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Abstract: A computer vision-based wayfinding and navigation aid can improve 

the mobility of blind and visually impaired people to travel independently. In this 

chapter, we focus on RGB-D sensor-based computer vision technologies in appli-

cation to assist blind and visually impaired persons. We first briefly review the ex-

isting computer vision based assistive technology for the visually impaired. Then 

we provide a detailed description of the recent RGB-D sensor based assistive 

technology to help blind or visually impaired people. Next, we present the proto-

type system to detect and recognize stairs and pedestrian crosswalks based on 

RGB-D images. Since both stairs and pedestrian crosswalks are featured by a 

group of parallel lines, Hough transform is applied to extract the concurrent par-

allel lines based on the RGB (Red, Green, and Blue) channels. Then, the Depth 

channel is employed to recognize pedestrian crosswalks and stairs. The detected 

stairs are further identified as stairs going up (upstairs) and stairs going down 

(downstairs). The distance between the camera and stairs is also estimated for 

blind users. The detection and recognition results on our collected datasets 
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demonstrate the effectiveness and efficiency of our developed prototype. We 

conclude the chapter by the discussion of the future directions.  

Keywords — blind; visually impaired; wayfinding and navigation; RGB-D cam-

era; object recognition. 

1. Introduction  

 Of the 314 million visually impaired people worldwide, 45 million are 

blind [1]. In the United States, the 2008 National Health Interview Survey (NHIS) 

reported that an estimated 25.2 million adult Americans (over 8%) are blind or 

visually impaired [2]. This number is increasing rapidly as the baby boomer gen-

eration ages. Recent developments in computer vision, digital cameras, and 

portable computers make it feasible to assist these individuals by developing 

camera-based products that combine computer vision technology with other ex-

isting commercial products such OCR, GPS systems. 

 Independent travel and active interactions with the dynamic surround-

ing environment are well known to present significant challenges for individuals 

with severe vision impairment, thereby reducing quality of life and compromising 

safety. In order to improve the ability of people who are blind or have significant 

visual impairments to access, understand, and explore surrounding environ-

ments, many assistant technologies and devices have been developed to accom-

plish specific navigation goals, obstacle detection, or wayfinding tasks.  
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 We note that electronic technology developed over the last fifty years 

has been an enormous boon for visually-impaired people, allowing access to text 

through video magnification [3], reading machines [4], text-to-speech (TTS) and 

screen readers [5], increasing quality of life for millions of individuals with vision 

loss by allowing independent and private access to text. However, few of them 

use these for navigation and travel. For navigation and travel, nearly all blind 

people use a cane at least some of the time due to the effectiveness, conven-

ience, and low-cost, even if they rely on another mobility aid.  The user typically 

scans left and right along their forward directional path, gathering information 

about obstacles from tactile and sonic information. Additionally it gives infor-

mation about drop-offs, stairs, ground textures and type of flooring.  It also 

serves as an identifier so that sighted people may avoid collisions with the blind 

traveler. However, the long cane is not able to detect obstacles higher off the 

ground. We think that the cane is most likely to remain useful to blind users for 

the foreseeable future, together with other high-tech assistive devices.  

 Many efforts have been made in development of electronic assistive de-

vices to help blind persons navigate which can be found in recent surveys [6-9, 

59, 61]. In addition to develop effective, reliable, and robust technology, friendly 

human interface design is even more important for successful assistive devices. 

There are two central and persistent issues in the human interface design: 1) how 



4  

easy a system can be operated by the user, and 2) how the system can best pre-

sent nonvisual information to the user.  

 A computer vision-based assistive system can improve the mobility of 

blind and visually impaired people to reduce risks and avoid dangers, enhance 

independent living, and improve quality of life. Our research efforts are focused 

on developing a computer vision-based navigation aid, because we believe this 

approach holds the greatest long-term promise, given the continually rapid 

growth in capabilities of computer and robotic technology fields of computer vi-

sion and robotics [10, 11]. The need for robots to navigate in the environment, in 

particular, is fueling the development of computer vision techniques for object 

recognition and scene analysis, along with localization and mapping. As imaging 

techniques advance, such as RGB-D cameras of Microsoft Kinect [12] and ASUS 

Xtion Pro Live [13], it has become practical to capture RGB sequences as well as 

depth maps in real time. Depth maps are able to provide additional information 

of object shape and distance compared to traditional RGB cameras. It has there-

fore motivated recent research work to investigate computer vision based assis-

tive technology using RGB-D cameras.  

