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Abstract 

Mixture of Gaussians based background subtraction (BGS) has been widely used for detecting 
moving objects in surveillance videos. It is very efficient and can update the background model 
with slow lighting changes, however, it suffers from a number of limitations in complex 
surveillance conditions such as quick lighting variations, heavy occlusion, foreground fragments, 
slow moving or stopped object etc. To address these issues, this paper first focuses on foreground 
analysis within the Mixture of Gaussians BGS framework in long term scene monitoring to handle 
1) quick lighting changes, 2) static objects, 3) foreground fragments, 4) abandoned and removed 
objects, and 5) camera view changes. Then, we propose a framework with interactive mechanisms 
between BGS and processing from different high levels (i.e. region, frame, and tracking) to 
improve the accuracy of moving object detection and tracking to handle 1) objects that stop for a 
significant period of time and 2) slow-moving objects. The robustness and efficiency of the 
proposed mechanism is tested in IBM Smart Surveillance Solution on a variety of sequences, 
including standard datasets. The proposed method is very efficient and handles 10 video streams in 
real-time on a 2GB Pentium IV machine with MMX optimization. 
 

Keywords: Background subtraction (BGS), foreground analysis, interaction of 
BGS and tracking, video surveillance. 
 

I. INTRODUCTION 
Automatic video surveillance is a rapidly expanding field, driven by increases in 
the affordability of technology and the perceived need for security. Demand and 
the constrained domain make it one of the most commercially viable application 
areas for computer vision technology. Many applications in the field require the 
tracking of moving objects (usually people and vehicles), so that events (such as 



Machine Vision and Applications 

2 

entering a secure zone) can be detected or those objects can be found through a 
search interface. 

Video surveillance systems which run 24 hours a day and seven days a week 
create a large amount of data including videos, extracted features, alerts, etc. 
There are thousands of surveillance cameras in a typical city. For example, 
London has about 500,000 security cameras and Manhattan has more than 10,000 
cameras [45, 46]. These numbers are continuing to increase. Robustness and 
efficiency are the two key factors for successful video surveillance systems due to 
the large scale data processing and complex video analysis. 

 

Fig. 1: Overview of the background subtraction and foreground analysis system: (a) mixture of Gaussians 
based background subtraction; (b) region level foreground analysis to handle quick lighting change, detect 

static regions, reduce foreground fragments, and detect object type (abandoned or removed); (c) higher level 
foreground analysis to handle camera move (frame level) and slow moving/ stopped object (tracking level). 
   

In most automatic surveillance systems, objects of interest are first detected, 
usually by background subtraction which will find moving objects. Detected 
objects are then tracked by a tracking module. Such a system provides an efficient 
mechanism for detecting moving objects, but practical implementations suffer 
from a number of limitations in complex surveillance video conditions such as 
quick lighting variations, severe weather, heavy occlusion, crowding, non-rigid 
objects, etc. A slow moving or stopped object can result in the object being 
adapted piecemeal into the background. This leads to errors in tracking, as the 
object dissolves into multiple fragments, and false “ghost” fragments appear 
where the background contains the object after it moves away. In this paper, we 
focus on problems of background subtraction and foreground analysis in long 
term scene monitoring to handle quick lighting changes, static objects, foreground 
fragments, abandoned and removed objects, slow-moving objects, and objects that 
stop for significant periods of time. In general, quick lighting changes will cause 
false foregrounds.  
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Figure 1 shows an overview of our system. The system includes three main 
components: (a) mixture of Gaussians based background subtraction; (b) region 
level foreground analysis to handle quick lighting change, detect static regions, 
reduce foreground fragments, and detect object type (abandoned or removed); and 
(c) higher level foreground analysis to handle global scene variations such as a 
camera view change (frame level) and slow moving/ stopped object (tracking 
level). Overall, the work introduced in this paper offers the following main 
contributions to robustly and efficiently analyze foreground in complex videos for 
surveillance applications: 

• We propose a new framework to analyze the foreground as moving objects, 
abandoned objects, or removed objects (ghosts) while detecting the 
background by employing a mixture of Gaussians method [25] as the basic 
framework.   

• We integrate the Phong shading model [20] into the framework to robustly 
handle quick lighting changes. 

• We design a new mechanism by considering interactions between BGS and 
processing at several higher levels (i.e. region, frame, and tracking) to 
improve the accuracy of moving object detection and tracking. Region level 
information is employed for foreground analysis, to handle quick lighting 
changes, detect static regions, reduce foreground fragments, and detect 
object type (abandoned or removed). For camera movement or global scene 
variation (lights are turned off), frame level information will be used to reset 
the BGS models. To handle slow moving/stopped objects, we create two 
feedback mechanisms that allow interactions between BGS and tracking to 
handle stopped and slow-moving objects.  

This paper is organized as follows. The next section describes previous work in 
BGS to handle quick lighting changes, fragments, slow moving or stopped 
objects, and previous systems that use feedback to assist in background 
subtraction. Section 3 briefly summarizes the adaptive BGS method based on 
mixture of Gaussian models. Section 4 introduces how our system handles quick 
lighting changes, static region detection, fragment reduction, and 
abandoned/removed object classification. Section 5 describes the interaction 
between BGS and tracking to deal with slow moving and stopped objects 
respectively. Section 6 describes experiments to evaluate the robustness of the 
proposed method and to assess the impact of the feedback mechanisms on 
tracking performance and presents the results. Section 7 presents conclusions and 
discussion. 

II. RELATED WORK 
Background subtraction (BGS) is a conventional and effective approach to 

detect moving objects for video surveillance systems with stationary cameras. To 
detect moving objects in a dynamic scene, many adaptive background subtraction 
techniques have been developed [5-19, 22, 24-27, 29, 31, 35-41]. Stauffer and 
Grimson [25] modeled each pixel as a mixture of Gaussians and used an on-line 
approximation to update the model. Their system can deal with slow lighting 
changes and introducing or removing objects from the scene. Monnet et al. [19] 
proposed a prediction-based online method for the modeling of dynamic scenes. 
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Their approach has been tested on a coast line with ocean waves and a scene with 
swaying trees. However, they need hundreds of images without moving objects to 
learn the background model, and moving objects cannot be detected if they move 
in the same direction as the ocean waves. Mittal and Paragios [18] presented 
motion-based background subtraction by using adaptive kernel density estimation.  
In their method, optical flow is computed and utilized as a feature in a higher 
dimensional space. They successfully handled complex backgrounds but the 
computational cost is relatively high.  Some hybrid change detectors have been 
developed which combine temporal difference imaging and adaptive background 
estimation to detect regions of change [6, 13].  Huwer et al. [13] proposed a 
method of combining a temporal difference method with an adaptive background 
model subtraction scheme to deal with lighting changes. However, none of these 
methods can adapt to quick image variations such as a light turning on or off. Li et 
al. [16] proposed a Bayesian framework that incorporates spectral, spatial, and 
temporal features to characterize the background appearance at each pixel. Their 
method can handle both the static and dynamic backgrounds and good 
performance was obtained on image sequences containing targets of interest in a 
variety of environments, e.g., offices, public buildings, subway stations, 
campuses, parking lots, airports, and sidewalks. Recently, some methods have 
been developed which integrate discriminative features with tracking for object 
tracking and scene segmentation [12, 39-41] and a few researchers start to work 
on developing background subtraction methods from moving cameras [11, 27]. 

