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Abstract

Traditional algorithms to design hand-crafted features for action recognition

have been a hot research area in last decade. Compared to RGB video, depth

sequence is more insensitive to lighting changes and more discriminative due

to its capability to catch geometric information of object. Unlike many ex-

isting methods for action recognition which depend on well-designed features,

this paper studies deep learning-based action recognition using depth sequences

and the corresponding skeleton joint information. Firstly, we construct a 3D-

based Deep Convolutional Neural Network (3D2CNN) to directly learn spatio-

temporal features from raw depth sequences, then compute a joint based feature

vector named JointVector for each sequence by taking into account the simple

position and angle information between skeleton joints. Finally, support vec-

tor machine (SVM) classification results from 3D2CNN learned features and

JointVector are fused to take action recognition. Experimental results demon-

strate that our method can learn feature representation which is time-invariant

and viewpoint-invariant from depth sequences. The proposed method achieves

comparable results to the state-of-the-art methods on the UTKinect-Action3D

dataset and achieves superior performance in comparison to baseline methods

on the MSR-Action3D dataset. We further investigate the generalization of

the trained model by transferring the learned features from one dataset (MSR-

Email addresses: liuzhi@cqut.edu.cn (Zhi Liu), czhang10@ccny.cuny.edu (Chenyang
Zhang), ytian@ccny.cuny.edu (Yingli Tian)

Preprint submitted to Image and Vision Computing April 11, 2016



Action3D) to another dataset (UTKinect-Action3D) without retraining and ob-

tain very promising classification accuracy.

Keywords: Action Recognition, Deep Learning, Convolutional Neural

Network, Depth Sequences, 3D Convolution

1. Introduction

With the ever-increasing growth in the popularity of digital videos, there are

many research topics on automatic video analysis. Among these topics, human

action recognition (HAR) has been widely applied to a number of real-world ap-

plications, e.g., surveillance event detection, human-computer interaction, video5

retrieval, etc. However, it is of great challenge to recognize human actions in

unconstrained videos due to some real conditions such as occlusions, different

viewpoints, different action speeds, light variances, etc. Fortunately, the emer-

gence of depth cameras with acceptable price provides a prospect future for

action recognition. Compared with traditional RGB cameras, depth cameras10

can obtain the conventional two-dimensional (2D) color video sequences as well

as the depth sequences which are more insensitive to lighting changes [1] and

more discriminative than color and texture features in many computer vision

problems such as segmentation, object detection, and activity recognition [2].

According to the difference of extracting features from video sequence, the15

action recognition methods can be grouped into two categories: hand-crafted

feature-based methods and automatic learning feature-based methods. Hand-

crafted feature-based methods usually employ a three-stage procedure consist-

ing of feature extracting, feature representation, and classification. Firstly,

hand-crafted features such as space-time interest points (STIP) [3], bag-of-20

visual-words [4, 5], histograms of oriented gradient/histograms of optical flow

(HOG/HOF) [6, 7, 8], and motion history image (MHI) [9] are extracted from

video sequences. Then more discriminative descriptors are constructed from

the extracted features using transformations or clustering techniques, such as

Fourier temporal transformation [10, 11] and K-means clustering [12]. Finally, a25
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classifier is employed on the constructed descriptors to accomplish action recog-

nition. However, it is difficult to generalize the hand-crafted features from one

dataset to a different dataset. In 2006, Hinton et al. proposed the concept of

deep learning to solve the training problem by layer-wise training method [13].

Since then, deep learning has been widely employed in many research areas such30

as image classification, speech recognition, object recognition, etc. [14]. There

are also many studies on action recognition using deep learning based on either

2D color image sequences [14, 15, 16, 17] or 3D depth video sequences [18, 19].

However, the inputs of networks in most of these deep learning methods are

pre-extracted hand-crafted features instead of raw depth sequences. Unlike the35

existing methods, in this paper, we apply deep learning to automatically learn

discriminative features from raw depth sequences for human action recognition.

We propose a 3D2CNN-based framework to automatically learn spatio-temporal

feature which we call it high-level feature (Fig.1) from raw depth video sequence.