 In this chapter, we focus on RGB-D sensor-based computer vision tech-

nologies in application to assist blind and visually impaired persons. We first 

briefly review the existing computer vision based assistive technology for the vis-

ually impaired. Then we provide a detailed description of the recent RGB-D sen-
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sor based assistive technology to help blind or visually impaired people. Next, we 

present the prototype system we developed to detect and recognize stairs and 

pedestrian crosswalks based on RGB-D images. We conclude the chapter by the 

discussion of the future directions. 

2. Related Work of Computer Vision Based Assistive Tech-

nology for Visually Impaired 

Many electronic mobility assistant systems are developed based on converting 

sonar information into an audible signal for the visually impaired persons to in-

terpret [14-18]. However, they only provide limited information. Recently, re-

searchers have focused on interpreting the visual information into a high level 

representation before sending it to the visually impaired persons.   

 The “vOICe” system [19] is a commercially available vision-based travel 

aid that displays imagery through sound using videos captured by a head-

mounted camera to help them build a mental image about the environment. 

However, the vOICe system translates images into corresponding sounds through 

stereo headphones, which will seriously block and distract the blind users' hear-

ing sense. In addition, a training and education process is must conducted to un-

derstand the meanings of different tones and pitches of sounds about the envi-

ronment. For example, if a short beep indicates a bright speck of light, three 

specks will produces three beeps. A vertical line is a stack of specks, sounding all 

at the same time but all with different pitches since they are at different heights. 
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In real situation, an environment is generally contains different objects, the 

vOICe  system will generate a complex and "noisy" sound map which will be too 

complex for blind users to build the mental image. 

 Very recently, the US Food and Drug Administration approved for sale a 

new device -- the Argus II retinal prosthesis [20], from Second Sight Medical 

Products – comprised of a small video camera mounted on the nose bridge of a 

pair of sunglasses, a transmitter mounted near one temple of the sunglasses, a 

worn or carried video processing unit and a 60-electrode array that is intended to 

replace the function of degenerated photoreceptor cells in the retinas of those 

with the disease retinitis pigmentosa. Although it does not fully restore vision, 

the Argus II can improve ability to perceive lights, images and movement, using 

the video-processing unit to transform images from the video camera into image 

data that is wirelessly transmitted to the retinal electrode array. However, the 

temporal dynamics of electrical retinal stimulation are likely very different from 

those of a normal retina, the image is extremely low resolution relative to normal 

vision, and most important, the user must aim the head rather than the eye, to 

move an object into the field of view.  

 VizWiz [21] is a free iPhone app to provide answers to questions asked 

by blind users about their surroundings through anonymous web workers and 

social network members. Based on the statistic data about 50,000 questions, 

most questions were answered in a minute or less. With VizWiz, a user takes a 

picture and records a question on their mobile phone, then sends their question 
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to anonymous workers, object recognition software – IQ [22], Twitter, or an 

email contact. Once an answer is received from any of those services, it is sent 

back to the users' phone. The advantage of VizWiz is the fusion of automatic im-

age processing software with human replies from other members in user's social 

network. However, there are several main limitations for blind navigation and 

wayfinding: 1) For blind users, it is very hard to aim their iPhone to the targeted 

objects; 2) For the answers the user received, there is not a way to validate 

whether the answer is accurate. 3) Some questions may not be answered, and 4) 

Questions may take some time to answer. 

 A product in development called BrainPort (from Wicab Inc.) and recent-

ly approved for sale in Europe [23], uses a camera mounted on a pair of sun-

glasses as its input device.  After image processing, images are displayed on the 

tongue via a “lollipop”-like display as shown in Figure 1.  The “image” has been 

described as “tasting” a bit like effervescent champagne bubble on the tongue. 

Studies have demonstrated that blind and blindfolded sighted subjects can local-

ize and identify some objects [24, 25] and avoid obstacles while navigating [26] 

under favorable conditions of contrast and lighting.  Drawbacks of this system are 

that it requires use of the mouth, which precludes concurrently engaging in other 

lingual activities such as speaking and eating, and its spatial resolution is still far 

worse (by orders of magnitude) than that of the visual system, posing limits to 

object recognition. 
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Figure 1: BrainPort vision substitution device [23]. 

