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Abstract—Children with visual impairments face 

disproportionate challenges in learning mathematics. In this 

paper, we explore how to apply computer vision techniques 

to enhance mathematics learning by fusion of multisensory 

information for children with visually impairments. The 

multisensory information includes visual and audio 

information. Our research focuses on the mathematics 

education for children with visual impairments in early ages 

(Kindergarten – Grade 3) by using arithmetic racks. A 

computer vision-based algorithm is developed to detect the 

numbers and positions of arithmetic rack beads and the 

detection results are then provided to students with visual 

impairments as speech guidance. Preliminary results 

demonstrate the effectiveness and efficiency of the proposed 

method for detecting the number, color, position, and 

moving directions of the arithmetic rack beads under 

different situations.  
 

Computer Vision; Math Learning; Children with Visual 

Impairement; Math Learning Enhauncement 

 

 

I. INTRODUCTION 

The study of mathematics can be challenging for 

many children. More so, children with visual impairments 

face even more disproportionate challenges in learning 

mathematics. Indeed, few students with visual 

impairments are currently participating in advanced 

mathematics classes in secondary schools and teachers of 

students with visual impairments report that they 

encounter continuing difficulties in providing materials 

and equipment for mathematics instruction [7]. Nearly 5 

million preschool-aged children and about 12.1 million 

children ages 6-17 have visual impairments, according to 

the Braille Institute [12]. Clearly, innovative tools and 

techniques are needed to help these children with visual 

impairments learn mathematics more easily -- and 

perhaps multiply their career opportunities when they 

reach adulthood. Yet, little research and development 

efforts are directed towards addressing these challenges 

faced by children (and adults) with visual impairments 

and their teachers.  

Our group has developed many algorithms for 

assistive technology to help blind people [4, 8-10, 12-17]. 

This paper attempts to investigate and develop computer 

vision-based techniques and models to enhance 

mathematics education for children with visual 

impairments in early ages (Kindergarten – Grade 3) by 

fusion of multisensory information: visual (camera), and 

hearing (audio). The visual information will be captured 

by a camera and the feedback will be provided to the 

visually impaired student by audio. 
 

II. TEACHING MATHEMATICS CONCEPTUALLY BY USING 

ARITHMETIC RACKS 

 

Work by cognitive psychologists indicates that even 

young children (as early as infancy) can often perceive 

small amounts (one to five) as a unit without a need for 

counting [1, 2]. Subitizing – viewing groups of objects as 

a unit – has been studied in six month babies: babies 

become habituated to a display of three objects and treat a 

new display of four objects as novel [11]. Mathematics 

educators capitalize on children’s ability to subitize by 

first having young children work within the “structure of 

5”. Children are offered groups of objects from 1 to 5 and 

asked to determine the cardinality (size) of the group.  

As shown in Figure 1, an arithmetic rack is a model 

that was specifically built to encourage and build on this 

innate ability of humans to subitize. It is a calculating 

frame, consisting of two rows of ten beads – a set of five 

red beads and a set of five white beads on each row. The 

five-structure of the arithmetic rack supports the 

development of part-whole relations in early number 

sense. 

 
Figure 1.An arithmetic rack and a child working with it. 



 

Educators suggest that early on, children are shown 

small amounts (less than five) on the arithmetic rack, with 

little reaction time (about 2 seconds) and are encouraged 

to recognize the amount [3]. Once children are 

comfortable with subitizing within the first five numbers 

on the arithmetic rack, teachers begin to show them 

quantities larger than five: For example, a number 7 (5 

red beads and 2 white). By doing this, children are 

encouraged to use the “five structure” that is built in the 

arithmetic rack to develop understanding of quantities up 

to 10. They also begin to understand the decomposition of 

number (numbers can be seen as combinations of smaller 

quantities – e.g., 7=5+2) and the hierarchical inclusion in 

the number system (whole numbers grow exactly by one). 

In this manner, the arithmetic rack supports the gradual 

development of the “ten structure” where children 

comfortably work within the first 10 numbers.  

Gradually, children are introduced to the second row 

of the arithmetic rack and are encouraged to work within 

the first 20 numbers understanding the structure that 

extends beyond ten. Children can then work with double 

numbers (e.g., 3+3), or near doubles (e.g., 3+4, which can 

then be seen on the arithmetic rack as 3+(3+1) or, 7+7= (5 

red+ 2 white)+(5 red + 2 white)) as well as the building of 

tens. Work with this model helps children automatize 

basic facts, but also builds the skill to look for the 

structure, the relations and regularity in numbers [6]. 

