
Computer Vision-based Mathematics Learning Enhancement

for Children with Visual Impairments

Chenyang Zhang
1
, Mohsin Shabbir

1
, Despina Stylianou

2
, and Yingli Tian

1

1
Department of Electrical Engineering,
2
Department of Secondary Education

The City College of New York, NY, 10031, USA

{czhang10, mshabbi00, dstylianou, ytian}@ccny.cuny.edu

Abstract—Children with visual impairments face

disproportionate challenges in learning mathematics. In this

paper, we explore how to apply computer vision techniques

to enhance mathematics learning by fusion of multisensory

information for children with visually impairments. The

multisensory information includes visual and audio

information. Our research focuses on the mathematics

education for children with visual impairments in early ages

(Kindergarten – Grade 3) by using arithmetic racks. A

computer vision-based algorithm is developed to detect the

numbers and positions of arithmetic rack beads and the

detection results are then provided to students with visual

impairments as speech guidance. Preliminary results

demonstrate the effectiveness and efficiency of the proposed

method for detecting the number, color, position, and

moving directions of the arithmetic rack beads under

different situations.

Computer Vision; Math Learning; Children with Visual

Impairement; Math Learning Enhauncement

I. INTRODUCTION

The study of mathematics can be challenging for

many children. More so, children with visual impairments

face even more disproportionate challenges in learning

mathematics. Indeed, few students with visual

impairments are currently participating in advanced

mathematics classes in secondary schools and teachers of

students with visual impairments report that they

encounter continuing difficulties in providing materials

and equipment for mathematics instruction [7]. Nearly 5

million preschool-aged children and about 12.1 million

children ages 6-17 have visual impairments, according to

the Braille Institute [12]. Clearly, innovative tools and

techniques are needed to help these children with visual

impairments learn mathematics more easily -- and

perhaps multiply their career opportunities when they

reach adulthood. Yet, little research and development

efforts are directed towards addressing these challenges

faced by children (and adults) with visual impairments

and their teachers.

Our group has developed many algorithms for

assistive technology to help blind people [4, 8-10, 12-17].

This paper attempts to investigate and develop computer

vision-based techniques and models to enhance

mathematics education for children with visual

impairments in early ages (Kindergarten – Grade 3) by

fusion of multisensory information: visual (camera), and

hearing (audio). The visual information will be captured

by a camera and the feedback will be provided to the

visually impaired student by audio.

II. TEACHING MATHEMATICS CONCEPTUALLY BY USING

ARITHMETIC RACKS

Work by cognitive psychologists indicates that even

young children (as early as infancy) can often perceive

small amounts (one to five) as a unit without a need for

counting [1, 2]. Subitizing – viewing groups of objects as

a unit – has been studied in six month babies: babies

become habituated to a display of three objects and treat a

new display of four objects as novel [11]. Mathematics

educators capitalize on children’s ability to subitize by

first having young children work within the “structure of

5”. Children are offered groups of objects from 1 to 5 and

asked to determine the cardinality (size) of the group.

As shown in Figure 1, an arithmetic rack is a model

that was specifically built to encourage and build on this

innate ability of humans to subitize. It is a calculating

frame, consisting of two rows of ten beads – a set of five

red beads and a set of five white beads on each row. The

five-structure of the arithmetic rack supports the

development of part-whole relations in early number

sense.

Figure 1.An arithmetic rack and a child working with it.

Educators suggest that early on, children are shown

small amounts (less than five) on the arithmetic rack, with

little reaction time (about 2 seconds) and are encouraged

to recognize the amount [3]. Once children are

comfortable with subitizing within the first five numbers

on the arithmetic rack, teachers begin to show them

quantities larger than five: For example, a number 7 (5

red beads and 2 white). By doing this, children are

encouraged to use the “five structure” that is built in the

arithmetic rack to develop understanding of quantities up

to 10. They also begin to understand the decomposition of

number (numbers can be seen as combinations of smaller

quantities – e.g., 7=5+2) and the hierarchical inclusion in

the number system (whole numbers grow exactly by one).

In this manner, the arithmetic rack supports the gradual

development of the “ten structure” where children

comfortably work within the first 10 numbers.