 Coughlan et al. [27] developed a method of finding crosswalks based on 

figure-ground segmentation, which they built in a graphical model framework for 

grouping geometric features into a coherent structure. As shown in Figure 2, 

Ivanchenko et al. [28] further extended the algorithm to detect the location and 

orientation of pedestrian crosswalks for a blind or visually impaired person using 

a cell phone camera. The prototype of the system can run in real time on an off-

the-shelf Nokia N95 camera phone. The cell phone automatically took several 

images per second, analyzed each image in a fraction of a second and sounded 

an audio tone when it detected a pedestrian crosswalk.  
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Figure 2: Crosswatch system for providing guidance to visually impaired pedestrians at 
traffic intersections by panning a cell phone camera left and right; the system provides 
feedback to help user align him/herself to crosswalk before entering it [28]. 

 Advanyi et al. [29] employed the Bionic eyeglasses to provide the blind 

or visually impaired individuals the navigation and orientation information based 

on an enhanced color preprocessing through mean shift segmentation. Then de-

tection of pedestrian crosswalks was carried out via a partially adaptive Cellular 

Nanoscale Networks algorithm. Se et al. [30] proposed a method to detect zebra 

crosswalks. They first detected the crossing lines by looking for groups of concur-

rent lines. Edges were then partitioned using intensity variation information. Se 

et al. [31] also developed a Gabor filter based texture detection method to de-

tect distant stair cases. When the stairs are close enough, stair cases were then 

detected by looking for groups of concurrent lines, where convex and concave 

edges were portioned using intensity variation information. The pose of stairs 

was also estimated by a homograph search model. Uddin et al. [32] proposed a 

bipolarity-based segmentation and projective invariant-based method to detect 

zebra crosswalks. They first segmented the image on the basis of bipolarity and 
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selected the candidates on the basis of area, then extracted feature points on the 

candidate area based on the Fisher criterion. The authors recognized zebra 

crosswalks based on the projective invariants.  

 
Figure 3: Top row: detected doors and regions containing text information. Middle row: 
extracted and binarized text regions. Bottom row: text recognition results of OCR in text 
regions [40].      
 

 Our own research group has developed a series of computer vision-

based methods for blind people to recognize text and signage [33-36], recognize 

objects and clothes patterns [37-39], independently access and navigate unfamil-

iar environments [40-43], and under interface study [44]. Text and signage play 

important role in blind navigation and wayfinding. Tian et al. developed a proof-

of-concept computer vision-based wayfinding aid for blind people to inde-

pendently access unfamiliar indoor environments [40]. In order to find different 

rooms (e.g. an office, a lab, or a bathroom) and other building amenities (e.g. an 

exit or an elevator), the object detection is integrated with text recognition. A 

robust and efficient algorithm is developed to detect doors, elevators, and cabi-
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nets based on their general geometric shape which combines edges and corners. 

Then the text information associated with the detected objects is extracted and 

recognized. For text recognition, they first extracted text regions from signs with 

multiple colors and possibly complex backgrounds, and then applied character 

localization and topological analysis to filter out background interference. The ex-

tracted text is recognized using off-the-shelf optical character recognition (OCR) 

software products. The object type, orientation, location, and text information 

are presented to the blind traveler as speech. Some example results of door de-

tection and text signage recognition are demonstrated in Figure 3. The first row 

of Figure 3 shows the detected door and signage regions. The second row dis-

plays the binarized signage. The last row displays that recognized text from OCR 

as readable codes on the extracted and binarized text regions. 

 Reading is obviously essential in today’s society. Printed text is every-

where in the form of reports, receipts, bank statements, restaurant menus, class-

room handouts, product packages, instructions on medicine bottles, etc. And 

while optical aids, video magnifiers and screen readers can help blind users and 

those with low vision to access documents, there are few devices that can pro-

vide good access to common hand-held objects such as product packages, and 

objects printed with text such as prescription medication bottles. The ability of 

people who are blind or have significant visual impairments to read printed labels 

and product packages will enhance independent living, and foster economic and 

social self-sufficiency.  
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 Our group proposed a camera-based assistive framework to help blind 

persons to read text labels from hand-held objects in their daily life. As shown in 

Figure 4, a blind user wearing a camera captures the hand-held object from the 

cluttered background or other neutral objects in the camera view by slightly 

shaking the object for 1 or 2 seconds. This process solves the aiming problem for 

blind users. The hand-held object is detected from the background or other sur-

rounding objects in the camera view by motion detection. Then a mosaic model 

is applied to unwarp the text label on the object surface and reconstruct the 

whole label for recognizing text information. This model can handle cylinder ob-

jects in any orientations and scales. The text information is then extracted from 

the unwarped and flatted labels. In the text localization method, the basic pro-

cessing cells are rectangle image patches with fixed ratio, where features of text 

can be obtained from both stroke orientations and edge distributions [45-47]. 