Here, 3D2CNN means we take convolution both from spatial and time dimen-40

sion over the input video by using deep convolutional neural network. To our

knowledge, there are little research which use raw depth video sequences as

an input in deep learning-based action recognition. Our proposed framework

is evaluated on two well-known datasets: UTKinect-Action3D [20] and MSR-

Action3D [12]. Our method obtains comparable performance to state-of-the-art45

methods on the UTKinect-Action3D dataset (Table 4) and achieves superior

performance in comparison to baseline methods on the MSR-Action3D dataset

(Table 5).

The key contributions of this work are summarized as follows:

(1) We propose a novel 3D2CNN-based framework for action recognition from50

depth video sequences. This framework can automatically extract spatio-

temporal features from raw depth video sequences.

(2) We evaluate the influence of different sizes of input sequences to performance

of feature learning of 3D2CNN, it shows that 3D2CNN can learn general

structure information of the video for action recognition. The classification55
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accuracies are slightly improved and tend to be stable with larger spatial

sizes.

(3) We investigate the generalization of the trained model by transferring the

learned hierarchical feature representations from one dataset (MSR-Action3D)

to a different dataset (UTKinect-Action3D) without retraining. Experi-60

mental performance demonstrates the high generalization performance of

transferring the trained model to different datasets.

(4) Without designing complex hand-crafted features, our framework achieves

comparable results as the state-of-the-art methods.

The remainder of this paper is organized as follows: Section 2 reviews the related65

work. Section 3 presents the overall structure of the proposed framework and

the detail of 3D2CNN model. The experimental results and discussions are

described in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

2.1. Hand-Crafted Feature-based Action Recognition70

Generally, feature extraction from video sequences is one of the most impor-

tant steps in HAR. Over the past years, low-level features, such as scale-invariant

feature transform (SIFT) [21], STIP [22, 23], HOG/HOF [8] and speeded up ro-

bust features (SURF) [24], have been successfully employed in traditional RGB

video-based activity recognition. Wang and Schmid [25] proposed an action75

recognition method with improved trajectories. They obtain motion Vectors in-

dependent of camera motion by matching feature points between frames using

SURF descriptors and dense optical flow, and improve motion-based descriptors

significantly. Shao et al. [26] fused different feature representations for action

recognition using a novel spectral coding algorithm called kernelized multiview80

projection (KMP). However, RGB video-based action recognition tasks invari-

ably show low performance owing to its incapability to catch 3D information for

each frame. Fortunately, the recent emergence of cost-effective depth sensors
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such as Kinect [1], attracted more attentions from researchers to reconsider vi-

sual tasks such as human attribute recognition, video segmentation, and activity85

recognition by using depth information as input instead of RGB images. Ye et

al. [18] and Han et al. [27] summarized a detailed survey on HAR from depth

camera. Among depth-based HAR methods, HOG [6, 7], STIP [22, 3, 23],bag-

of-3D points [12, 4], skeleton joints [28, 11, 20] are mostly used features. Ni et

al. [29] presented a novel idea for activity recognition by applying depth based90

filters to remove false detection and then combining data from conventional

camera and a depth sensor. Ye et al. [30] proposed an algorithm for creating

free-viewpoint video of interacting humans using three hand-held Kinect cam-

eras by estimation of human poses and camera poses. Yang et al. [6] proposed

an efficient feature representation by projecting depth maps onto three orthogo-95

nal planes to generate the depth motion maps (DMM) which accumulate global

activities through an entire video sequence. HOG is then computed from DMM

as the representation of each action video. Oreifej and Liu [7] used a histogram

to represent the distribution of the surface normal orientation in the 4D space of

time, depth, and spatial coordinates in order to capture the complex joint shape100

motion cues at pixel-level. Li et al. [12] utilized a bag of 3D points to charac-

terize a set of salient postures which is used as the nodes in the action graph.