The mixture of Gaussians BGS method is becoming popular in recent years 
because of its robustness and efficiency. However it cannot adapt to quick lighting 
changes. A number of techniques have been developed to handle quick lighting 
changes or to improve the performance of the mixture of Gaussians method [8-10, 
14-15, 26, 29].  
      Although many researchers have examined background subtraction, few 
papers can be found in the literatures for foreground analysis [5, 7].  Cucchiara et 
al. [7] analyzed the foreground as moving object, shadow, and ghost by using the 
optical flow based motion information. The computational cost is relatively 
expensive for real-time video surveillance systems because of the computation of 
optical flow. 

In many video surveillance systems, object detection is followed by object 
tracking [2, 5] to associate the detections across time and describe the behavior of 
objects. Most of these systems operate in a feed-forward manner to pass 
detections from background subtraction to the tracker and then tracks are stored or 
processed further, for instance by behavior analysis modules. Many object 
tracking techniques focus on handling occlusions but neglect how to track slow 
moving or stopped objects for long term scene monitoring. Boult et al. [2] 
describe a system that performs well at detecting slow moving objects. 

There have been a few systems that have investigated the possibility of 
feedback from tracking to background subtraction. Some papers [14, 29, 32] 
introduced feedback from the frame level and some papers employed feedback 
from tracking [1, 4, 10, 20, 36]. Abbott et al. [1] proposed a method to reduce 
computational cost in visual tracking systems by using track state estimates to 
direct and constrain image segmentation via background subtraction and 
connected components analysis. Harville [10] used application-specific high level 
feedback (frame level, person detector and tracker, and non-person detector) 
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frame to locally adjust sensitivity to background variation. Senior [23] suggests 
recalculating the background/foreground segmentation using the model of the 
tracked object after the background subtraction stage. Wang et al. [34] proposed a 
unified framework to address detection and tracking simultaneously to improve 
the detection results. They feed the tracking results back to the detection stage. 

The interaction between the tracking and background subtraction can also be 
used to improve the tracking of slow moving and stopped objects. Venetianer et 
al. [32] examine a way of pushing foreground objects into the background and 
vice versa. Yao and Odobez [37] use a similar layered background mechanism to 
remember stopped objects. Taycher et al. [28] proposed an approach that 
incorporates background modeling and object tracking to prevent stationary 
objects fading into the background. Pnevmatikakis and Polymenakos [21] 
overcame the problem of stationary targets fading into the background by 
combining BGS and a Kalman tracker in a feedback configuration. 

III. ADAPTIVE BACKGROUND MIXTURE MODELS 
Stauffer and Grimson [25] first introduced a mixture Gaussians for BGS by 

modeling the background model as K Gaussian mixtures. For each pixel, the 
mixture weights at time t are updated based the weights at time t-1 as: 

).()1( ,1,, tktiti Mαωαω +−= −                    (1) 

whereα is the learning rate. For every new pixel value, Xt, is checked against the 
existing K Gaussian distributions, until a match is found. Here, a match is defined 
as a pixel value within 2.5 standard deviations of a distribution. tkM , is 1 for the 

model which matched and 0 for the remaining models. Assuming the red, green, 
and blue pixel values are independent and have the same variances, we write:

Iktk
2

, σ=� . After the Gaussians are ranked in descending order of �/�, the first B 

distributions are chosen as the background model, where 
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and T is the minimum fraction of the data that should be accounted for by the 
background. Here, � remains same for unmatched distributions. In 
implementation, two significant parameters, α  and T, need to be set. For more 
details, see Stauffer and Grimson [25]. In our system, we set K = 3 (three 
Gaussians), α =0.005, and T = 0.4. We implement the method for both grayscale 
and RGB video inputs. All the test results in our system are from the same set of 
parameters. 
     The original mixture of Gaussians method is robust to slow lighting changes, 
periodic motions from a cluttered background, and camera noise. However it 
cannot handle: 1) quick lighting changes; 2) detect static regions; 3) fragments; 4) 
classify abandoned or removed objects; 5) camera view changes; 6) objects that 
stop for a significant period of time; and 7) slow-moving objects. We describe 
some solutions for these problems in the following sections. 
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IV. FOREGROUND ANALYSIS 

A. Integrating Phong shading model to handle quick lighting changes 

To handle quick light changes, researchers have developed different methods [3, 
5, 26, 29, 35, 36]. Watanabe et al. [35] proposed a pre-processing step for 
background subtraction by applying an interesting radiometric model based on 
knowing the position of the sun and building models to remove strong shadows of 
buildings due to direct light from the sun, prior to applying a change detection 
algorithm. Javed et al. [14] proposed a hierarchical approach by combining color 
and gradient information with the mixture of Gaussians BGS method to handle 
quick lighting changes. Tian et al. [29] proposed a method to handle quick 
lighting changes by integrating texture information into the BGS. The basic idea 
is that the texture in false positive foreground areas caused by lighting changes 
should be similar to the texture in the background. Xie et al. [36] observed that 
the sign of the difference between corresponding pixel measurements in the 
current image and the background image is invariant during quick lighting 
changes. They developed a BGS method based on this observation which is able 
to discriminate false position foregrounds caused by lighting changes from the 
real moving objects. The algorithm of Durucan and Ebrahimi [8] detects 
foreground changes with respect to sudden illumination variations by voting a 
pixel as changed or unchanged in a given spatial window centered at the pixel 
based on a linear parametric model. Stefano et al. [26] proposed a visual 
correspondence measure together with a tonal registration procedure to handle 
quick lighting changes. 