Gradually, children are introduced to the second row

of the arithmetic rack and are encouraged to work within

the first 20 numbers understanding the structure that

extends beyond ten. Children can then work with double

numbers (e.g., 3+3), or near doubles (e.g., 3+4, which can

then be seen on the arithmetic rack as 3+(3+1) or, 7+7= (5

red+ 2 white)+(5 red + 2 white)) as well as the building of

tens. Work with this model helps children automatize

basic facts, but also builds the skill to look for the

structure, the relations and regularity in numbers [6].

III. DETECTING NUMBERS AND POSITIONS OF ARITHMETIC

RACK BEATS BASED ON CAMERA VISUAL INFORMATION

In this paper, we develop a computer vision-based

framework to detect and track the numbers and positions

of arithmetic rack beads to facilitate the development of

this number sense for children with visual impairments.

The flowchart of our framework is illustrated in Figure 2.

A camera is used to monitor the arithmetic rack while the

blind student is learning.

Our proposed framework includes two main steps:

calibration and synchronization. The first step is to

calibrate state frames in an input video sequence captured

by a camera and to compute the initial state and properties

of a “virtual” arithmetic rack (i.e. a digital arithmetic rack

stored in computer). The second step is to generate the

synchronization between state frames of the

camera-captured input video and the current state of the

“virtual arithmetic rack” in a sequential manner. The

details of each step in Figure 2 will be described in

Sections III.A to III.E. Experimental results are

demonstrated and discussed in Section IV. Section V

concludes our work.

As shown in Figure 1-left and Figure 3-left, the

arithmetic rack has two rows of beads: top and bottom

rows. Each row has ten beads in total with five in red and

five in white. All the beads can be moved separately or

jointly to show different arithmetic equations. To

automatically detect and track arithmetic rack beads by

computer, an abstract and informative digital arithmetic

rack is generated to help visual impaired children.

Figure 2. The flowchart of our framework. The whole framework
includes two main steps: 1) calibration, which is used to take (a)

calibration of the input video sequence to compute (c) the initial state

and properties of “virtual” arithmetic rack (i.e., a digital arithmetic rack
stored in computer); 2) synchronization, which is used to synchronize

between (b) the input video and the current state of (d) “virtual

arithmetic rack” in a sequential manner.

A. Arithmetic Rack Modeling

As shown in Figure 3, we create a vitual arithmetic

rack (Figure 3-right) and synchronize the bead

movements based on the video the real arithmetic rack

captured by a camera (Figure 3-left). Unlike the

traditional arithmetic rack that uses the same shape and

material for both white and red beads, we use different

shapes and materials (plastic cubes for red beads and

wood balls for white ones), which are more suitable for

visually impaired students to touch and feel while

maintaining the structure of our framework. In the virtual

arithmetic rack, we use ‘@’ to represent red beads and ‘o’

for white ones.

The digital arithmetic rack is quite simple and just for

illustration. It is represented by several variables which

thoroughly measure and describe the states and properties

of the real arithmetic rack: average area of bead, variance

of area of bead, color of bead, position of bead (left side

or right ride), row of bead, and the number of beads.

B. Task description

In order to transfer the visual information to digital

information which can be understood by computer, we

utilize image processing technologies together with

computer vision technologies to transfer the state frames

to a certain representation. This is a brief and informative

form that can be easily used to synchronize the real

arithmetic rack and the digital one. In brief, our tasks in

this paper are to automatically detect and track the

number, color, position, and movement of beads and to

synchronize the movements to the virtual arithmetic rack

stored in computer.

Figure 3. Illustration of a real arithmetic rack used in our work and the
visualization of our synchronized arithmetic rack..

C. Calibration

In this section, we describe the algorithm to calibrate a

real arithmetic rack to generate the virtual arithmetic rack

for detecting and tracking the number, color, and position

of beads.

State Frame. We define a current frame of a camera

video as “state frame” when the current frame is relative

static comparing to its temporal neighbor frames after the

beads are moved to different positions. This assumption is

suitable to our tasks because when an educator is showing

the equation represented by the arrangement of the beads,

the rack is usually static; in addition it is usually different

from the previous arrangement.

Extracting state frames from an input video can also

benefit to our tasks. By comparing the current state frame

with the previous state frame, our algorithm is able to

acquire the information which contains “what is the

current arrangement of the beads”, as well as “how many\

which color\ which row beads did the educator move”.