Roshtkhari and Levine [4] constructed a codebook of spatio-temporal video vol-

umes which then is assembled to a large contextual volume in order to train a

probabilistic model of video volumes and the spatio-temporal compositions. In105

[28], Zanfir et al. proposed a moving pose descriptor by using the configuration,

speed, and acceleration of joints. Yu et al. [31] proposed a hand-crafted feature

called Local Flux Feature (LFF). Then the LFFs from RGB and depth channels

are fused into a Hamming space via the Structure Preserving Projection (SPP).

Their experiments show the effectiveness of combining LFFs from RGB-D chan-110

nels via SPP. Vemulapalli et al. [11] used skeleton joint information to model

the 3D geometric relationships between various body parts. In this way, human

actions can be modeled as curves in a Lie group [32]. Different from [11], Xia

et al. [20] constructed histograms of 3D joint locations (HOJ3D) as a compact
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representation of postures. In [22], the authors formed various STIP features115

by combining different interest point detectors and conducted comparison with

some classical STIP methods. Their experiments revealed that skeleton joint

information can greatly improve performance by fusing spatio-temporal features

and skeleton joints for depth-based action recognition [22]. In addition, other

proposed representations of depth sequences include depth motion map [33], su-120

per normal vector (SNV) [2], actionlet [10], spatio-temporal depth cuboid [34],

cloud points [35], etc..

2.2. Machine Learning-based Action Recognition

All methods mentioned above utilize modern feature extraction or hand-

crafted features which are achieving remarkable performance. However, these125

features, such as MHI [9], HOG/HOF [8] and HOG3D [36], are hand-crafted

with respect to specific video sequences and specific applications. Therefore,

they are difficult to be generalized to other real-world scenarios because it is

difficult to know which features are important to the recognition tasks without

retraining. Furthermore, with respect to hand-crafted methods, feature extrac-130

tion and classifier training are conducted sequentially and individually. Thus,

the training error of each sample is hard to be back propagated to the entire

pipeline to improve feature extraction. Instead, machine learning methods, and

in particular convolutional neural networks (CNN) [37] can provide some so-

lutions. The machine learning methods have achieved very good performance135

on many visual tasks, from image classification [17], pedestrian detection [38]

to pose recognition [1] and image de-noising [39]. Moreover, Donahue et al.

[40] demonstrated that features extracted from the deep convolutional network

trained on large datasets are generic and benefit to other visual recognition

problems. In summary, machine learning methods show more and more superi-140

ority in computer vision and image processing tasks, which also promote more

and more studies on machine learning-based action recognition. Jin et al. [41]

did very interesting work to combine hand-crafted features and machine-learned

features for RGB-D object recognition. While Liu et al. [42, 43] presented us
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a good idea that Genetic Programming is used to learn discriminate spatio-145

temporal features from RGB-D video. They filtered a set of 3D operators which

were then automatically assembled into a dynamic-depth tree-structured chain

to extract the features from the input RGB-D data. Ji et al. [14] proposed a

3D-CNN model applied into RGB-based action recognition. They first applied

a set of hardwired kernels to generate multiple channels of information from the150

input frames, and then captured the motion information encoded in multiple

adjacent frames by performing 3D convolutions, and the final feature represen-

tation combines information from all channels. Wu and Shao [44] extracted

features from skeletal joint information and applied deep neural network to pre-

dict probability distribution over the state of HMMs for action recognition. Le155

et al. [15] proposed a method by combining advantages of independent subspace

analysis (ISA) and CNN. They utilized ISA to learn invariant spatio-temporal

features which are then used to learn higher or more abstract level representa-

tion by stacked CNN. Similar to [15], Lin et al.[16] adopted the same framework

as [15]. The only difference is that [15] used ISA, while Lin et al.[16] employed160

slow feature analysis (SFA). ISA aims at learning feature representations tend

to be invariant to spatial translation of stimuli, while SFA is intended to find a

more stable and slowly varying feature representation of video sequences. The

methods mentioned above extract features first and then use stacked CNN to

learn higher level representations. Molchanov et al. [45] collected a gesture165

data set and obtained 77.5% recognition accuracy using deep 3D Convolutional

neural network. Different from these methods, paper [46] employed CNN to au-

tomatically learn features by taking raw RGB video sequences as input without

any hand-crafted feature extracting process. Their CNN inputs are two separate

streams of processing, i.e. a context stream which captures the whole structure170