According to the Phong shading reflection model [20], for an image of a scene 
with Lambertian surfaces, the image intensity of  a pixel ),( yxI at an object is 
modeled as the product of the illumination from light source(s) ),( yxI l and the 

reflectance of the object surface ),( yxIo : 

),(),(),( yxIyxIyxI ol=    (3) 

Here, we integrate the Phong shading model into the mixture of Gaussians BGS 
method. Assuming ),( yxI F  is the intensity of pixel (x, y) in the current frame of 
the input video for foreground analysis and ),( yxI B is the intensity of the same 
pixel (x, y) of the background model which is built based on previous frames, we 
have: 

),(),(),( yxoFIyxlFIyxFI =
   (4) 

),(),(),( yxIyxIyxI oBlBB =       
where ),( yxlFI and ),( yxI lB are the illumination component from light source(s) in 

the current frame and the background image. ),( yxoFI and ),( yxIoB  are the 

reflection component from object(s) in the current frame and the background 
image. 

Since only the reflectance component from objects ),( yxIo contains 
information about the objects in the scene, for the pixels which do not belong to 
real moving objects (i.e. which belong to the background), the object reflection 
component from the current image ),( yxI oF and the background image ),( yxI oB

should be equal. Therefore, for the false foreground pixels which are caused by 



quick lighting changes, the ratio of intensity between the current image and the 
background image will become:
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changes. The difference of the ratio in the 
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where N is the total number of pixels in the window W(x, y) and the mean of the 
intensity ratio �(x, y) 

yx ),(µ

In our implementation, we set the window size to 
difference in intensity ratio to 0.05. A post
the foreground by applying morphological operations. As shown in Figure 2, the 
difference of the intensity ratios in real foreground regions ar
that in the false foreground regions caused by lighting changes. 

Fig. 2: Removing false foreground regions caused by quick lighting changes by integrating the Phong 
shading model. The difference of the intensity ratios of the current 
illustrated for two foreground regions, one real (red arrows) and one false (green arrows). 
frame; Bottom-left: background image; 
model. Bottom-right: foreground image after rejecting the false positives by using Phong shading model.

B. Static Region Detection     

If an object in a scene becomes stationary or an object starts moving, the pixels 
belonged to the stopped object 
Gaussians of the background model. Ideally, each object should correspond to one 
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Hence, for the detected foreground pixels, if the ratio of intensity 
in a small window W(x, y), centered at pixel (x, y) remains 

constant (i.e. the difference of the intensity ratio is less than a threshold)
foreground pixels are eliminated as false foreground pixels caused by lighting 
changes. The difference of the ratio in the window W(x, y) is calculated by:
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In our implementation, we set the window size to 3x3 and the threshold on the 
difference in intensity ratio to 0.05. A post-processing is performed to fill holes in 
the foreground by applying morphological operations. As shown in Figure 2, the 
difference of the intensity ratios in real foreground regions are much bigger than 
that in the false foreground regions caused by lighting changes.  

 

: Removing false foreground regions caused by quick lighting changes by integrating the Phong 
shading model. The difference of the intensity ratios of the current frame and the background image are 
illustrated for two foreground regions, one real (red arrows) and one false (green arrows). Upper

: background image; Upper-right: foreground image before integrating Phone shading 
: foreground image after rejecting the false positives by using Phong shading model.

Static Region Detection      

scene becomes stationary or an object starts moving, the pixels 
belonged to the stopped object will be adaptively updated to the mixture of 
Gaussians of the background model. Ideally, each object should correspond to one 

Machine Vision and Applications 

7 

quick lighting changes, the ratio of intensity between the current image and the 

 (5) 

Hence, for the detected foreground pixels, if the ratio of intensity ��
� �� �
, centered at pixel (x, y) remains 

rence of the intensity ratio is less than a threshold), these 
foreground pixels are eliminated as false foreground pixels caused by lighting 

is calculated by: 

) 

N is the total number of pixels in the window W(x, y) and the mean of the 

) 

and the threshold on the 
processing is performed to fill holes in 
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: Removing false foreground regions caused by quick lighting changes by integrating the Phong 
frame and the background image are 

Upper-left: current 
: foreground image before integrating Phone shading 

: foreground image after rejecting the false positives by using Phong shading model. 

scene becomes stationary or an object starts moving, the pixels 
y updated to the mixture of 

Gaussians of the background model. Ideally, each object should correspond to one 
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connected component in the foreground image. However, due to the uneven 
intensity distribution of the object and the background, different pixels will be 
updated to the background model at different times to produce many connected 
components for one object. In this paper, we define areas corresponding to objects 
which change state either from stationary to moving or from moving to stationary 
as “static regions.”  

 
a) Static region is detected based on the  

2nd Gaussian component. 

 
b) The static region is pushed back to the 1st 

Gaussian component. 
 
Fig. 3: Static region (the chair inside the box) detection.  (a) The static region mask is visualized on the 

image (top left). The 1st Gaussian component (top right), the 2nd Gaussian component (bottom left), and the 
3rd Gaussian component (bottom right) of the background model are shown respectively. (b) After pushing 
the static region (the chair) to the background image (top right) from the 2nd component (bottom left) when 
the size of the static region is biggest. 

 
Here, we discuss how to detect static regions (top left in Figure 3(a)) by using 

the same framework of Gaussians mixtures of BGS. Figure 3(a) shows an 
example of a detected static object and three Gaussian mixtures of the background 
model.  Generally, the 1st Gaussian distribution (top right in Figure 3(a)) models 
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the persistent pixels and represents the background image. The repetitive 
variations and the relatively static regions are updated to the 2nd Gaussian 
distribution (see bottom left in Figure 3(a)). The chair is updated to the 2nd 
Gaussian distribution after it stays stationary. The 3rd Gaussian distribution 
(bottom right in Figure 3(a)) represents the pixels with quick changes (e.g. 
foreground objects). In our system, we use 3 Gaussian distributions in the 
background model. The 2nd Gaussian distribution is used to detect if a pixel 
belongs the static region: 

., 2 Tifregionstaticpixel >∈ ω    (8) 

where T  is the same threshold as in Equation (2).  