III. DETECTING NUMBERS AND POSITIONS OF ARITHMETIC 

RACK BEATS BASED ON CAMERA VISUAL INFORMATION  

In this paper, we develop a computer vision-based 

framework to detect and track the numbers and positions 

of arithmetic rack beads to facilitate the development of 

this number sense for children with visual impairments. 

The flowchart of our framework is illustrated in Figure 2. 

A camera is used to monitor the arithmetic rack while the 

blind student is learning.  

Our proposed framework includes two main steps: 

calibration and synchronization. The first step is to 

calibrate state frames in an input video sequence captured 

by a camera and to compute the initial state and properties 

of a “virtual” arithmetic rack (i.e. a digital arithmetic rack 

stored in computer). The second step is to generate the 

synchronization between state frames of the 

camera-captured input video and the current state of the 

“virtual arithmetic rack” in a sequential manner. The 

details of each step in Figure 2 will be described in 

Sections III.A to III.E. Experimental results are 

demonstrated and discussed in Section IV. Section V 

concludes our work.  

As shown in Figure 1-left and Figure 3-left, the 

arithmetic rack has two rows of beads: top and bottom 

rows. Each row has ten beads in total with five in red and 

five in white. All the beads can be moved separately or 

jointly to show different arithmetic equations. To 

automatically detect and track arithmetic rack beads by 

computer, an abstract and informative digital arithmetic 

rack is generated to help visual impaired children. 

 

 
Figure 2. The flowchart of our framework. The whole framework 
includes two main steps: 1) calibration, which is used to take (a) 

calibration of the input video sequence to compute (c) the initial state 

and properties of “virtual” arithmetic rack (i.e., a digital arithmetic rack 
stored in computer); 2) synchronization, which is used to synchronize 

between (b) the input video and the current state of (d) “virtual 

arithmetic rack” in a sequential manner.   

A. Arithmetic Rack Modeling 

As shown in Figure 3, we create a vitual arithmetic 

rack (Figure 3-right) and synchronize the bead 

movements based on the video the real arithmetic rack 

captured by a camera (Figure 3-left). Unlike the 

traditional arithmetic rack that uses the same shape and 

material for both white and red beads, we use different 

shapes and materials (plastic cubes for red beads and 

wood balls for white ones), which are more suitable for 

visually impaired students to touch and feel while 

maintaining the structure of our framework. In the virtual 

arithmetic rack, we use ‘@’ to represent red beads and ‘o’ 

for white ones. 

The digital arithmetic rack is quite simple and just for 

illustration. It is represented by several variables which 

thoroughly measure and describe the states and properties 

of the real arithmetic rack: average area of bead, variance 

of area of bead, color of bead, position of bead (left side 

or right ride), row of bead, and the number of beads. 

B. Task description 

In order to transfer the visual information to digital 

information which can be understood by computer, we 

utilize image processing technologies together with 

computer vision technologies to transfer the state frames 

to a certain representation. This is a brief and informative 

form that can be easily used to synchronize the real 

arithmetic rack and the digital one. In brief, our tasks in 

this paper are to automatically detect and track the 

number, color, position, and movement of beads and to 

synchronize the movements to the virtual arithmetic rack 

stored in computer. 

 



 
Figure 3. Illustration of a real arithmetic rack used in our work and the 
visualization of our synchronized arithmetic rack.. 

C. Calibration 

In this section, we describe the algorithm to calibrate a 

real arithmetic rack to generate the virtual arithmetic rack 

for detecting and tracking the number, color, and position 

of beads. 

 

State Frame. We define a current frame of a camera 

video as “state frame” when the current frame is relative 

static comparing to its temporal neighbor frames after the 

beads are moved to different positions. This assumption is 

suitable to our tasks because when an educator is showing 

the equation represented by the arrangement of the beads, 

the rack is usually static; in addition it is usually different 

from the previous arrangement. 

Extracting state frames from an input video can also 

benefit to our tasks. By comparing the current state frame 

with the previous state frame, our algorithm is able to 

acquire the information which contains “what is the 

current arrangement of the beads”, as well as “how many\ 

which color\ which row beads did the educator move”. 

For example, if the previous state frame describes “there 

are FIVE RED beads on the top-left side and no white 

ones” and current state describe “there are TWO RED 

beads on the top-left and no white ones”, from which we 

can infer an equation “5-3=2” besides each state 

themselves. 

In our work, we first start from how to recognize and 

infer such information from state frames and then how to 

extract such state frames from an input video. 

 

What to Learn in Calibration. Basically, we apply 

frame difference to capture the changed region between 

two state frames. The position (x-y coordinates) and area 

(how large is the moved region) in images can be used to 

infer which row and how many beads are moved. Then 

combining the color information, we can determine the 

color and direction of the moved beads. 