information and a high-resolution stream which captures fine-grained informa-

tion of an action. In [19], Valle and Starostenko described a simple survey on

human action recognition and employeed a 2D CNN-based deep learning method

to discriminate walking from running for RGB sequences. Tran et al. [47] pro-

posed 3D ConvNets to learn spatio-temporal feature using deep 3-dimensional175
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convolutional networks trained on a RGB video dataset.

Machine learning-based methods have achieved great performance in action

recognition tasks. However, most of them are based on RGB-based video se-

quences which is inferior to catch more discriminative information relative to

depth sequences. What’s more, due to the difficulty of designing deep neural180

network of 3D input in earlier years, most of machine learning methods just

take deep learning as a way of dimension reduction. There is little research

that takes raw depth video sequences as the input of deep neural network to

study HAR. In this paper, we proceed along this direction. We fuse the learned

features from raw depth sequence and the JointVector calculated from skeleton185

joints to accomplish action recognition. First we develop a 3D2CNN to auto-

matically learn spatio-temporal features from raw depth sequences. Then we

calculate a JointVector for each sequence by taking into account the position

and angle information of skeleton joints. Finally, the SVM classification results

from high-level feature and JointVector are fused to recognize actions.190

3. Proposed 3D2CNN-based Framework

Fig.1 presents the overall structure of 3D2CNN for action recognition. Our

HAR pipeline mainly consists of three parts, i.e. 3D2CNN-based feature learn-

ing, JointVector calculating, and fusion of classification results. Feature learning

phase learns the spatio-temporal features from raw depth videos with a deep195

neural network. In our work, we just take the output of the first full connected

layer as the extracted feature from network (Fig.2). JointVector calculating

phase obtains a JointVector according to skeleton joints information for each

depth video sequence (Fig.3). Finally, the SVM classification results from high-

level feature and JointVector are fused to execute action recognition. For fusion200

process, we just simply sum the probability of corresponding action from two

input classifiers with different fusing weights, and the maximum one will be the

recognized action. In this paper, the weights of high-level feature and JointVec-

tor classifiers are set to 5 and 3 respectively according to our experiment.
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Figure 1: The overall structure of the 3D2CNN-based HAR Framework. 3D2CNN learns

high-level features from depth video and Vector Calculating component calculates joint feature

(JointVector) according to joint skeleton. The SVM classification results from high-level

feature and JointVector are fused to recognize action.

3.1. Learning High-level Feature from Raw Depth Videos205

The 3D deep network for learning features in Fig.2 is responsible for high-

level feature learning tasks. We construct the 3D deep network according to

previous studies [48] and the size of our training data set. It consists of two

3D convolution layers, each of which followed by a 3D max pooling layer. The

input to the network would be cuboids which originate from raw depth sequences210

after being simply preprocessed and normalized to the same size for a specific

dataset. Because the lengths of action videos may vary in different datasets, it is

difficult to normalize all the videos to one size while preserve enough information

of the videos. Therefore different datasets may have different cuboid sizes as

input of the network. Here, the framework in Fig.2 takes the MSR-Action3D215

dataset as an example. First, the normalized depth cuboid (action video) of size

height×width× time (32 × 32 × 38) is input to the deep neural network after

raw depth sequence being simply preprocessed. The input cuboid is processed

by the first 3D convolution layer (CL1) and 3D max pooling layer (MP1). And

then the second 3D convolution layer (CL2) and 3D max pooling layer (MP2)220
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Figure 2: 3D Deep Convolutional Neural Network. Depth sequences are input to the network

after being normalized to fixed size cuboids. Then execute two 3D convolutional layers which

are followed by three full connected layers and a SVM classifier.

are following layers. Finally, three fully connected linear transformation layers

(FCL) are applied and soft-max layer is used as the classifier. The kernel size of