C. Foreground Fragment Reduction     

Foreground fragments are a common problem for many background subtraction 
methods. In the mixture of Gaussians BGS method, the different parts of a static 
region are often updated to the background model at different speeds based on the 
similarity of the pixel intensities between the static region and the background 
model. Hence many foreground fragments are caused by static regions.   
     As we discussed in above subsection of static region detection, the 1st Gaussian 
distribution models the persistent pixels and represents the background image. 
The repetitive variations and the relatively static regions are updated to the 2nd 
Gaussian distribution. By “pushing back” the static region to the background 
model when the static region is biggest, namely switching the weights of the 1st 
and 2nd Gaussian distributions for the static region pixels. Therefore, we can avoid 
fragmentation of the foreground. Here, the process of “pushing back” will heal the 
static region to the first Gaussian distribution of the background models at this 
moment. In our implementation, we compare the area of the static region between 
the current frame and the previous frame. Once the area begins to shrink, the static 
region has reached its biggest size and needs to be pushed back to the background 
model. In the pushing back process, we reset the weight of all the pixels in the 
static region to the maximum weight which was defined in the program. The mean 
and variance of the 2nd Gaussian distribution are exchanged with those of the 1st 
Gaussian distribution for each pixel in the static region mask. Figure 3(b) shows 
that the static region detected in Figure 3(a) has been pushed back to the 
background image (top right in Figure 3(b)). Notice that the region corresponding 
to the static region in the 2nd distribution (bottom left in Figure 3(b)) has been 
exchanged with the region in the background image (top right in Figure 3(b)).  

D. Abandoned and Removed Objects Classification  

Detecting abandoned and removed objects is very important for video surveillance 
and security. After static regions are detected and healed (i.e., pushed back into 
the first Gaussian distribution of the background models), we need to classify 
whether the healing corresponds to an abandoned or removed object event. In our 
system, we developed two methods to detect the type of the static regions as 
abandoned or removed (ghost) objects: an edge energy-based method [5] and a 
region growing-based method [31].  

For the edge energy-based method, we analyze the change in the amount of 
edge energy associated with the boundaries of the static foreground region 



Machine Vision and Applications 

10 

between the current frame of the original image and the background image. The 
intuition is that, in many cases, covering the background with an object will 
introduce more edges in the background image along with the object boundaries. 
The static region is an abandoned object if there are significantly more edges in 
the original image. Conversely, the static region is a removed object if there are 
more edges in the background image. More details can be found in paper [5]. 

For the region growing-based method, we first erode the static foreground 
region to make sure its boundaries fall completely inside the object. Then, these 
boundary points are employed as seeds to perform a region growing toward 
outside based on the similarity of intensities. The region growing process stops at 
the boundaries of the object, leading to a smaller segmented region which is not 
compatible with its surroundings. The same segmentation process is then applied 
in the background image.  In this case, we can see that the resulting segmented. 
The heal type is finally determined by just comparing the size of the two 
segmented regions. If the background segmentation is larger than the current 
frame segmentation, the foreground region is classified as abandoned object. 
Otherwise, it is classified as a removed item. If the segmented regions have 
similar sizes, the heal type is set to “unclear”, which may occur when the static 
foreground blob corresponds to lighting changes or other artifacts. More details 
can be found in paper [5]. 

Compared with the edge energy-based method, the region growing-based 
method is more robust but slightly slower. 

E. Frame Level Foreground Analysis for Camera Move/Blind  

In our system, frame level analysis is useful for two situations: camera 
move/blind and large area quick lighting changes (e.g., turn on or turn off lights). 
If the camera was moved or blinded (i.e. covered or disconnected), the size of the 
bounding box of the foreground region is very close to the size of the whole 
image (> 95% of the area). If there are large area quick lighting changes, the 
foreground area will be a large part of the whole image (> 70% of the area). In 
both cases, the background will be reset to the current frame.  

V. INTERACTION BETWEEN BGS AND TRACKING 
Background subtraction algorithms are generally designed to be adaptive to be 
able to deal with scene changes (changing lighting; backgrounds whose 
appearance changes, such as trees and water; static objects). In practice repeated 
observation of similar values of a pixel end up with such values being considered 
as background and dissimilar values treated as foreground. However, a slow 
moving, or stopped, object can lead to just such repeated observations, and result 
in the object being adapted piecemeal into the background. This leads to errors in 
tracking, as the object dissolves into multiple fragments, and false “ghost” 
fragments appear where the background contains the object after it moves away.  

However, the tracking process usually treats groups of pixels collectively, as 
unitary objects, and this higher-level information derived by the tracker can be 
used to inform the process of background subtraction. The tracker explicitly 
models the objects, whose behaviors are subject to physical constraints (such as 
rigid motion) in ways different to the physical constraints that control the 
appearance of individual pixels. In this section, we introduce how our system 
handles slow moving and stopped objects respectively. The methods of the 
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previous sections can be applied without any tracking being carried out, when 
high speeds are needed on video for which BGS-based applications (such as 
abandoned object) are sufficient and tracking incurs an unnecessary burden (our 
system runs at 200fps with BGS alone, 70fps with tracking enabled). This section 
describes further improvements that can be obtained by incorporating information 
from tracking. 

Our approach is most closely related to that of Pnevmatikakis and Polymenakos 
[21], who to overcome the problem of stationary targets fading into the 
background, propose a system combining a mixture of Gaussians background 
subtraction algorithm and a Kalman tracker in a feedback configuration. They 
control the learning parameters of the background adaptation on a pixel level in 
elliptical regions around the targets, based on the tracking states from the Kalman 
tracker. A smaller learning parameter was used for slow moving objects. 
However, this mechanism will fail when the targets stay stationary for a long 
period. They will gradually fade into the background even with very small 
learning parameters. 

In contrast, we create two feedback mechanisms that allow the tracker to 
suppress background updating for slow moving objects that are being tracked. 
Further, we introduce an active, tracker-driven, object-level healing process where 
whole objects are pushed to the background to solve the challenges in tracking 
caused by the stopped objects.  For both slow objects and stopped objects, we do 
not change the adaptation rate of the background model update.  

A. Feedback Mechanism for Interactions between BGS and Tracking  

In order to improving tracking accuracy, we create a feedback mechanism that 
allows interactions between BGS and tracking. Figure 4 shows the diagram of the 
interaction between BGS and tracking together with the metadata messages 
passed between the modules. The feedback required to handle slow and stopped 
objects is implemented by adding information to metadata of tracking 
observations which are accessible to the BGS processing through following three 
requests: 1) “heal request”—tracking requests BGS to push the region back to 
background model; 2) “unheal request” ”—tracking requests BGS to convert the 
background model of a healed region back to that before the heal happened; and 
3) “hold in foreground”—tracking requests BGS to hold a region without 
updating.   
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Fig. 4: Diagram of the interaction of background subtraction and tracking, showing the passing of metadata 
messages. 

