Digital Video Sequence Stabilization Based on 2.5D Motion Estimation
and Inertial Motion Filtering, Real-Time Imaging, Vol. 7, No. 4, Academic Press, (pp. 357-365.)

Lee, H., Smeaton, A., O’Connor, N., & Murphy, N., (2005) User Interface for CCTV Search System,
The IEE International Symposium on Imaging for Crime Detection and Prevention (pp. 39-43.)

Lucas, B. D., & Kanade, T. (1981) An iterative image registration technique with an application to
stereo vision. Proceedings of Imaging understanding workshop, (pp 121—130.)

Marcenaro, L., Oberti, F., Foresti, G.L., & Regazzoni, C.S. (2001) Distributed Architectures and
Logical-Task Decomposition in Multimedia Surveillance Systems, Proceedings of IEEE, Vol.89,
No.10, (pp. 1419-1440.)

Meessen, J., Coulanges, M., Desurmont, X., & Delaigle, J.F., (2006) Content-Based Retrieval of Video
Surveillance Scenes, Multimedia Content Representation, Classification and Security. (pp.785-792.)

Naphade, M. & Smith, J.R. (2004) On the Detection of Semantic Concepts at TRECVID, ACM
International Conference on Multimedia. (pp. 660-667.)

ObjectVideo, http://www.objectvideo.com/products/vew/.

PyramidVision, http://www.pyramidvision.com/.

Senior, A., A. Hampapur, Tian, Y, Brown, L., Pankanti, S., & Bolle, R. (2006) Appearance Models for
Occlusion Handling, in Journal of Image and Vision Computing , Volume 24, Issue 11, (pp. 1233-
1243.)

Senior, A., Brown, L., Shu, C., Tian, Y., Lu, M., Zhai, Y. & Hampapur, A. (2007) Visual Person
Searches for Retail Loss Detection: Application and Evaluation, International Conference on Vision
Systems.

Shu, C., Hampapur, A., Lu, M., Brown, L. Connell, J. Senior, A. & Tian, Y. (2005), IBM smart
surveillance system (S3): a open and extensible framework for event based surveillance, IEEE
Conference on Advanced Video and Signal Based Surveillance (pp. 318 – 323.)

Stringa, E. & Regazzoni, C.S. (1998) Content-Based Retrieval and Real Time Detection from Video
Sequences Acquired by Surveillance Systems, IEEE International Conference on Image Processing,
Vol. 3, (pp. 138-142.)

Tian, Y., Lu, M., & Hampapur, A. (2005) Robust and efficient foreground analysis for real-time video
surveillance, IEEE International Conference on Computer Vision and Pattern Recognition. Vol. 1,
(pp1182-1187.)

Velipasalar, S., Brown, L. & Hampapur, A. (2006a) Specifying, Interpreting and Detecting High-level,
Spatio-Temporal Composite Events in Single and Multi-Camera Systems, Conference on Computer
Vision and Pattern Recognition Workshop, (pp110-116.)

Velipasalar, S., Tian, Y. & Hampapur, A. (2006b) Automatic counting of interacting people by using a
single uncalibrated camera, IEEE International Conference on Multimedia and Expo, (pp1265-1268.)

Viola, P. & Jones, M. (2001) Rapid Object Detection Using a Boosted Cascade of Simple Features,
IEEE Conference on Computer Vision and pattern Recognition (pp.511-518.)

15. Additional Reading

Ali, S. & Shah, M. (2007). A lagrangian particle dynamics approach for crowd flow segmentation
and stability analysis, IEEE Conference on Computer Vision and Pattern Recognition,
Minneapolis.

Auvinet, E., Grossman, E., Rougier, C., Dahmane, M. & Meunier, J. (2006). Left-luggage
detection using homographies and simple heuristics. PETS2006 Proceedings.

Bose, B. &. Grimson, E. (2004). Improving object classification in far-field video. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR'04) Vol. 2, Washington,
D.C., pp 181-188.

Buxton, H. (2003). Learning and understanding dynamic scene activity: a review. Image and
Vision Computing, Vol 21, pp 125-136.

Davis, J. W. (2004). Sequential reliable-inference for rapid detection of human actions. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW’04), Washington, D.C.

Ferryman, J. & Thirde, D. (2006). An overview of the PETS2006 dataset. PETS2006 Proceedings.

Gray, D., Brennan, S. & Tao, H. (2007). Evaluating Appearance Models for Recognition,
Reacquisition, and Tracking. PETS2007 Proceedings.

Hongeng, S. & Nevatia, R. (2003). Large-scale event detection using semi-hidden markov models,
IEEE International Conference on Computer Vision, Nice, France.

Joo, S. & and R. Chellappa (2006). Attribute grammar-based event recognition and anomaly
detection. International Workshop on Semantic Learning Applications in Multimedia, New York ,
NY.

Katz, B., Lin, J., Stauffer, C., & Grimson E. (2005). Answering questions about moving objects in
surveillance videos. AAAI Spring Symposium on New Directions in Question Answering.

Khan, S. & Shah, M. (2005). Detecting group activities using rigidity of formation. Proceedings of
ACM Multimedia.

Krahnstoever, N., Tu, T., Sebastian, T., Perera, A. & Collins, R. (2006). Multi-view detection and
tracking of travelers and luggage in mass transit environments. PETS2006 Proceedings.

Martinez-del-Rincon, J., Herrero-Jaraba, J., Gomez, J. & Orrite-Urunuela, C. (2006). Automatic
left luggage detection and tracking using multi-camera UKF. PETS2006 Proceedings.

Pound, M., Naeem, A., French, A. & Pridmore, T. (2007). Quantitative and qualitative evaluation
of visual tracking algorithms using statistical tests. PETS 2007 Proceedings.

Remagnino, P. & Jones, G.A. (2001). Classifying surveillance events from attributes and
behaviour, British Machine Vision Conference, Manchester, pp. 685-694. ISBN/ISSN
1901725162.

Ramanathan, N. & Chellappa, R. (2006). Face verification across age progression”, in IEEE
Transactions on Image Processing, Vol. 15, pp. 3349-3361.

Rodriguez, M. & Shah, M. (2007) Detecting and segmenting humans in crowded scenes.
Proceedings of ACM Multimedia.
Shao J., Zhou, S. & Chellappa, R. (2004). Appearance-based tracking and recognition using the
3D trilinear tensor. IEEE Intl. Conf. on Acoust., Speech and Signal Processing, Montreal, Canada.

Sheikh, Y., Li X. & Shah, M. (2007). Trajectory association across non-overlapping moving
cameras in planar scenes, IEEE Conference on Computer Vision and Pattern Recognition,
Minneapolis, USA.

Stauffer, C. (2003) Estimating tracking sources and sinks. IEEE Workshop on Event Mining.

White, B. & Shah, M. (2007). Automatically tuning background subtraction parameters using
particle swarm optimization, IEEE International Conference on Multimedia & Expo, Beijing,
China.

Yin, F., Makris, D. & Velastin, S. (2007). Performance evaluation of object tracking algorithms.
PETS2007 Proceedings.

Zhao, T. & Nevatia, R. (2004). Tracking multiple humans in crowded environment. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pp. 406-413.

Zhou, S. & Chellappa, R. (2005). Image-based face recognition under illumination and pose
variations “, Jl. Optical Society of America, A, Vol. 22, pp. 217-229.

Zhu, X. et al. Video data mining: semantic indexing and event detection from the association
perspective. IEEE Trans. on Knowledge and Data Engineering, 17(5), 665-677.