CL1 and CL2 are 5×5×7 (5×5 in the spatial dimension and 7 in the temporal

dimension) and 5 × 5 × 5 respectively. In the subsequent 3D max pooling layer

after convolution layer, we apply 2× 2× 2 sub sampling on both MP1 and MP2225

layers, which leads to a reduced spatial and temporal resolution. The numbers

of feature maps (i.e. kernels) of CL1 and CL2 are 32 and 128 respectively. The

vector dimensions of three full connected linear transformation are 2056, 512,

and 128 respectively. While for the UTKinect-Action3D dataset, the input size

is 32 × 32 × 28. The kernel sizes of both CL1 and CL2 are 5 × 5 × 5. Table230

1 list the size of convolutional filter and convolution stride corresponding to

cuboids of different input size. Unless stated specifically, all other parameters

in following experiments are same as that used on the MSR-Action3D dataset.

3.2. JointVector Calculation

Here we propose a straightforward method to calculate JointVector for each235

sequence. The datasets provide the skeleton information of 20 joints which are

Hip center, Spine, Center between shoulders, Head, Left shoulder, Left elbow,
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Table 1: Parameters setting of 3D2CNN corresponding to cuboids of different input size.

Here, Size32 means the cuboid size is 32× 32× 28 for UTKinect-Action3D and is 32× 32× 38

for MSR-Action3D, and so on. Stride setting is for both CL1 and CL2.

UTKinect-Action3D MSR-Action3D

Size32 Size64 Size128 Size32 Size64 Size128

CL1 5 × 5 × 5 6 × 6 × 5 6 × 6 × 5 5 × 5 × 7 6 × 6 × 7 6 × 6 × 7

CL2 5 × 5 × 5 5 × 5 × 5 5 × 5 × 5 5 × 5 × 5 5 × 5 × 5 5 × 5 × 5

Stride 1 × 1 × 1 2 × 2 × 1 2 × 2 × 1 1 × 1 × 1 2 × 2 × 1 2 × 2 × 1

Left wrist, Left hand, Right shoulder, Right elbow, Right wrist, Right hand, Left

hip, Left knee, Left ankle, Left foot, Right hip, Right knee, Right ankle and

Right foot. JointVector is formulated by concatenating two independent feature240

vectors. One is the pairwise relative position vector presented in paper [10].

Another is Hip center based vector (HCBV) proposed in this paper. Since each

skeleton information contains x, y and z coordinate information, we can calcu-

late the distance and angle information of every joint relative to a designated

joint. Fig.3 presents the calculation procedure of HCBV. Our HCBV calculation245

method takes the Hip center joint as the original point of the 3D coordinate

because it is the steadiest joint compared to other joints. Thus for each joint

in addition to the Hip center joint, we calculate the following three parame-

ters: distance to origin (d), angle of elevation (φ) and Azimuthal angle (θ). As

we know, each frame has 19 joints except the Hip center joint. Therefore for250

a depth sequence with tNum frames, we can obtain a 3 × 19 × tNum HCBV

by concatenating the three parameters of all joints of all frames in the depth

sequence.

3.3. Model Implementation

At the feature learning step, the 3D2CNN model is implemented in Torch7255

[49] which is a scientific computing framework based on LuaJIT with wide sup-

port for machine learning algorithms. The negative log likelihood criterion is

used in the optimization phase, which requires the outputs of the trainable
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Figure 3: Calculating joint-center based vector (HCBV) for a frame. Hip center of each frame

is set as the origin of 3D coordinates. Then distance to origin (d), angle of elevation (φ) and

Azimuthal angle (θ) are calculated for each joint in every frame.

12



model to be properly normalized log-probabilities and can be achieved using

a soft max function. We employ a stochastic gradient algorithm to train the260

neural networks. The active function is the hyperbolic tangent function (tanh)

since our datasets are relatively small and the learning rate is set to 5e-4 em-

pirically. On classification phase, the linear classifier (LIBLINEAR) [50] with

default parameters is used for action recognition.