B. BGS Adaption Suppression for Tracking Slow Moving Objects  

Slow Moving Objects Tracking Problem: Slow moving objects can present a 
significant problem to many background subtraction algorithms. In the algorithm 
of Stauffer and Grimson [25], each pixel is modeled by a mixture of Gaussians 
distribution. When an object moves very slowly or stops, any pixel on the object 
will eventually be updated to background model. If multiple pixels are affected in 
the same way, parts of the object will progressively be “lost”. In Section IV-C, we 
partially address this problem by pushing the whole static region into the 
background model. However the problem is that the detection may come only 
after some pixels have already been adapted into the background, and may only 
affect part of the object. Thus, while the switch to background is no-longer 
independent for each pixel, it may still occur in several fragments, and results in 
part of an object being background and part being foreground. 

BGS Adaption Suppression: To deal with this situation, the tracker suppresses 
background updating for slow-moving objects by feedback. When the tracker 
detects a slow-moving object based on speed, it flags the object observations as 
“slow moving” and the background subtraction algorithm suppresses the 
adaptation in the region where the slow moving object is observed (as indicated 
by a mask passed in the metadata). 

Typically adaptation will already have been carried out by the background 
subtraction (as the video frame was received). Therefore, adaptation is suppressed 
in the region of a slow-moving object by copying pixels from the object model 
saved before adaptation, or by carrying out the inverse operation on those pixels 
(for instance decreasing the observation counts). 

Suppressing adaptation in this way has the effect of maintaining the tracked 
object in the foreground, and uses object-level information from the tracker — 
that the pixels belong to a known object that is moving slowly and has been 
reliably detected and tracked for some period — to which the background 
subtraction module by itself does not have access. 

A drawback of this mechanism is that it inhibits the process by which false 
alarm foreground objects are removed. For instance a shadow or a reflection 
which appears but is tracked for a while, would ordinarily quickly be forgotten as 
the background model adapts, but, if the “hold in foreground” method engages 
then these objects can be preserved indefinitely. However, the following 
mechanism can prevent this from happening. 

C. Tracking-based BGS Healing for Stopped Objects  

Stopped Objects Tracking Problem: Stopped objects lead to a different 
problem, and a dilemma for the design of a tracking system. Background 
modeling needs to adapt to changes in order to ignore “irrelevant” changes such 
as lighting changes. In a simple adaptive background subtraction system, when an 
object stops, as with slow moving objects above, then it will become part of the 
background and cease to be tracked. However the object is still present in the 
scene, and for some purposes (for instance the query “show me all cars present at 
3p.m.”) the system needs to explicitly represent that presence. A further problem 
is the fragment problem as described in Section IV-C. Since traditional 
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background subtraction algorithms typically operate independently on each pixel, 
different pixels of the object will be declared background at different times and 
result in a progressive fragmentation as the object is incorporated into the 
background. 

When a static object starts moving, the background subtraction algorithm 
detects difference regions around the edges of an object, and as the original 
background is revealed, those pixels are detected as “foreground regions” and a 
“ghost” of revealed background is detected as foreground along with the true 
moving object, as shown in Figure 5. Toyama et al. describe this as the “waking 
person” problem, and conclude that it is not solvable in a self contained 
background subtraction module [32]. This presents several challenges to a 
tracking algorithm: (1) the object appears as many small foreground fragments; 
(2) the growing object is made up of a moving component and a static region; (3) 
the true object eventually separates from the static “ghost” region.  

 
Fig. 5: Selected frames demonstrate ghosting by using mixture of Gaussians BGS. The car starts in the 
background and moves forward, leading to multiple foreground fragments and ultimately a large “ghost” or 
“hole” where it had been covering up the “true” background. 

Tracking-based BGS Healing: With the adaptation-inhibition described in 
Section V-B, slow moving and stationary objects are not adapted into the 
background at all, so healing and fragmentation are no longer a problem. However 
static objects will now be held indefinitely in the foreground. As a parking lot fills 
slowly with cars, the number of “tracked” objects increases and their interactions 
and mutual occlusions become progressively more complex and unmanageable. 

Consequently, we introduce an active, tracker-driven, object-level healing 
process where whole objects are pushed to the background. In this process, the 
tracker tracks whole objects and monitors their movement. When an object is 
stationary for a sufficient period (dependent on the scene context, for example 
dependent on the amount of activity in the scene and typical behaviors — whether 
objects stop for long or short periods) then the tracker determines that the object 
can be pushed to the background. The tracker sends a “heal request” message to 
the background subtraction processing, including a foreground mask indicating 
which pixels belong to the object. 

On receiving the “heal request” message, the BGS algorithm takes the selected 
pixels and adjusts the background model so that the currently observed pixels 
become categorized as background. The original contents of the region’s 
background model are sent back to the tracker in a “heal” message. The heal 
message includes a static region mask and heal type which indicating whether the 
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healed region is an abandoned object or a removed object, based on integral of the 
edges in the object perimeter as described in Section IV-D. On receiving the heal 
message from BGS, the tracker can optionally keep the track in a suspended state, 
ready to be reactivated if the object moves again. Alternatively the entire track can 
be discarded as a false positive if the region was classified as a removed object. 

In this manner, stopped objects are quickly pushed to the background and cease 
to need active tracking. This reduces the complexity of the tracking problem since 
fewer tracked objects leads to fewer occlusions and difficult tracking situations, 
and also reduces the computational load by not “tracking” objects once they are 
stationary. 

When the stopped object begins to move, the background subtraction will detect 
motion in the region and generate one or more foreground regions in or around the 
object. Any otherwise unexplained foreground region is compared to the stack of 
suspended tracks and if a matching track is found it is popped. Otherwise an 
unexplained foreground region leads to a new track. The tracker send an “unheal” 
request to BGS, with the old, stored background appearance, which is pushed into 
the background model, causing the entire object to again be detected as 
foreground in the following frame, and thus avoiding the “ghost” shown in Figure 
5. 

VI. EXPERIMENTAL RESULTS 
The proposed framework has been tested in the IBM Smart Surveillance 

Solution [30] product. In this section, we describe the experiments and display 
some results to demonstrate the effectiveness of our algorithm for background 
subtraction and foreground analysis in a variety of environments. Notice that the 
same parameters were used for all sequences. The BGS algorithm runs about 
150 fps for color images and 200 fps for grayscale images at size 160x120 on a 
2GB Pentium IV machine with MMX optimization. More quantitative results for 
the performance evaluation of our system can be found at paper [3]. 

Original Image BGS Results 
(GMM [25]) 

BGS Results 
(Our method) 
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Fig. 6: Example results of our proposed BGS method for a sequence with quick lighting changes [42]. The 
left column shows the original images. The middle column displays the BGS results from the method of 
Stauffer and Grimson [25]. Large areas of false positive foreground are detected due to fast moving clouds. 
The right column demonstrates that our method successfully handles the quick lighting changes by 
integrating Phong shading reflection model. 