For example, if the previous state frame describes “there

are FIVE RED beads on the top-left side and no white

ones” and current state describe “there are TWO RED

beads on the top-left and no white ones”, from which we

can infer an equation “5-3=2” besides each state

themselves.

In our work, we first start from how to recognize and

infer such information from state frames and then how to

extract such state frames from an input video.

What to Learn in Calibration. Basically, we apply

frame difference to capture the changed region between

two state frames. The position (x-y coordinates) and area

(how large is the moved region) in images can be used to

infer which row and how many beads are moved. Then

combining the color information, we can determine the

color and direction of the moved beads.

Due to the perspective effect, an object with the same

size appears larger in the image when it is near to the

camera and smaller when it is far from the camera.

Furthermore, the camera is not constraint to be perfectly

in front of the arithmetic rack and the bead sizes in

images are not required to be the same (in terms of

number of pixels in the state frame). Such effect is

manifested as shown in Figure 4: the red region is larger

than the blue region, because the left-side is slightly

closer to the camera than the right-side.

Both the left-side area and right-side area will be

stored with scalar values. Moreover, in our experiments,

we observe that different colors result in different size of

motion area since we use different shapes for beads with

different colors. So we stored the areas of beads of

different colors separately.

Figure 4. Illustration of the calibration phase. (a) Using frame difference

to capture motion area between consecutive state frames. A red bead is
moved from right side to left side on the top row, thus there are two

regions of motion, which correspond to the initial position and terminal

position. (b) Due to view angles difference and perspective effect, the
two areas are not exactly the same where the one closer to camera is

larger than the other. Centroids of both regions are used to estimate the

straight line corresponding to the top row.

Our calibration phase includes four steps, one of each

color beads on each row, i.e., 1) red beads on top row, 2)

white beads on top row, 3) red beads on bottom row, and

4) white beads on bottom row.

Figure 5. An example result of row information calibration by fitting a

straight line. Each pair of centroids (green dots) generated as in Figure
4(b) can be used to fit a straight line in cyan color. The final straight line

is generated using the mean of three lines, as can be seen as red dashed

line.

In each step, we move one bead on each row once a

time from right to left three times and compute the mean

area (µ) and corresponding variance (σ
2
), as well as the

straight line (l) fitted on each row

In addition to the area information which helps to

determine how many beads are moved, a straight line (l)

is used to determine in which row the beads are moved

(as shown in Figure 5). In each pair of state frames, we

generate a tuple [A B C]
T

(a straight line is known to be

represented using equation Ax+By+C=0, which

homogenous representation is [x y 1] [A B C]
T
=0) to

represent a line. Hence after k pairs of calibration, we

using the mean tuple of {[A1 B1 C1],…[Ak Bk Ck]} as

[�̅� �̅� 𝐶̅].

D. Synchronization

In this section, we describe the details of how we

synchronize the state frames and the virtual arithmetic

rack. We first describe the transition model between two

state frames and then the estimation of each argument in

the model respectively.

State Transition. An example of state transition is as

shown in Figure 6. We use the term “state transition” to

represent how one state frame turns to the next state frame.

A state transition can be obtained from two consecutive

state frames by estimating three answers to three

questions: “which row are the moved beads on?”, “how

many beads are moved?” and “which direction are they

moved to?” The virtual arithmetic rack can thus be

synchronized using the estimated answers, as shown in

the right of Figure 6: we first move one red bead from

right to left on top row and repeat it, thus two state

transitions are completed.

Parameters estimation. There are three basic parameters

to estimate as shown in the right part of Figure 6, i.e.,

“which row (top\bottom)”, “how many beads (0 to 10)”

and “which moving direction (right to left or left to right)”.

In practice, since it is more convenient to treat red beads

and white beads separately, we will estimate “how many

beads (0 to 5)” for each color instead of estimating their

total number directly. Our tasks are summarized in Figure

7.
Given the motion area by calculating frame

difference of two consecutive state frames, we first

generate a binary map as shown in Figure 7-left by some

processing on hue channel in HSV model to overcome the

effect of illumination changes.