4. Experimental Results265

4.1. Datasets

In this section, we present a comparative performance evaluation of our pro-

posed method on two datasets: the UTKinect-Action3D dataset [20] and the

MSR-Action3D dataset [12]. Both two datasets were captured using a station-

ary Kinect sensor and provide the 3D locations of 20 joints. The UTKinect-270

Action3D dataset consists of 10 actions performed by 10 different subjects. The

10 actions are Walk, Sit down, Stand up, Pick up, Carry, Throw, Push, Pull,

Wave hands and Clap hands. Each subject performed every action twice. There

are total of 199 effective action sequences. For convenience, we use 200 action

sequences in our experiments by filling the missing action Carry of the second275

performance of the 10th subject using frames from No.1242 to No.1300. The

challenges in the UTKinect-Action3D are viewpoint variations and high intra-

class variations. The MSR-Action3D dataset consists of 20 actions performed by

10 different subjects. Each subject performed every action two or three times.

In total, there are 567 action sequences. According to the test setting of the280

baseline method [12], the 20 actions was divided into action subsets AS1, AS2

and AS3 (Table 2), each consisting of 8 actions. The AS1 and AS2 were intended

to group actions with similar movement, while AS3 was intended to group com-

plex actions together. The main challenge in the MSR-Action3D dataset is that

some of the actions are very similar to each other, especially in AS1 and AS2.285

For instance, action Hammer is likely to be confused with Forward punch in AS1

and action Draw x is a little different from action Draw circle only in the part
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Table 2: The three subsets of actions used in the experiments.

AS1 AS2 AS3

Horizontal arm wave High arm wave High throw

Hammer Hand catch Forward kick

Forward punch Draw x Side kick

High throw Draw tick Jogging

Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve

Tennis serve Forward kick Golf swing

Pickup & throw Side boxing Pickup & throw

of right hand in AS2. In order to make our proposed method less insensitive

to different subjects, we conduct a preprocessing for each video sequence in-

cluding foreground extraction, person-centered bounding box detection, spatial290

and temporal dimension normalization, and depth value normalization. After

foreground extraction, only the depth values of foreground pixels are kept and

values of other pixels are set to zero. In bounding box cutting, the bounding

box of the person is cropped for every frame in an action video and the largest

bounding box is used as the video’s bounding box. The spatial and temporal295

dimension normalization is applied to resize all action videos in a dataset to

cuboids of designated size. While the depth value normalization takes min-max

normalization of depth values of all pixels to 0-1 range from the video level.

Fig.4 presents data preprocessing pipeline of our methods.

4.2. Performance Evaluation on the UTKinect-Action3D Dataset300

We first evaluate the efficiency of the proposed 3D2CNN method and com-

pare the recognition result with the state-of-the-art results on the UTKinect-

Action3D and the MSR-Action3D datasets. For the UTKinect-Action3D dataset,

we train a network for each subject. For each network, sequences of one sub-

ject are used for testing and sequences of other subjects are used for training.305

Here, we call it leave one subject out cross validation which is hasher than the
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Figure 4: Preprocess pipeline of depth sequences. For each dataset, four preprocessing steps

are conducted for all depth videos including foreground extraction, bounding box cutting,

normalizing of height, width and frame numbers, and depth value normalization.

(a) action “Throw”

(b) action “Push”

Figure 5: Two similar action sequences in UTKinect-Action3D dataset.

experiment setup in paper [20] which used leave one sequence out cross valida-

tion (LOOCV). The recognition accuracies for each action are listed in Table

3. From Table 3, we observe that most of the actions are correctly classified

and the average accuracy is 95.5%. The action Throw obtains the lowest accu-310

racy while most of the wrong classified samples are confused with action Push

due to the similarity of the two actions (Fig.5). Table 4 shows the perfor-

mance of our method compared to the state-of-the-art approaches. Here, we

adopt cross-subject experimental setting in which subjects 1,3,5,7,9 are used for

training and subjects 2,4,6,8,10 are used for testing. Our results are obtained315
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Table 3: The performance of each action on the UTKinect-Action3D dataset(Average:95.5%).