A. BGS Results for Sequences with Quick Lighting Changes 

Figure 6 shows example results of background subtraction for a sequence with 
fast-moving clouds on a sunny day which result in large shadow areas on the 
ground. The sequence is from OTCBVS Benchmark Dataset Collection: OSU 
Color-Thermal Database [38]. The left column shows the original images. The 
middle column displays the BGS results from the method of Stauffer and Grimson 
[25]. Large areas of false positive foreground are detected due to the cloud 
shadows. The right column demonstrates that our method successfully handles the 
quick lighting changes by integrating Phong shading reflection model. 

Similarly, Figure 7 shows BGS result examples on one sequence with fast 
lighting changes from the IEEE Performance Evaluation of Tracking and 
Surveillance Workshop (PETS) 2001 dataset [42]. Same as in Figure 6, the middle 
column results include large areas of false positive foreground which detected by 
the mixture of Gaussians method [25]. The right column shows that our method is 
robust to quick lighting changes. 

We further compare the proposed Phong shading reflection model based method 
with existing methods of [5, 29] to handle quick lighting changes. We observe 
that Phong shading reflection model based BGS method is more robust at 
handling swaying trees than [5] and is four-time faster. One example is 
demonstrated in Figure 8. Paper [29] proposed a texture similarity measure 
between the current frame and the background image to handle quick lighting 
changes. Compared to [29], the proposed Phong shading reflection model is more 
robust at handling strong edges, with comparable speed (see example frames in 
Figure 9.) 

Original Image BGS Results 
(GMM [25]) 

BGS Results 
(Our method) 
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Fig. 7: Example results of our proposed BGS method for a sequence (D3C1) with quick lighting changes 
from the PETS2001 dataset. The left column shows the original images. The middle column displays the 
BGS results from method of Stauffer and Grimson [25]. Large areas of false positive foreground are detected 
due to fast moving clouds. The right column demonstrates that our method successfully handles the quick 
lighting changes by integrating Phong shading reflection model. 

 
Original Image BGS Results 

(Salience[5]) 
BGS Results 

(Our method) 

 
Fig. 8: Example results of our proposed BGS method and salience-based method [5]. 
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Fig. 9: Example results of texture-based quick lighting change handling [29]. 

B. Results of Static Region Detection and Foreground Fragment Reduction    

Figures 10 and 11 demonstrate results of static region detection, heal type 
classification (abandoned/removed), and foreground fragment reduction. In the 
test sequence, a chair is left in the center of the camera view at about frame 230. 
As shown in Figure 10, the chair is detected as a static object at frame 343. The 
static region is then pushed back to the background model in the next frame 
(frame 344) to avoid fragments. Further, the heal type is correctly detected as 
“abandoned” at frame 343.  Figure 11 shows that many foreground fragments 
caused by the static region detected at frame 343 without pushing them back to 
the background model by using the original mixture of Gaussians method [25]. 
The fragments had been adapted to the background model at frames of 410. The 
fragments lasted about 65 frames and made the tracking more difficult. 

  
(a) The chair is detected as a static object at frame 
343. 

(b) The whole static object is pushed back to BG 
model at frame 344. 

Fig. 10: Examples of static object detection, foreground fragment reduction, and abandoned and removed 
object discrimination.  The chair was detected as a static object at frame 343, and then was pushed back to 
BG model at frame 344 to avoid fragment problem. The whole static region adaption is finished in one frame. 

C. Abandoned and Removed Object Classification 

In Figure 10, the static object (chair) was classified as an abandoned object. We 
evaluate our approach on the PETS 2006 dataset [43] which was designed to test 
abandoned object detection algorithms in a public space and the i-LIDS video 
library [44] based on two scenarios: abandoned baggage and parked vehicles.  
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Figure 12 demonstrates some testing results of abandoned object detection. Figure 
13 shows removed object detection. 

 
Fig. 11: Examples of the fragment problem without pushing the static region back to the background model. 

The chair is fully adapted to the background model at frame 410. 

 

Fig. 12: Examples of the abandoned object detection in complex situations. 1st row: abandoned baggage 
detection in PETS 2006 dataset [43]. 2nd row: detection of parked cars and abandoned objects in i-LIDs 
dataset [44]. 

 
Fig. 13: Examples of detected removed objects in our dataset. The first row shows  a moved laptop and the second 
row demonstrates a parked car driven away. 



Machine Vision and Applications 

19 

D. Results of Frame Level Foreground Analysis for Camera Move/Blind 

Examples of camera move/blind detection by frame level processing are shown 
in Figure 14. Figure 14(a) demonstrates the camera moves to a new position and 
Figure 14(b) displays frame level detection when the power of the camera was 
turned off. In both situations, larger area of foreground (> 70% of the whole 
image area) appears.  

 
Fig. 14: Examples of the frame level processing for camera move detection. (a) Camera moved, (b) 
Camera power off. 

E. Results of Interactions between BGS and Tracking  

The feedback mechanism of interactions between BGS and tracking is evaluated 
on a set of six video sequences include four videos from the PETS2001 dataset 
[42] of cars and pedestrians crossing a university campus (about 2800 frames 
each) and two of our own sequences: a top-down view of a four way intersection 
with cars stopping and waiting for a traffic light to change and an overhead view 
of a retail store taken through a fish-eye lens. 

The feedback mechanism was tested using simple tracking performance metrics 
comparing the tracker output to hand-labeled ground truth. The ground truth for 
each sequence consists of bounding boxes drawn around each object 
approximately every 30 frames, with labeling to associate a particular object’s 
bounding boxes over time. Since the task requires tracking, evaluation is track–
based rather than at the BGS level. 