First, determining which row the moved bead(s) are

on is quite straight-forward. The intuition is the row

which is closer to the beads should be the row where the

moved beads are on. Since we have obtained two

candidate straight line ltop and lbottom for both rows (top and

bottom)denoted by its homogeneous parameters [A B C],

we can determine the row of the bead(s) by comparing the

distances between the centroids of motion area and both

candidate straight lines, we can find the nearest line as the

estimated row:

𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑙∈{𝑡𝑜𝑝,𝑏𝑜𝑡𝑡𝑜𝑚}}[𝑥𝑐 , 𝑦𝑐 , 1][𝐴𝑙 , 𝐵𝑙 , 𝐶𝑙]
𝑇 (1)

where subfix c denotes the centroid of motion area.

 To determine the number of moved beads, as in Figure

7-left, the motion area provides a strong evidence. The

intuition is that beads of larger number occupy more area

than smaller number of beads. We employ multiple

Gaussians to construct the function to determine the

number of beads, as shown in Figure 8 and given by:

 𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑛∈{1:5}𝑁(𝑎, 𝜇𝑛, 𝜎𝑛
2) (2)

where a is the number of pixels of the motion area and

{𝜇𝑛, 𝜎𝑛
2} is the mean and variance of the n

th
 Gaussian

represented by N(𝑎, 𝜇𝑛, 𝜎𝑛
2).

Since in calibration we have generated the mean and

variance of area for single bead, {𝜇1, 𝜎1
2}, we can derive

𝜇𝑛 = 𝑛 𝜇1 and 𝜎𝑛
2 = n

2
 σ

2
. However, in practice n

2
 σ

2
is

too large and generate too ambiguous distributions. Thus

we choose 𝜎𝑛
2 = n σ

2
 instead, as illustrated in Figure 8,

which works well in our experiments. In other words, for

a given number of pixels of motion area, we estimate the

most possible number of beads corresponds to, while the

number goes higher and the certainty of such estimation

goes lower.

Figure 6. Illustration of moving two red beads on the top row from right

to left one at a time. There are three parameters “which row”, “how

many beads” and “which direction”.

Figure 7: Summary of the tasks in estimation step.

However, the moving direction of the beads cannot be

determined from the binary map of motion area. We

further employ color information to solve it. Since we

have already known the possible color of the beads, either

red or white, we apply a purity-based strategy to manifest

such information.

The definition of purity is the ratio of red pixels plus

white pixels over all pixels, given by:

 𝑃 =
𝑛𝑟𝑒𝑑 + 𝑛𝑤ℎ𝑖𝑡𝑒

𝑛𝑤ℎ𝑜𝑙𝑒

 (3)

Figure 8. Illustration of probability model we used to determine the

number of beads by an array of Gaussian distributions. In this work, we

only use an array of 5 Gaussians (solid curves), which gives reasonable
distinguish power compared with more Gaussians (dashed lines).

Then by applying a threshold on the purity, we can

know which of the two segments (as shown in Figure

7-left) corresponds to the terminal position of the beads.

The intuition is that the area of terminal position should

be beads so its purity should be higher and the area of

initial position should be background so its pixels should

not be the same as beads so its purity is lower.

The estimation of the moving direction of beads can

be obtained by checking the purity of each motion area. In

addition, we can compute the area in number of pixels for

the beads of each color occupied. Then we can use

equation 2 to estimate the number of beads of each color

separately.

Once all the above estimations are finished, we then

synchronize the virtual arithmetic rack with the real

arithmetic rack by updating the virtual one with all the

three arguments we have estimated, as shown in Figure

6-right.

E. State frame capture

Although we only employ state frames to generate

updating information, it is easy to create the state frames

from an input video with a rule-based algorithm. As

illustrated in Figure 9, for each frame of the video

sequence, we generate two difference maps (binary map

of frame-difference) by compare the frame with both the

most recent state frame and previous frame. Condition 1

is that if the current frame has a reasonable difference

with current state frame (last static state), which measures

if current frame is different enough from last state.

Condition 2 is that if current frame has limited difference

with previous frame which means if current frame is static.

Only if both conditions are met will we update the current

state frame and otherwise just continue.

IV. EXPERIMENTS AND DISCUSSION

A. Experiment Setup

In our experiments, we use a Logitech
TM

 web-camera

with a Carl Zeiss lens. The real arithmetic rack has two

rows of wooden racks with ten plastic red beads in cube

shape and ten wooden white beads in sphere shape.