The extracted text regions are then recognized by OCR software and communi-

cate with the blind user in speech. 
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Figure 4: Flowchart of the framework to read labels from hand-held objects for blind users 
[36]. 

3. RGB-D Sensor-based Computer Vision Assistive Tech-

nology for Visually Impaired 

As the release of RGB-D sensors and corresponding development toolkits, the 

applications of RGB-D sensor based computer vision technology has been ex-

tended far beyond gaming and entertainment. More reviews of the applications 

for multimedia and object recognition can be found in [62, 63]. In this section, we 

only focus on the research related to RGB-D camera-based assistive technology 

to help visually impaired people. Compared to the traditional RGB cameras or the 

stereo cameras, RGB-D sensors have the following advantages: a) RGB-D cameras 

contain both an RGB channel and a 3D depth channel which can provide more in-

formation of the scene; b) they work well in a low light environment; c) they are 

low-cost; and d) they are efficient for real-time processing. Currently, the RGB-D 
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camera captures both RGB images and depth maps at a resolution of 640x480 

pixels with 30 frames per second. The effective depth range of the Kinect RGB-D 

camera is from 0.8 to 4 meters. Although the Kinect for Windows Hardware can 

be switched to Near Mode which provides a range of 0.5 to 3 meters, currently 

the Near Mode is not supported for an Xbox Kinect for Windows SDK. The RGB-D 

cameras field of view is about 60 degrees. Since the RGB-D sensors use Infrared, 

they cannot be used reliably for obstacle avoidance of transparent objects such 

as glass doors. Also they will not work in outdoor environments with direct sun-

light. 

 Theoretically, the traditional RGB camera based assistive technology for 

blind persons can be implemented using RGB-D sensors. However, since the lim-

ited resolution (640x480 pixels) of the current RGB-D sensors, some technologies 

may not work such as text detection and recognition especially for text with 

small size. In this section, we briefly summarize RGB-D sensor based technology 

for applications to assist visually impaired people.  

 Khan et al. developed a real time human and obstacle detection system 

for a blind or visually impaired user using an Xtion Pro Live RGB-D sensor [48]. As 

shown in Figure 5, the prototype system includes an Xtion Pro live (Kinect) sen-

sor, waist assembly to mount the Kinect, a laptop for processing and transducing 

the data, a backpack to hold the laptop, and a set of headphone for providing 

feedback to the user. The system runs in two modes: 1) track and/or detect mul-

tiple humans and moving objects and transduce the information to the user; and 
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2) avoid obstacles for safe navigation for a blind or visually-impaired user in an 

indoor environment. They also presented a preliminary user study with some 

blind-folded users to measure the efficiency and robustness of their algorithms. 

 

Figure 5. The Xtion Pro Live-Waist assemblies for detecting humans and obstacles [48]. 

 Tang et al. presented a RGB-D sensor based computer vision device to 

improve the performance of visual prostheses [50]. First a patch-based method is 

employed to generate a dense depth map with region-based representations. 

The patch-based method generates both a surface based RGB and depth (RGB-D) 

segmentation instead of just 3D point clouds, therefore, it carries more meaning-

ful information and it is easier to convey the information to the visually impaired. 

Then they applied a smart sampling method to transduce the im-

portant/highlighted information, and/or remove background information, before 

presenting to visually impaired people. They also reported some preliminary ex-

periments with the BrainPort V100 [23] to investigate the effectiveness of both 

recognition and navigation that blind people can perform using such a low-

resolution tactile device. 
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 Lee and Medioni developed a wearable RGB-D camera based navigation 

aid for the visually impaired to navigate low textured environment as shown in 

Figure 6 [52]. To extract orientational information of the blind users, a visual 

odometer and feature based metric-topological SLAM (Simultaneous Localization 

and Mapping) are incorporated. A vest-type interface device with 4 tactile feed-

back effectors is used to communicate with the user for the presence of obsta-

cles and provide the blind user with guidance along the generated safe path from 

the SLAM.  

 

Figure 6. The RGB-D camera based navigation aid for the visually impaired which includes 
a RGB-D camera and a tactile vest interface device [52].  
 