The performance analysis processing matches each ground truth track to the 
tracker’s outputs by comparing the distance between the object centroids at each 
frame (linearly interpolating between the sparse ground truth points), with 
hysteresis. When at any time t, an object lies close to a ground truth track (within 
r, here 20, pixels) then the tracks are considered to match for the entire period 
around t where the tracks lie within 2r pixels. Trivial matches (where the match 
interval between an output track and ground truth track is a subset of the match 
for another output track, for instance when two tracks cross) are removed. 
TABLE I: TRACKING PERFORMANCE RESULTS ON 4 SEQUENCES FROM THE PETS2001 DATASET AND TWO OTHER 
DATASETS. “UNDER” IS THE PERCENTAGE OF GROUND TRUTH FRAMES MISSING AND “FRAG” IS THE AVERAGE NUMBER OF 
TRACKS MATCHED TO A GROUND TRUTH TRACK 

Sequences Without feedback With feedback 
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Under% Frag Under% Frag 
PETS D1 C1 21.2 1.56 8.1 1.22 
PETS D1 C2 27.8 1.36 12.3 1.36 
PETS D2 C1 20.3 1.93 17.6 2.27 
PETS D2 C2 8.1 1.50 4.6 1.50 
Intersection 33.7 1.04 24.3 1.00 
Retail Store 13.1 2.38 14.5 1.90 

The track matching was verified to correctly match intervals of output tracks to 
ground truth tracks. The performance tool produces a variety of statistics, 
including the number of false positives (output tracks not corresponding to any 
ground truth track) and false negatives (ground truth tracks that have no 
corresponding output track); the “underrepresentation”—the proportion of ground 
truth track frames with no correspondence in an output track (e.g. because the 
object was not detected); and the “fragmentation” — the average number of 
output tracks matched to each ground truth track (because of gaps in detection, or 
identity confusion during occlusions). 

Quantitative analysis results of performance on six video sequences, from PETS 
2001 and two proprietary datasets for particular scenarios, are shown in Table 1. 
The comparison between experimental results and ground truth averaged across 
all the six sequences shows that there is a 39% reduction in false negatives 
(ground truth tracks that are not matched in the tracker output) with a 2.7% 
increase in the number of false positives (tracker output tracks that do not match 
any ground truth). 

Errors come from a variety of sources: (1) objects that are too small to be 
detected, particularly in the store and PETS sequences D1C2 and D2C1 which 
have distant objects labeled; (2) in the intersection sequence several cars are in the 
scene at the beginning and ghosting effects mean that their tracks are not matched. 
(3) Failure to resolve occlusions correctly leads to multiple matches for some 
ground truth tracks. 

Qualitative results are shown in Figure 15. This shows how the interaction 
between BGS and tracking prevents adaptation and fragmentation of the slowly 
moving and stopped vehicles, and prevents “ghosts” when they move away. 
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Fig. 15: Selected frames from a PETS2001 video sequence and corresponding foreground regions, 
demonstrating BGS adaptation without feedback from tracking (middle column) and with the feedback 
mechanisms (right column). Note the fragmentation (fr.2500) and ghosting (fr.2600) on the middle 
column. The central stopped car is lost on the middle, but maintained on the right. 

VII. DISCUSSION AND CONCLUSION 
We have presented a new framework to robustly and efficiently analyze 

foreground at multiple levels for video surveillance applications. The foregrounds 
are detected at the pixel level by using a mixture of Gaussians BGS method. We 
have enhanced the method to handle quick lighting changes by integrating the 
Phong shading model. Static objects are detected by using the same Gaussian 
mixture models and are further classified as abandoned or removed objects by two 
methods: 1) analyzing the change in the amount of edge energy associated with 
the boundaries of the static foreground regions, and 2) checking the compatibility 
of the static region with its surroundings. At the region level, whole static regions 
are pushed back to the background model to avoid fragmentation. Foreground 
analysis at the whole frame level is developed to deal with camera move/blind and 
extreme lighting changes (e.g., turned on or turned off lights).  



Machine Vision and Applications 

22 

To improve the tracking accuracy, we have created a feedback mechanism of 
interactions between BGS and tracking to handle slow moving and stopped 
objects. The feedback mechanism allows that BGS processing receives “heal 
request”, “unheal request”, and “hold in foreground” from tracking at object 
(foreground blobs) level. The proposed algorithm works well in our real-time 
video surveillance system for most situations. However, it may fail in low contrast 
situations where the color of the object is very similar to the background, e.g., 
black bag on a black background.   

ACKNOWLEDGMENTS 
The authors thank the anonymous reviewers for their constructive comments and 
suggestions that help to improve the quality of this manuscript. 

REFERENCES 
[1] R. Abbott and L. Williams, “Multiple target tracking with lazy background subtraction and 

connected components analysis”, Tech. Rep., University of New Mexico, June 2005. 

[2] T. Boult, R. Micheals, X. Gao, and M. Eckmann, “Into the woods: Visual surveillance of 
non-cooperative and camouflaged targets in compex outdoor settings”, Proceedings of the 
IEEE, vol. 89, no. 10, October 2001. 

[3] L. Brown, A.W. Senior, Y. Tian, J. Connell, A. Hampapur, Chiao-fe Shu, Hans Merkl, and 
Max Lu, “Performance Evaluation of Surveillance Systems Under Varying Conditions,” 
IEEE Workshop on Performance Evaluation of Tracking and Surveillance, 2005. 

[4] S. Cheung and C. Kamath, “Robust background subtraction with foreground validation for 
urban traffic video”, EURASIP Journal of Applied Signal Processing, Special Issue on 
Advances in Intelligent Vision Systems, 2005. 

[5] J. Connell, A. Senior, A. Hampapur, Y. Tian, L. Brown, and S. Pankanti, “Detection and 
tracking in the IBM PeopleVision system”, in IEEE ICME, June 2004. 

[6] G. Cristani, M. Bicegi, and V. Murino, “Integrated Region- and Pixel-based Approach to 
Background Modeling”, Proceedings of the MOTION, 2002. 

[7] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting Moving Objects, Ghosts, and 
Shadows in Video Streams,”  IEEE Trans. on PAMI,  25: (10), October 2003. 

[8] E. Durucan and T. Ebrahimi, Change detection and background extraction by linear algebra, 
Proc. IEEE, 89(10):1368–1381, 2001. 

[9] H. Eng, J. Wang, A. Kam, and W. Yau, “Novel Region-based Modeling for Human 
Detection within High Dynamic Aquatic Environment,” Proceedings on CVPR, 2004. 

[10] M. Harville, “A Framework for High-level Feedback to adaptive, per-pixel, Mixture-of-
Gaussian Background Models”, Proceedings on ECCV, 2002. 

[11] E. Hayman and J. Eklundh, Statistical Background Subtraction for a Mobile Observer, IEEE 
ICCV, 2003. 

[12] K. Huang, D. Tao, Y Yuan, X. Li, and T. Tan., "Biologically Inspired Features for Scene 
Classification in Video Surveillance," IEEE Transactions on Systems, Man, and Cybernetics, 
Part B, 2010. 

[13] S. Huwer and H. Niemann, “Adaptive Change Detection for Real-time Surveillance 
applications,”  Proc. of the 3rd IEEE Workshop on Visual Surveillance, pp.37-45, 2000. 