Due to the perspective effect, an object with the same 

size appears larger in the image when it is near to the 

camera and smaller when it is far from the camera. 

Furthermore, the camera is not constraint to be perfectly 

in front of the arithmetic rack and the bead sizes in 

images are not required to be the same (in terms of 

number of pixels in the state frame). Such effect is 

manifested as shown in Figure 4: the red region is larger 

than the blue region, because the left-side is slightly 

closer to the camera than the right-side. 

Both the left-side area and right-side area will be 

stored with scalar values. Moreover, in our experiments, 

we observe that different colors result in different size of 

motion area since we use different shapes for beads with 

different colors. So we stored the areas of beads of 

different colors separately.  

 

 
Figure 4. Illustration of the calibration phase. (a) Using frame difference 

to capture motion area between consecutive state frames. A red bead is 
moved from right side to left side on the top row, thus there are two 

regions of motion, which correspond to the initial position and terminal 

position. (b) Due to view angles difference and perspective effect, the 
two areas are not exactly the same where the one closer to camera is 

larger than the other. Centroids of both regions are used to estimate the 

straight line corresponding to the top row.    

Our calibration phase includes four steps, one of each 

color beads on each row, i.e., 1) red beads on top row, 2) 

white beads on top row, 3) red beads on bottom row, and 

4) white beads on bottom row. 

 

 
Figure 5. An example result of row information calibration by fitting a 

straight line. Each pair of centroids (green dots) generated as in Figure 
4(b) can be used to fit a straight line in cyan color. The final straight line 

is generated using the mean of three lines, as can be seen as red dashed 

line. 

 
In each step, we move one bead on each row once a 

time from right to left three times and compute the mean 

area (µ) and corresponding variance (σ
2
), as well as the 

straight line (l) fitted on each row 

In addition to the area information which helps to 

determine how many beads are moved, a straight line (l) 

is used to determine in which row the beads are moved 

(as shown in Figure 5). In each pair of state frames, we 

generate a tuple [A B C]
T 

(a straight line is known to be 

represented using equation Ax+By+C=0, which 

homogenous representation is [x y 1] [A B C]
T
=0) to 

represent a line. Hence after k pairs of calibration, we 

using the mean tuple of {[A1 B1 C1],…[Ak Bk Ck]} as 

[�̅� �̅� 𝐶̅].   



D.   Synchronization 

In this section, we describe the details of how we 

synchronize the state frames and the virtual arithmetic 

rack. We first describe the transition model between two 

state frames and then the estimation of each argument in 

the model respectively. 

 

State Transition. An example of state transition is as 

shown in Figure 6. We use the term “state transition” to 

represent how one state frame turns to the next state frame. 

A state transition can be obtained from two consecutive 

state frames by estimating three answers to three 

questions: “which row are the moved beads on?”, “how 

many beads are moved?” and “which direction are they 

moved to?” The virtual arithmetic rack can thus be 

synchronized using the estimated answers, as shown in 

the right of Figure 6: we first move one red bead from 

right to left on top row and repeat it, thus two state 

transitions are completed. 

 

Parameters estimation. There are three basic parameters 

to estimate as shown in the right part of Figure 6, i.e., 

“which row (top\bottom)”, “how many beads (0 to 10)” 

and “which moving direction (right to left or left to right)”. 

In practice, since it is more convenient to treat red beads 

and white beads separately, we will estimate “how many 

beads (0 to 5)” for each color instead of estimating their 

total number directly. Our tasks are summarized in Figure 

7. 
Given the motion area by calculating frame 

difference of two consecutive state frames, we first 

generate a binary map as shown in Figure 7-left by some 

processing on hue channel in HSV model to overcome the 

effect of illumination changes. 

First, determining which row the moved bead(s) are 

on is quite straight-forward. The intuition is the row 

which is closer to the beads should be the row where the 

moved beads are on. Since we have obtained two 

candidate straight line ltop and lbottom for both rows (top and 

bottom)denoted by its homogeneous parameters [A B C], 

we can determine the row of the bead(s) by comparing the 

distances between the centroids of motion area and both 

candidate straight lines, we can find the nearest line as the 

estimated row: 

 

𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑙∈{𝑡𝑜𝑝,𝑏𝑜𝑡𝑡𝑜𝑚}}[𝑥𝑐 , 𝑦𝑐 , 1][𝐴𝑙 , 𝐵𝑙 , 𝐶𝑙]
𝑇    (1) 

 

where subfix c denotes the centroid of motion area. 