 Park and Howard presented some preliminary results of development of 

a real-time haptic telepresence robotic system for the visually impaired to reach 

specific objects using a RGB-D sensor [58]. As shown in Figure 7, Tamjidi et al. de-

veloped a smart cane prototype by adding a SwissRanger SR4000 3D camera [60] 

for camera's pose estimation and object/obstacle detection in an indoor envi-

ronment [59].  The SR4000 is an RGB-D sensor and provides intensity and range 
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data of the scene. The SR4000 has a spatial resolution of 176×144 pixels and a 

field of view of 43.6º×34.6º. 

 

Figure 7. The Smart Cane prototype with a SwissRanger SR4000 3D camera [59].  
 

 In assistive system development, the user interface design plays a very 

important role. Without a friendly user interface, it is impossible for blind users 

to use the device even though the technology is perfect. How the system can 

best present spatial information nonvisually to the user is one of the center is-

sues together these comprise the human interface for blind users. Ribeiro et al. 

developed a new approach for representing visual information with spatial audio 

to help a blind user building mental maps from the acoustic signals, and associat-

ing them with spatial data. [49]. As shown in Figure 8, the prototype device in-

cludes a Kinect RGB-D camera, an accelerometer, a gyroscope, and open-ear 
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headphones. They applied computer-vision methods for plane decomposition, 

navigable floor mapping and object detection. Unlike previous work to create 

acoustic scenes by transducing low-level (e.g. pixel-based) visual information, 

their method only identifies high-level features of interest in an RGB-D stream. 

Then they rendered the location of an object by synthesizing a virtual sound 

source at its corresponding real-world coordinates. By sonifying high-level spatial 

features with 3D audio, users can use their inherent capacity for sound source lo-

calization to identify the position of virtual objects. 

 

Figure 8. The prototype device of the auditory augmented reality proposed in [49]. 
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Figure 9: Flowchart of our proposed algorithm for stair and pedestrian crosswalk 
detection and recognition. 

 

4. RGB-D Image-based Stair and Pedestrian Crosswalk De-

tection 

4.1 System Overview 

In this section, we describe a RGB-D based framework to detect stair-cases and 

pedestrian crosswalks for blind persons by integrating an RGB-D camera, a mi-

crophone, a portable computer, and a speaker connected by Bluetooth for audio 
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description of objects identified. In our prototype system, a mini laptop is em-

ployed to conduct image processing and data analysis. The RGB-D camera 

mounted on the user's belt is used to capture videos of the environment and 

connected to the mini laptop via a USB connection. The user can control the sys-

tem by speech input via a microphone. Compared to existing work of staircase 

detection which only depends on RGB videos or stereo cameras [53-55], our pro-

posed method is more robust and efficient to detect staircases and crosswalks. 

 As shown in Figure 9, our whole framework consists of stair and cross-

walk detection and recognition. First, a group of parallel lines are detected via 

Hough transform and line fitting with geometric constraints from RGB infor-

mation. In order to distinguish stairs and pedestrian crosswalks, we extract the 

feature of one dimensional depth information according to the direction of the 

longest detected line from the depth image. Then the feature of one dimensional 

depth information is employed as the input of a support vector machine (SVM) 

based classifier [56] to recognize stairs and pedestrian crosswalks. For stairs, a 

further detection of the upstairs and downstairs is conducted. Furthermore, we 

estimate the distance between the camera and stairs for the blind user.  

4.2 Detecting Candidates of Pedestrian Crosswalks and Stairs from RGB images 

 There are various kinds of stair-cases and pedestrian crosswalks. In the 

application of blind navigation and wayfinding, we focus on detecting stairs or 

pedestrian crosswalks in a close distance for stair cases with uniform trend and 
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steps, and pedestrian crosswalks of the most regular zebra crosswalks with alter-

nating white bands.  

 Stairs consist of a sequence of steps which can be regarded as a group of 

consecutive curb edges, and pedestrian crosswalks can be characterized as an al-

ternating pattern of black and white stripes. To extract these features, we first 

obtain the edge map from RGB image of the scene and then perform a Hough 

transform to extract the lines in the extracted edge map image. These lines are 

parallel for stairs and pedestrian crosswalks. Therefore, a group of concurrent 

parallel lines represent the structure of stairs and pedestrian crosswalks. In order 

to eliminate the noise from unrelated lines, we add constraints including the 

number of concurrent lines, line length, etc. We apply Hough transform to detect 

straight lines based on the edge points by the following steps: 