Figure 9. Algorithm flowchart of extracting State Frames (as shown in

Red) from input video frames. Condition 1 and Condition 2 are

discussed in text.

B. Dataset

We capture four sets of state frames (one for each task

as describe in following paragraphs) to evaluate our

synchronization framework discussed from Section III.A

to Section III.D, one of which is used for calibration and

others are for four different tasks. In addition, a video

sequence is also captured to test our state-frame extraction

framework discussed in Section III.E.

The calibration set contains 4 subsets, each for one

color beads (red or white) in one row (top or bottom).

Each subset contains three movements, once moving only

one bead of corresponding color on corresponding row.

Here we define 4 tasks of different combinations of

the movement of beads:

 Task 1 is for only moving red beads on the top

row;

 Task 2 is for moving both red and white beads

only on the top row;

 Task 3 is for moving only red beads on both top

and bottom rows;

 Task 4 is more general for moving beads of both

colors on both rows freely.

There is no constraint on the number of moving beads

each time. For each task, we capture a video contains 10

movements. Thus there are 40 movements in total of 4

videos for the above 4 tasks. We evaluate our algorithm

by compare the detection results with the ground-truth of

how many movements are correctly generated. We also

collect a video over 6 minutes to test our state frame

extraction algorithm as shown in Figure 9 by moving one

bead each time (so by moving each bead twice, we have

20x2=40 state transitions in total).

C. Synchronization results

In our test, there are eleven state frames including the

initial one; in total ten state transitions in each task. We

define the event (state transition) detection accuracy as

the ratio of events correctly labeled over the total number

of events. We calculate the event detection accuracy in

terms of the three problems (i.e., “which row”, “which

direction” and “how many beads”), noticing in problem

“how many beads”, we do not discriminate between

colors.

TABLE I: PERFORMANCE OF OUR ALGORITHM ON FOUR TASKS IN TERMS

OF EVENT DETECTION ACCURACY (%)

 Row Direction # Beads
Task1 100% 100% 90%

Task2 100% 100% 100%

Task3 100% 100% 90%

Task4 100% 100% 90%

Overall 100% 100% 92.5%

As shown in Table I, our algorithm correctly detects

all the events in the tasks of determining “which row” and

“which direction”. As for determining “how many beads?”

there is one failure case in tasks 1, 2, and 4 that the

system wrongly classifies “3 red beads” to “2 red beads”.

Some of the results are as shown in Figure 11.

To validate our frame extraction framework (see

Figure 9), we recorded a video with 11,774 frames, where

40 frames (41 including initial frames, consist 0.3% of all

frames) of which are state frames. By applying algorithm

as shown in Figure 9, we correctly extract all the 40 state

frames (both detection recall and precision are 100%),

which enable our future work to be extended to a real

time prototype. Some examples of the extracted state

frames versus the non-state frames are shown in Figure

10.

D. Result discussion and future work

In this paper, we attempt to employ computer vision

and image processing technologies to enhance

mathematic learning for visually impaired children using

an arithmetic rack. Currently, our main assumption is to

keep the arithmetic rack relatively static through the

processing. This may issue problems when the whole

arithmetic rack is dramatically moved handled by visually

impaired children. More severe occlusion and jittering

will be handled in our future work, which is also a very

challenging problem in many computer vision-based

applications.

Another potential improvement is to involve context

information in this modeling. In our work, we estimate

the parameters independently from the difference binary

map of two consecutive state frames, i.e., we calculate

every probability of each possible parameter set and select

the highest one. But in reality the context information

may help to discard some logical wrong solutions where

their probability may not be that low in our calculation.

Consider an example of beads alignment on the top row,

there are two red beads on the left and the rest three red

beads and five white beads are on the right of the

arithmetic rack. If we move six beads from right to left,

they must be three red ones plus three white ones. In other

words, if we are sure there are three white beads are

moved, it should give more confidence to “three red beads

are moved” than “two red beads are moved” even though

the two probabilities are almost the same, which is

common due to beads occlusion and light reflection (as

the failure case in Table 2 Task 4).

V. CONCLUSIONS

In this paper, we have proposed an effective

computer-vision framework to enhance early mathematics

learning for visually impaired children. Preliminary

experimental results demonstrate that our framework is

effective in determining the row, moving direction and the

number of beads of each color with a calibration phase.