      To determine the number of moved beads, as in Figure 

7-left, the motion area provides a strong evidence. The 

intuition is that beads of larger number occupy more area 

than smaller number of beads. We employ multiple 

Gaussians to construct the function to determine the 

number of beads, as shown in Figure 8 and given by: 

 

                𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑛∈{1:5}𝑁( 𝑎, 𝜇𝑛, 𝜎𝑛
2)                    (2) 

where a is the number of pixels of the motion area and 

{𝜇𝑛, 𝜎𝑛
2} is the mean and variance of the n

th
 Gaussian 

represented by N(𝑎, 𝜇𝑛, 𝜎𝑛
2).  

Since in calibration we have generated the mean and 

variance of area for single bead, {𝜇1, 𝜎1
2}, we can derive 

𝜇𝑛 = 𝑛 𝜇1 and 𝜎𝑛
2 = n

2
 σ

2
. However, in practice n

2
 σ

2 
is 

too large and generate too ambiguous distributions. Thus 

we choose 𝜎𝑛
2 = n σ

2
 instead, as illustrated in Figure 8, 

which works well in our experiments. In other words, for 

a given number of pixels of motion area, we estimate the 

most possible number of beads corresponds to, while the 

number goes higher and the certainty of such estimation 

goes lower. 

 

 
Figure 6. Illustration of moving two red beads on the top row from right 

to left one at a time. There are three parameters “which row”, “how 

many beads” and “which direction”. 

 

 

  

 
Figure 7: Summary of the tasks in estimation step. 

         

 

However, the moving direction of the beads cannot be 

determined from the binary map of motion area. We 

further employ color information to solve it. Since we 

have already known the possible color of the beads, either 

red or white, we apply a purity-based strategy to manifest 

such information. 

 

The definition of purity is the ratio of red pixels plus 

white pixels over all pixels, given by: 

 

                                      𝑃 =
𝑛𝑟𝑒𝑑 + 𝑛𝑤ℎ𝑖𝑡𝑒

𝑛𝑤ℎ𝑜𝑙𝑒

                        (3) 



 

 

 
Figure 8. Illustration of probability model we used to determine the 

number of beads by an array of Gaussian distributions. In this work, we 

only use an array of 5 Gaussians (solid curves), which gives reasonable 
distinguish power compared with more Gaussians (dashed lines). 

   

Then by applying a threshold on the purity, we can 

know which of the two segments (as shown in Figure 

7-left) corresponds to the terminal position of the beads. 

The intuition is that the area of terminal position should 

be beads so its purity should be higher and the area of 

initial position should be background so its pixels should 

not be the same as beads so its purity is lower. 

The estimation of the moving direction of beads can 

be obtained by checking the purity of each motion area. In 

addition, we can compute the area in number of pixels for 

the beads of each color occupied. Then we can use 

equation 2 to estimate the number of beads of each color 

separately. 

Once all the above estimations are finished, we then 

synchronize the virtual arithmetic rack with the real 

arithmetic rack by updating the virtual one with all the 

three arguments we have estimated, as shown in Figure 

6-right. 

 

E. State frame capture 

 
Although we only employ state frames to generate 

updating information, it is easy to create the state frames 

from an input video with a rule-based algorithm. As 

illustrated in Figure 9, for each frame of the video 

sequence, we generate two difference maps (binary map 

of frame-difference) by compare the frame with both the 

most recent state frame and previous frame. Condition 1 

is that if the current frame has a reasonable difference 

with current state frame (last static state), which measures 

if current frame is different enough from last state. 

Condition 2 is that if current frame has limited difference 

with previous frame which means if current frame is static. 

Only if both conditions are met will we update the current 

state frame and otherwise just continue. 

 

IV. EXPERIMENTS AND DISCUSSION 

A. Experiment Setup   

In our experiments, we use a Logitech
TM

 web-camera 

with a Carl Zeiss lens. The real arithmetic rack has two 

rows of wooden racks with ten plastic red beads in cube 

shape and ten wooden white beads in sphere shape. 

 

 
Figure 9. Algorithm flowchart of extracting State Frames (as shown in 

Red) from input video frames. Condition 1 and Condition 2 are 

discussed in text. 

 

 
 

B. Dataset 

We capture four sets of state frames (one for each task 

as describe in following paragraphs) to evaluate our 

synchronization framework discussed from Section III.A 

to Section III.D, one of which is used for calibration and 

others are for four different tasks. In addition, a video 

sequence is also captured to test our state-frame extraction 

framework discussed in Section III.E. 

The calibration set contains 4 subsets, each for one 

color beads (red or white) in one row (top or bottom). 

Each subset contains three movements, once moving only 

one bead of corresponding color on corresponding row. 