Step1: Detect edge maps from the RGB image by edge detection. 
Step2: Compute the Hough transform of the RGB image to obtain the direction 
of the line. 
Step3: Calculate the peaks in the Hough transform matrix. 
Step4: Extract lines in the RGB image. 
Step5: Detect a group of parallel lines based on constraints such as the length 
and total number of detected lines of stairs and pedestrian crosswalks. 
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Figure 10: Example of upstairs (row 1), downstairs (row 2), and Pedestrian 
crosswalks (row 3). (a) Original image; (b) edge detection; (c) line detec-
tion; (d) concurrent parallel lines detection (yellow dots represent the 
starting points, red dots represent the ending points of the lines, and 
green lines represent the detected lines.) 

 As shown in Figure 10(c), the detected parallel lines of stairs and pedes-

trian crosswalks are marked as green, while yellow dots and red dots represent 

the staring points and the ending points of the lines respectively. However, these 

lines are often separated with small gaps caused by noises, so we group the line 

fragments as the same line if the gap is less than a threshold. In general, stairs 

and pedestrian crosswalks contain multiple parallel lines with a reasonable 

length. If the length of a line is less than a threshold (set as 60 pixels in our sys-

tem), then the line does not belong to the line group. And if the number of paral-
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lel lines less than 5 (more than two stair steps), the scene image does not contain 

stairs and pedestrian crosswalks. 

4.3. Recognizing Pedestrian Crosswalks and Stairs from Depth Images 

 By detecting parallel lines under the constraints in a scene image cap-

tured by an RGB-D camera, we can detect the candidates of stairs and pedestrian 

crosswalks. From the depth images, we observe that upstairs have rising steps 

and downstairs have descending steps, and pedestrian crosswalks are flat with 

smooth depth change as shown in Figure 11. Considering the safeness for the 

visually impaired people, it is necessary to classify the different stairs and pedes-

trian crosswalks into the correct categories.  

 

Figure 11. Depth images of (a) crosswalks, (b) downstairs, and (c) upstairs. 

 In order to distinguish stairs and pedestrian crosswalks, we first calcu-

late the orientation and position of the feature line in the edge image to extract 

the one-dimensional feature from depth information. As shown in Figure 12(a), 

the orientation of the feature line is perpendicular to the parallel lines detected 

from RGB images. The position of the feature line is determined by the middle 

point of the longest line of the parallel lines. In Figure 12(a), the blue square indi-
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cates the middle point of the longest line and the red line is the feature line 

which indicates the orientation to calculate the one-dimensional depth feature. 

The typical one-dimensional depth feature for upstairs (green curve), downstairs 

(blue curve), and pedestrian crosswalks (red curve) are demonstrated in Figure 

12(b). 

 

Figure 12. (a) The orientation and position of the feature line to extract 
one-dimensional depth features from the edge image. The blue square in-
dicates the middle point of the longest line and the red line shows the ori-
entation which is perpendicular to the detected parallel lines. (b) One-
dimensional depth feature for upstairs (green curve), downstairs (blue 
curve), and pedestrian crosswalks (red curve). The red squares indicate 
the first turning points of the one-dimensional depth features of upstairs 
and downstairs. 

 The resolution of depth images captured by an RGB-D camera [12, 13] in 

Figure 11 is 640*480 pixels. The effective depth range of the RGB-D camera is 

about 0.15 to 4.7 meters. The intensity value range of the depth images is [0, 

255]. Therefore, as shown in Figure 12(b), the intensities of the one dimensional 

depth feature for upstairs, downstairs, and crosswalks are  between 50 and 220 

(the vertical axis) but are 0 if the distance is out of the depth range of an RGB-D 
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camera. Therefore, the one-dimensional depth feature is a feature vector with 

480 dimensions. We observe that the curve for crosswalks is very flat while the 

curves of upstairs and downstairs are with intensity changes of step shape which 

can be used to distinguish stairs and crosswalks. In order to classify upstairs, 

downstairs, and pedestrian crosswalks, we employ a hierarchical SVM structure 

by using the extracted one-dimensional depth feature vector as the input. The 

classification processing includes two steps: 1) one classifier to identify pedestri-

an crosswalks from stairs. 2) For those detected stairs, one more classifier to fur-

ther identify upstairs and downstairs.  