We have developed a rule-based algorithm to extract state

frames from input frame sequence which makes it easy to

extend our algorithm and framework to a real time

prototype system.

Our future work will focus on developing a more

robust and efficient prototype system for mathematics

learning enhancement and address the significant human

interface issues associated with mathematics learning for

children with visual impairments.

ACKNOWLEDGEMENT

This work was supported by NIH 1R21EY020990,

DTFH61-12-H-00002, NSF grants IIS-0957016,

EFRI-1137172, Microsoft Research, and a CITY SEEDs

grant.

REFERENCES

[1] Carey, S. (2008). Math Schemata and the Origins of Number

Representations. Behavioral and Brain Sciences 31 (6):645-646.

[2] Dehaene, S. (1997). The number sense: How the mind creates
mathematics. Oxford University Press.

[3] Fosnot, C. & Dolk, M. (2002). Young Mathematicians at Work:

Constructing Fractions, Decimals and Percents. Portsmouth, NH:
Heinemann,

[4] Hasanuzzaman, F., Yang, X and Y. Tian, Robust and Effective

Component-based Banknote Recognition by SURF Features,
Wireless and Optical Communications Conference (WOCC),

2011.

[5] Rapp, D. & Rapp, A. (1992). A Survey of the Current Status of
Visually Impaired Students in Secondary Mathematics. Journal of

Visual Impairment and Blindness, 86, 2, 115-17.

[6] Science Daily (April 16, 2010). New Teaching Tools Aid Visually
Impaired Students in Learning Math.

http://philpapers.org/s/Susan%20Carey

[7] Treffers, A. (1991). Realistic Mathematics Education in the

Netherlands, 1980-1990. In L. Streefland (Ed.) Realistic
Mathematics Education. Utrecht: Utrecht University.

[8] Tian, Y., Yi, C., and Arditi, A.: Improving Computer Vision-Based

Indoor Wayfinding for Blind Persons with Context Information,
12th International Conference on Computers Helping People with

Special Needs (ICCHP), 2010.

[9] Tian, Y., Yang, X. and Arditi, A.: Computer Vision-Based Door
Detection for Accessibility of Unfamiliar Environments to Blind

[10] Persons, 12th International Conference on Computers Helping

People with Special Needs (ICCHP), 2010.
[11] Tian, Y. and Yuan, S.: Clothes Matching for Blind and Color Blind

People, 12th International Conference on Computers Helping

People with Special Needs (ICCHP), 2010.
[12] Wynn, K. (1998). Psychological foundations of number: numerical

competence in human infants. Trends in Cognitive Sciences 2,

296-303.
[13] Yang, X., Yuan, S. and Tian, Y.: Recognizing Clothes Patterns for

Blind People by Confidence Margin based Feature Combination,

International Conference on ACM Multimedia, 2011
[14] Yang, X., Tian, Y., Yi, C. and Arditi, A.: Context-based Indoor

Object Detection as an Aid to Blind Persons Accessing Unfamiliar

Environments, International Conference on ACM Multimedia,
2010.

[15] Yuan, S., Tian, Y. and Arditi, A.: Clothing Matching for Visually

Impaired Persons, Technology and Disability 23, Page1-11, 2011.
The online version if the article is available at:

http://dx.doi.org/10.3233/TAD-2011-0313
[16] Yi, C. and Tian, Y.: Text String Detection from Natural Scenes by

Structure-based Partition and Grouping, IEEE Transactions

on Image Processing, Vol. 20, Issue 9, 2011. PMID:

21411405.
[17] Yi, C. and Tian, Y.: Text Detection in Natural Scene Images by

Stroke Gabor Words, The 11th International Conference on

Document Analysis and Recognition (ICDAR), 2011.

[18] Yi, C. and Tian, Y.: Assistive Text Reading from Complex
Background for Blind Persons, The 4th International Workshop on

Camera-Based Document Analysis and Recognition (CBDAR),

2011

Figure 10. Some examples of the state frames (left column) and

non-state frames (right column).

Figure 11. (a) (b) (c) and (d) are sample results for task 1 to 4,
respectively. In each task, two images on the top row indicate two

consecutive state frames and bottom row is the synchronization result

generated from the two state frames showing “which row”, “how many
beads of” and “which direction”.