Action walk sit down stand up pick up carry

Accuracy 100 100 100 95 90

Action throw push pull wave hand clap hand

Accuracy 70 95 100 100 100

when the input to 3D2CNN are cuboids of size 128 × 128 × 28. The action

recognition accuracies are 82% by only using 3D2CNN and 93% by only us-

ing JointVector. By fusion of 3D2CNN and JointVector, our proposed method

obtains accuracy of 96% which is comparable to the state-of-the-art result of

[11]. It is worthwhile to note that [11] prepared 10 training sets and testing320

sets which are used in their cross-subject experiments. By running their code

in our cross-subject setting, their method achieves an accuracy of 95.96% which

is a little worse than our results. Furthermore, our proposed method is much

faster than that of [11]. The average time consumption of extracting 3D2CNN

learned features and calculating JointVector for a sequence is 1.18 seconds while325

[11] needs about 6.53 seconds on the same computer who has 4 processor of In-

tel(R) Core(TM) i5-4200M CPU @ 2.50GHz and total memory of 4G. Thus,

we conclude that the features learned from 3D2CNN are complementary with

the JointVector features in action recognition. Since the main challenge in the

UTKinect-Action3D is the viewpoint variation, the high recognition rate demon-330

strates that our proposed method can learn view invariant features. Compared

to [11], our method is straightforward by combining the 3D2CNN learned fea-

tures and simple JointVector.

4.3. Performance Evaluation on the MSR-Action3D Dataset

For the MSR-Action3D dataset, we followed the same test setting of the335

baseline method [12] in which the dataset was divided into action subsets AS1,

AS2 and AS3 (Table 2), each consisting of 8 actions. For each action subset,

three different division methods of training and testing sets are performed. They

are Test One, Test Two and Cross Subject. In Test One, random 1/3 of the
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Table 4: The performance of our method on the UTKinect-Action3D dataset, compared to

the state-of-the-art approaches

Method Accuracy

Xia et al. (2012)[20] 90.92%

Devanne et al. (2013)[51] 91.5%

Chrungoo et al. (2014)[52] 91.96%

Vemulapalli et al. (2014)[11] 97.08%

3D2CNN 82%

JointVector 93%

Proposed 96%

samples were used for training and the rest for testing. In Test Two, random340

2/3 samples were used as training samples and the rest for testing. In Cross

Subject, half of the subjects were used for training and the rest subjects were

used for testing. Our proposed method is compared with two state-of-the-art

approaches which also present all experiment results on subsets AS1, AS2 and

AS3. As shown in Table 5, we observe that the performance of our proposed345

algorithm is a little worse than [12] and [20] on AS1 and AS2, and is much

better than them on AS3. The reason may be that AS1 and AS2 group actions

with similar movement, while AS3 groups complex actions together. So the

movements of AS3 contain more global information than that of AS1 and AS2.

From the conclusion of Section 4.4, the superiority of 3D2CNN is to learn the350

structural information of the video, not the fine-grained one. While hand-crafted

methods extract features from every pixel, which means structural knowledge

and fine-grained features are treated in the same way.

4.4. Performance of Different Spatio-temporal Size

In order to evaluate the performance on different spatio-temporal size to per-355

formance of 3D2CNN and proposed method, we normalize the depth sequences

of each action to three different sizes. For the UTKinect-Action3D dataset, the

cuboid size of 32×32×28, 64×64×28 and 128×128×28 are evaluated. While
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Table 5: Recognition results of our algorithm on the MSR-Action3D dataset. In Test One,

random 1/3 of the samples were used as training samples and the rest as testing samples. In

Test Two, random 2/3 samples were used as training samples. In Cross Subject test, half of

the subjects were used as training and the rest of the subjects were used as testing (%).

Test One Test Two Cross Subject

[12] [20] Our [12] [20] Our [12] [20] Our

AS1 89.5 98.47 92.03 93.4 98.61 92.78 72.9 87.98 86.79

AS2 89.0 96.67 88.59 92.9 97.92 97.06 71.9 85.48 76.11

AS3 96.3 93.47 95.54 96.3 94.93 98.59 79.2 63.45 89.29

Avg 91.6 96.20 92.05 94.2 97.15 98.14 74.7 78.97 84.07

Table 6: The performance comparison on the UTKinect-Action3D dataset on different spatio-

temporal sizes.