4.4. Estimating Distance between Stairs and the Camera 

 When walking on stairs, we should adjust our walking speed and foot 

height as the stairs has a steep rising or decreasing. For blind users, stairs, in par-

ticular downstairs, may cause injury if they fall. Therefore, it is essential to 

provide the distance information of the first step of the stairs to the blind or 

visually impaired individuals (i.e. the camera position) to remind them when they 

should adjust their walking speed and foot height. In our method, the distance in-

formation between the first step of the stairs and the camera position is calculat-

ed by detecting the first turning point from the one-dimensional depth feature as 

shown in Figure 12(b) marked as the red squares. 
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From the near distance to far distance (e.g., from left side to the right side 

as the blue line with arrow shown in Figure 12(b) along the one-dimensional 

depth feature, a point x satisfies the following two conditions is considered as a 

turning point: 

‖𝑓(𝑥) − 𝑓(𝑥 − 1)‖ > 𝜆 𝑎𝑛𝑑 ‖𝑓ʹ(𝑥) − 𝑓ʹ(𝑥 − 1)‖ > 𝜀  

where f(x) is the intensity value of the depth information, λ and are the thresh-

olds which are determined by the RGB-D camera configuration. In our experi-

ment, we observe that the best results can be obtained with λ =8 and =50.  

 After we obtain the position of the turning point which indicates the first 

step of the stairs, the distance information from the camera and the first step of 

the stairs can be read from the original RGB-D depth data and provided to the 

blind traveler by speech. 

4.5. Experiment Results for Stair and Crosswalk Detection and Recognition 

Stair and Crosswalk Database: To evaluate the effectiveness and efficiency of the 

proposed method, we have collected a database for stair and crosswalk detec-

tion and recognition using an RGB-D camera [13]. The database is randomly di-

vided into two subsets: a testing dataset and a training dataset. The training da-

taset contains 30 images for each category (i.e. upstairs, downstairs, crosswalks, 

and nagative images which contain neither stairs nor pedestrian crosswalks) to 

train the SVM classifiers. Then the remaining images are used for testing which 

ε

ε
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contains 106 stairs including 56 upstairs and 50 downstairs, 52 pedestrian cross-

walks, and 70 negative images. Here, positive image samples indicate images 

containing either stairs or pedestrian crosswalks, and negative image samples in-

dicate images containing neither stairs nor pedestrian crosswalks. Some of the 

negative images contain objects structured with a group of parallel lines such as 

bookshelves as shown in Figure 14. The images in the dataset include small 

changes of camera view angels . Some of the experiment examples 

used in our algorithm are shown in Figure 13. The first row displays some RGB 

images of upstairs (Figure 13(a)), downstairs (Figure 13(b)), and crosswalks (Fig-

ure 13(c)) with different camera angles and the second row shows the corre-

sponding depth images. 

 

Figure 13. Examples of RGB (1st row) and depth images (2nd row) for (a) upstairs, (b) down-

stairs, and (c) pedestrian crosswalks in our database.  

Table 1. Detection accuracy of candidates of stairs and pedestrian crosswalks 

Classes No. of 

Samples 

Correctly 

Detected 

Missed Detection 

Accuracy 

Stairs 106 103 3 97.2% 

[ 30 ,30 ]o o−
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Crosswalks 52 41 11 78.9% 

Negative samples 70 70 0 100% 

Total 228 214 14 93.9% 

 

Experiment Results: We have evaluated the accuracy of the detection and the 

classification of our proposed method. The proposed algorithm achieves an accu-

racy of detection rate at 91.14% among the positive image samples and 0% false 

positive rate as shown in Table 1. For the detection of candidates of stairs and 

crosswalks, we correctly detect 103 stairs from 106 images, and 41 pedestrian 

crosswalks from 52 images of pedestrian crosswalks. Some of the negative sam-

ples are constructed similar edges as stairs and pedestrian crosswalks as shown 

in Figure 14. With the current RGB-D camera configuration, in general, only one 

to two shelves can be captured. The detected parallel lines do not meet the con-

straint conditions. Therefore, the bookshelves are not detected as candidates of 

stairs and pedestrian crosswalks. 

 In order to classify stairs and pedestrian crosswalks, the detected candi-

dates of stairs and crosswalks are input into a SVM-based classifier. As shown in 

Table 2, our method achieves a classification rate for the stairs and pedestrian 

crosswalks at 95.8% which correctly classified 138 images from 144 detected 

candidates. A total of 6 images of stairs are wrongly classified as pedestrian 

crosswalks. All the detected pedestrian crosswalks are correctly classified. 
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Figure 14. Negative examples of a bookshelf which has similar parallel edge lines to stairs 
and crosswalks. 