[14] O. Javed, K. Shafique, and M. Shah, “A Hierarchical Approach to Robust Background 
Subtraction using Color and Gradient Information,” IEEE Workshop on Motion and Video 
Computing, 2002. 



Machine Vision and Applications 

23 

[15] P. KaewTraKulPong and R. Bowden, “An Improved Adaptive Background Mixture Model 
for Real-time Tracking with Shadow Detection,” In Proc. 2nd European Workshop on 
Advanced Video Based Surveillance Systems, 2001. 

[16] L. Li and M.K.H. Leung, “Integrating Intensity and Texture Differences for Robust Change 
Detection”, IEEE Transactions on Image Processing, Vol. 11, No. 2, 2002. 

[17] L. Li, W. Huang, I. Gu, and Q. Tian, “Statistical Modeling of Complex Backgrounds for 
Foreground Object Detection”, IEEE Transaction on Image Processing, Vol. 13, No. 11, 
2004. 

[18] A. Mittal and N. Paragios, “Motion-based Background Subtraction using Adaptive Kernel 
Density Estimation,” Proceedings on CVPR, 2004. 

[19] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh, “Background Modeling and Subtraction 
of Dynamic Scenes”, Proc. on ICCV, Pages 1305–1312, 2003. 

[20] B. Phong, “Illumination for computer generated pictures,” Commun. ACM, vol. 18, pp. 311–
317, 1975. 

[21] A. Pnevmatikakis and L. Polymenakos, “Kalman tracking with target feedback on adaptive 
background learning”, in Workshop on Multimodal Interaction and Related Machine 
Learning Algorithms, 2006. 

[22] R. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, Image change detection algorithms: a 
systematic survey, IEEE Transactions on Image Processing, Volume: 14, Issue: 3, 2005. 

[23] A. Senior, “Tracking with probabilistic appearance models”, in Third International workshop 
on Performance Evaluation of Tracking and Surveillance systems, June 2002. 

[24] Y. Sheikh, O. Javed, and T. Kanade, Background Subtraction for Freely Moving Cameras, 
IEEE ICCV, 2009. 

[25] Stauffer and W.E.L. Grimson, “Adaptive Background mixture Models for Real-time 
Tracking”, CVPR99, June, 1999. 

[26] L. Stefano, F. Tombari, S. Mattoccia, and E. Lisi, Robust and accurate change detection 
under sudden illumination variations, Workshop on Multi-dimensional and Multi-view Image 
Processing, 2007. 

[27] Y. Sugaya and K. Kanatani, Extracting Moving Objects from a Moving Camera Video 
Sequence, Memoirs of the Faculty of Engineering, Okayama University, Vol.39, pp.56-62, 
January, 2005. 

[28] L. Taycher, J.W. Fisher III, and T. Darrell, “Incorporating object tracking feedback into 
background maintenance framework”, in IEEE Workshop on Motion and Video Computing, 
2005. 

[29] Y. Tian, Max Lu, and A. Hampapur, “Robust and Efficient Foreground Analysis for Real-
time Video Surveillance,” IEEE CVPR, San Diego. June, 2005. 

[30] Y. Tian, A.W. Senior, A. Hampapur, L. Brown, C. Shu, and M. Lu, "IBM Smart Surveillance 
System (S3): Event Based Video Surveillance System with an Open and Extensible 
Framework", Machine Vision and Applications, 19:315-327, 2008. 

[31] Y. Tian, R. S. Feris and A. Hampapur. “Real-Time Detection of Abandoned and Removed 
Objects in Complex Environments”. IEEE International Workshop on Visual Surveillance (in 
conjunction with ECCV'08), Marseille, France, 2008. 

[32] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: Principles and practice of 
background maintenance”, in Proc. IEEE International Conference on Computer Vision, 
1999, vol. 1, pp. 255–261. 

[33] P. Venetianer, Z. Zhang, W. Yin, and A. Lipton, “Stationary target detection using the 
objectvideo surveillance system”, in Advanced Video and Signal-based Surveillance, 2007. 

[34] J. Wang, G. Bebis, and R. Miller, “Robust video-based surveillance by integrating target 
detection with tracking”, in Conference on Computer Vision and Pattern Recognition, 2006. 



Machine Vision and Applications 

24 

[35] S. Watanabe, K. Miyajima, and N. Mukawa, “Detecting changes of buildings from aerial 
images using shadow and shading model,” in ICPR 98, 1998, pp. 1408–1412. 

[36] B. Xie, V. Ramesh, and T. Boult, “Sudden illumination change detection using order 
consistency,” Image and Vision Computing, vol. 22, no. 2, pp. 117–125, February 2004. 

[37] J. Yao and J.-M. Odobez, “Multi-layer background subtraction based on color and texture”, 
in Proc. IEEE Conference on Visual Surveillance, 2007. 

[38] J. Davis and V. Sharma, "Background-Subtraction using Contour-based Fusion of Thermal 
and Visible Imagery," Computer Vision and Image Understanding, Vol 106, No. 2-3, 2007. 
IEEE OTCBVS WS Series Bench: http://www.cse.ohio-state.edu/otcbvs-bench/ 

[39] Y. Yuan, Y. Pang, J. Pan, and X. Li, "Scene Segmentation Based on IPCA for Visual 
Surveillance," Neurocomputing (Elsevier), vol. 72, nos. 10-12, pp. 2450-2454, 2009. 

[40] H. Zhou, Y. Yuan, Y. Zhang, C. Shi, "Non-rigid Object Tracking in Complex Scenes," 
Pattern Recognition Letters (Elsevier), vol. 30, no. 2, pp. 98-102, 2009. 

[41] H. Zhou, Y. Yuan, and C. Shi, "Object Tracking using SIFT Features and Mean Shift," 
Computer Vision and Image Understanding (Elsevier), vol. 113, no. 2, pp. 345-352, 2009. 

[42] PETS 2001 Benchmark Data, http://www.cvg.rdg.ac.uk/PETS2001/. 

[43] PETS 2006 Benchmark Data, http://www.cvg.rdg.ac.uk/PETS2006/. 

[44] i-LIDS Dataset for AVSS 2007, ftp://motinas.elec.qmul.ac.uk/pub/iLids. 

[45] Who’s Watching? Video Camera Surveillance in New York City and the Need for Public 
Oversight, A Special Report by the New York Civil Liberties Union, 2006. 

[46] Big Apple is Watching You. How many surveillance cameras are there in Manhattan? 
5/3/2010. http://www.slate.com/id/2252729. 