Here we define 4 tasks of different combinations of 

the movement of beads:  

 Task 1 is for only moving red beads on the top 

row; 

 Task 2 is for moving both red and white beads 

only on the top row;  

 Task 3 is for moving only red beads on both top 

and bottom rows;  

 Task 4 is more general for moving beads of both 

colors on both rows freely.  

There is no constraint on the number of moving beads 

each time. For each task, we capture a video contains 10 

movements. Thus there are 40 movements in total of 4 

videos for the above 4 tasks. We evaluate our algorithm 

by compare the detection results with the ground-truth of 

how many movements are correctly generated. We also 



collect a video over 6 minutes to test our state frame 

extraction algorithm as shown in Figure 9 by moving one 

bead each time (so by moving each bead twice, we have 

20x2=40 state transitions in total). 

 

C. Synchronization results 

In our test, there are eleven state frames including the 

initial one; in total ten state transitions in each task. We 

define the event (state transition) detection accuracy as 

the ratio of events correctly labeled over the total number 

of events. We calculate the event detection accuracy in 

terms of the three problems (i.e., “which row”, “which 

direction” and “how many beads”), noticing in problem 

“how many beads”, we do not discriminate between 

colors. 

 
TABLE I: PERFORMANCE OF OUR ALGORITHM ON FOUR TASKS IN TERMS 

OF EVENT DETECTION ACCURACY (%) 

 Row Direction # Beads 
Task1 100% 100% 90% 

Task2 100% 100% 100% 

Task3 100% 100% 90% 

Task4 100% 100% 90% 

Overall 100% 100% 92.5% 

   
As shown in Table I, our algorithm correctly detects 

all the events in the tasks of determining “which row” and 

“which direction”. As for determining “how many beads?” 

there is one failure case in tasks 1, 2, and 4 that the 

system wrongly classifies “3 red beads” to “2 red beads”. 

Some of the results are as shown in Figure 11. 

To validate our frame extraction framework (see 

Figure 9), we recorded a video with 11,774 frames, where 

40 frames (41 including initial frames, consist 0.3% of all 

frames) of which are state frames. By applying algorithm 

as shown in Figure 9, we correctly extract all the 40 state 

frames (both detection recall and precision are 100%), 

which enable our future work to be extended to a real 

time prototype. Some examples of the extracted state 

frames versus the non-state frames are shown in Figure 

10. 

 

D. Result discussion and future work    

In this paper, we attempt to employ computer vision 

and image processing technologies to enhance 

mathematic learning for visually impaired children using 

an arithmetic rack. Currently, our main assumption is to 

keep the arithmetic rack relatively static through the 

processing. This may issue problems when the whole 

arithmetic rack is dramatically moved handled by visually 

impaired children. More severe occlusion and jittering 

will be handled in our future work, which is also a very 

challenging problem in many computer vision-based 

applications. 

Another potential improvement is to involve context 

information in this modeling. In our work, we estimate 

the parameters independently from the difference binary 

map of two consecutive state frames, i.e., we calculate 

every probability of each possible parameter set and select 

the highest one. But in reality the context information 

may help to discard some logical wrong solutions where 

their probability may not be that low in our calculation. 

Consider an example of beads alignment on the top row, 

there are two red beads on the left and the rest three red 

beads and five white beads are on the right of the 

arithmetic rack. If we move six beads from right to left, 

they must be three red ones plus three white ones. In other 

words, if we are sure there are three white beads are 

moved, it should give more confidence to “three red beads 

are moved” than “two red beads are moved” even though 

the two probabilities are almost the same, which is 

common due to beads occlusion and light reflection (as 

the failure case in Table 2 Task 4). 

 

V. CONCLUSIONS  

In this paper, we have proposed an effective 

computer-vision framework to enhance early mathematics 

learning for visually impaired children. Preliminary 

experimental results demonstrate that our framework is 

effective in determining the row, moving direction and the 

number of beads of each color with a calibration phase. 

We have developed a rule-based algorithm to extract state 

frames from input frame sequence which makes it easy to 

extend our algorithm and framework to a real time 

prototype system.   

Our future work will focus on developing a more 

robust and efficient prototype system for mathematics 

learning enhancement and address the significant human 

interface issues associated with mathematics learning for 

children with visual impairments. 
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Figure 10. Some examples of the state frames (left column) and 

non-state frames (right column). 
 

 
Figure 11.  (a) (b) (c) and (d) are sample results for task 1 to 4, 
respectively. In each task, two images on the top row indicate two 

consecutive state frames and bottom row is the synchronization result 

generated from the two state frames showing “which row”, “how many 
beads of” and “which direction”.  

 

 