 For stairs, we further classify them as upstairs or downstairs by inputting 

the one-dimensional depth feature into a different SVM classifier. We achieve an 

accuracy rate of 90.2%. More details of the classification of upstairs and down-

stairs are listed in Table 3. 

 Our system is implemented by using MATLAB without optimization. The 

average processing time for stair and crosswalk detection and recognition of 

each image is about 0.2 seconds on a computer with 2.4GHz processor. This can 

be easily sped up 10-100 times in C++  with optimization. 
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Table 2. Accuracy of classification between stairs and pedestrian crosswalks. In a 

total of 144 detected candidates of stairs (103) and crosswalks (41), all 41 cross-

walks and 97 stairs are correctly classified. 6 stairs are wrongly classified as 

crosswalks. 

Category Total Classified as Stairs Classified as Crosswalks 

Stairs 103 97 6 

 Crosswalks 41 0 41 

Table 3. Accuracy of classification between upstairs and downstairs. In a total of 

103 detected candidates of stairs (53 for upstairs and 50 for downstairs), 48 up-

stairs and 45 downstairs are correctly classified. 5 upstairs and 5 downstairs are 

wrongly classified. 

Category Total Classified as Upstairs Classified as Downstairs 

Upstairs 53 48 5 

Downstairs 50 5 45 

 

Limitations of the Proposed Method of Stair and Crosswalk Recognition: In da-

tabase capture, we observe that it is hard to capture good quality depth images 

of pedestrian crosswalks compared to capture images of stairs. The main reason 

is the current RGB-D cameras cannot obtain good depth information for outdoor 

scenes if the sunshine is too bright. Therefore, the field of view of the obtained 

depth maps is restricted compared to the RGB images. Some of the images our 

method cannot handle are shown in Figure 15. For example, the depth infor-

mation of some parts of the images is missing. Furthermore, as shown in Figure 
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15(c), the zebra patterns of pedestrian crosswalks are not always visible caused 

by the long time use. In this case, it is hard to extract enough number of parallel 

lines to satisfy the candidate detection constraints for stair and crosswalk detec-

tion. In our method, stairs with less than 3 steps (only have 3 or 4 parallel lines) 

cannot be detected, as shown in Figure 15(d). 

 

Figure 15. Examples of our proposed method of stair and crosswalk detection fails. (a) 
Downstairs with poor illumination; (b) Upstairs with less detected lines caused by noise; 
(c) Pedestrian crosswalks with missing zebra patterns; and (d) Stairs with less steps. 

 
5. Conclusions and Future Work 

 In this chapter, we have reviewed several computer vision based assis-

tive systems and approaches for blind or visually impaired people, especially us-

ing RGB-D sensors. There are mainly three main limitations for current RGB-D 

sensor based computer vision technology for the application of blind wayfinding 

and navigation: 1) It is difficult to achieve 100% accuracy to apply only computer 

vision based technology due to the complex environments and lighting changes. 

Based on the survey we conducted with blind users, we find that most of blind 

users prefer higher detection accuracy but are willing to accept more meaningful 

information especially for users who recently lost their vision. 2) For the current 
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available RGB-D sensors, the size is still too large; the resolution is not high 

enough; the depth range is too short. In addition, they will not work in outdoor 

environments with direct sunlight. We believe that these limitations will be par-

tially solved with design of next generation of RGB-D sensors. 3) It is hard to de-

velop effective and efficient nonvisual display to blind users due to the huge 

amount of information images contain. Therefore, the user should be always in-

cluded in the loop of the computer vision based blind assistive device.    

 Theoretically, higher detection accuracy is always better. However, in 

reality, it is very hard to achieve 100% detection accuracy in particular for com-

puter vision-based methods due to the complex situations and the lighting 

changes. For the application to assist blind users, a high detection accuracy and a 

lower false negative rate are more desirable. Therefore, it is very important to 

design a user-friendly interface to provide meaningful feedback to blind users 

with the detected important information.  

 We think that an assistive system is not intended to replace the white 

cane while most blind users using. Instead, a navigation aid can help blind users 

to gain improved perception and better understanding of the environment so 

that they can aware the dynamic situation changes. Blind users are the final deci-

sion makers who make travel decision and react to local events within the range 

of several meters. The future research should be focused on enhancing the ro-
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bustness and accuracy of the computer vision technology as well as more user in-

terface study for blind users. 
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