UtkCross32 UtkCross64 UtkCross128

3D2CNN 81% 82% 82%

Proposed 95% 96% 96%

for the MSR-Action3D dataset, we use the input cuboids of size 32 × 32 × 38,

64 × 64 × 38 and 128 × 128 × 38. Then we evaluate their performances using360

cross-subject method on all actions, in which subjects (1,3,5,7,9) are used for

training and subjects (2,4,6,8,10) are used for testing for both datasets. Table 6

and 7 report the performance comparison on the UTKinect-Action3D and the

MSR-Action 3D AS3 dataset using different spatial size respectively. From these

two tables, we observe that the classification accuracy is slightly improved and365

tends to be stable with larger spatial sizes since 3D2CNN can learn the whole

structure information of the video. The video reserves majority of information

as long as the cuboids retain basic structure of each frame and keep smooth in

time dimension after being resized.

4.5. Transferring the Learned High-level Feature to Different Dataset370

Compared to hand-crafted feature-based methods, deep learning-based meth-

ods are deemed to be more generic in transferring of learned model among differ-
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Table 7: The performance comparison on the MSR-Action3D AS3 dataset on different spatio-

temporal sizes

MsrCross32 MsrCross64 MsrCross128

3D2CNN 88.16% 89.47% 88.16%

Proposed 89.29% 90.18% 90.18%

ent datasets. Oquab et al. [53] showed that how image representations learned

with CNNs on large-scale ImageNet datasets can be efficiently transferred to

other visual recognition tasks with limited amount of training data. In the paper375

[46], Karpathy et al. found that the motion features learned on the Sports-1M

dataset can be generalized to other datasets and class categories, such as on

the UCF-101 Activity Recognition dataset. Here, we evaluate the transferring

generalization of our trained 3D2CNN model with different depth action recog-

nition datasets. First, we train the 3D2CNN model using the MSR-Action3D380

dataset with input cuboid size is 32 × 32 × 38, and then test the performance

on the UTKinect-Action3D dataset without retraining. Before testing on the

UTKinect-Action3D dataset, the sequences of size 32 × 32 × 28 are scaled to

32 × 32 × 38 in order to let the input cuboids be fit to the trained 3D2CNN

model. There are nearly no overlap actions in these two datasets. In this way, we385

can extract high-level features (Fig.2) for each video in the UTKinect-Action3D

dataset. Then, the extracted high-level features and JointVector are fused to

recognize the actions. In this feature transferring experiment, we achieve an ex-

cellent performance at an accuracy of 95%. The performance is comparable to

the state-of-the-art results of paper [11] whose recognition accuracy is 97.08%.390

Transferring experiment show that 3D2CNN can learn more nature features of

the video and is more generic than hand-crafted feature-based methods.

5. Conclusions

In this paper, we have proposed an action recognition framework which in-

cludes three components, i.e., 3D2CNN, JointVector calculation, and classifiers395
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fusion. Firstly, we extract high-level features from depth video with the deep

neural networks. Then a JointVector is calculated for each depth sequence

according to skeleton joints information. Finally, the SVM classification re-

sults from high-level features and JointVector are fused for action recognition.

Torch7 [49] is employed to implement our 3D2CNN model and LIBLINEAR400

[50] is used for classification. The proposed method is very straightforward by

automatically learning high-level features from raw depth sequence with the

fusion of JointVector from skeleton information for each sequence. Our pro-

posed framework has been evaluated on the MSR-Action3D dataset and the

UTKinect-Action3D dataset and has achieved comparable results as the state-405

of-the-art methods. Furthermore, we have evaluated the generalization of the

trained model using different datasets in training and testing. Experimental re-

sults demonstrate that the trained model on one depth video sequence dataset

can be transferred to different datasets.
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