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Abstract—Lung segmentation in computerized tomography
(CT) images serves as an important procedure in various lung
disease diagnosis, where current approaches are mostly designed
with a series of manually empirical parameter adjustment
involved steps. To achieve a fully-automatic end-to-end segmen-
tation method, in this paper, we propose a novel deep learning
Generative Adversarial Network (GAN) based lung segmentation
schema, which denoted as LGAN. Based on the evaluation results
on a dataset containing 220 individual CT scans, our proposed
LGAN outperforms the current state-of-the-art methods by two
metrics: segmentation quality and shape similarity. The results
obtained with this study demonstrate that the proposed LGAN
schema can be used as a promising tool for automatic lung
segmentation due to its simplified procedure as well as its good
performance.

Index Terms—Deep Learning, Lung Segmentation, Generative
Adversarial Network, Medical Imaging, CT Scan

I. INTRODUCTION

Lung segmentation is an initial step in analyzing medical
images to assess lung disease. Researchers proposed a number
of lung segmentation methods which fall into two categories:
hand-crafted feature-based methods and deep learning-based
methods. Compared to the hand-crafted feature-based meth-
ods, such as region growing [1], active contour model [2], and
morphological model [3], deep learning-based methods ([1],
[2], [3], [4], [5], [6]) could automatically learn important fea-
tures [7] without manually empirical parameter adjustments.

Existing hand-crafted feature-based lung segmentation
methods are usually performed through a series of procedures
with manually empirical parameter adjustments. Various sets
of 2D-based [3] and 3D-based methods [8] are developed
to achieve a high quality segmented result. However, these
traditional segmentation techniques are designed for specific
applications, imaging modalities, and even datasets. They
are difficult to be generalized for different types of CT
images or various datasets since different kinds of features
and different parameter/threshold values are extracted from
different datasets. Moreover, the feature extraction procedure
is monitored by users to manually and interactively adjust the
features/parameters for analyzes.
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In this paper, to solve the medical image segmentation
problem, especially the problem of lung segmentation in
CT scan images, we propose LGAN (Generative Adversarial
Network-based Lung Segmentation) schema which is an end-
to-end deep learning model for lung segmentation from CT
images based on a Generative Adversarial Network (GAN)
structure combining an EM distance-based loss function. In
the proposed schema, a deep Deconvnet Network is trained
to generate the lung mask while an Adversarial Network is
trained to discriminate segmentation maps from the ground
truth and the generator, which, in turn, helps the generator
to learn an accurate and realistic lung segmentation of the
input CT scans. The performance analysis on a dataset selected
from the LIDC-IDRI dataset [9] shows the effectiveness and
stability of this new approach. The proposed LGAN schema
outperforms the state-of-the-art methods on our dataset and
debuts itself as a promising tool for automatic lung segmen-
tation and other medical imaging segmentation tasks.

II. THE PROPOSED METHOD

A. The Proposed LGAN Schema

The design of the proposed LGAN schema is, via the
competition game between the lung mask generator network
and mask discrimination network, to force the generated lung
segmentation mask to be more consistent and close to the
ground truth.

As illustrated in Fig. 1, LGAN consists of two networks:
the mask generator network and the discriminator network,
and both of them are convolution neural networks. The mask
generator network is to generate the lung segmentation masks
based on the grayscale input images of CT slices, while the
discriminator computes the EM distance between the predicted
masks and the ground truth masks.

The LGAN schema takes a slice of the lung CT scan Ii as
input, then the generator predicts a mask Mi to illustrate the
pixels belong to the lung. The quality of lung segmentation is
judged by how well Mi fools the discriminator network. In the
rest of this section, we describe the three main components
of our LGAN schema: Generator Network, Discriminator
Network, and Training Loss.

1) Mask Generator Network: The mask generator network
is designed to generate the segmented mask of the input
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Fig. 1: The pipeline of the proposed LGAN schema which includes a generator network and a discriminator network. A fully
convolutional neural network is trained to generate the lung mask while an Adversarial Network is trained to discriminate
segmentation masks from the ground truth and the generator, which, in turn, helps the generator to learn an accurate and
realistic lung segmentation of the input CT scans.
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Fig. 2: The architecture of the generator in the proposed
LGAN framework. Each blue box represents the feature map
generated by convolution block. The number of channels is
denoted on the bottom of the box. The lines on the top of the
boxes indicate the concatenation operation of the feature map.
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Fig. 3: The architecture of the original Discriminative network
(a) and our design (b). Conv stands for convolution layer, FC
stands for fully-connected layer, BN stands for Batch Normal-
ization and LR stands for LeakyReLU. For each convolution
layer, the numbers represent kernel size, (down) pooling stride
and number of kernels accordingly. Feature concatenation
layer combines feature maps from different branches.

lung CT scan image, which labels all the pixels belonging
to the lung. This segmentation task can be addressed as a
pixel-wise classification problem to identify whether a pixel
belongs to the lung area or not. Given an input CT slice Ii, the
generator will predict the category of each pixel and generate
a corresponding mask Mi based on the classification result.

The design of the generator is illustrated in Fig. 2, which
consists of encoder and decoder parts. The encoder extracts
the high-level features from the input CT scan by a bunch of
convolution blocks, while the decoder reconstructs the mask
from the high-level features. Both encoder and decoder are
composed of convolution blocks, which are represented as blue
boxes in the figure. The input of the generator network is
normalized to 224× 224 pixels and the generated mask is the
same size as the input.

In the encoder part, each block has two convolution layers,
both of which have the same number of filters with filter size
3×3 followed by a max-pooling layer, which performs a 2×2
down-pooling on the feature map. In the decoder part, each
block consists of one deconvolution layer and two convolution
layers. For the convolution layers, similarly, each has the same
number of filters with filter size 3 × 3. Instead of an up-
pooling layer, we use the deconvolution layer with stride 2
as suggested by Tran et al. [10] because deconvolution layer
can generate better quality images than an up-pooling layer.
Skip connections are added between the encoder and decoder
to reduce number of parameters as well as reuse extracted
feature.

2) Discriminative Network: The task of the discriminative
network is to distinguish the ground truth mask from the
generated segmentation mask so as to force more consistent
and realistic mask to be generated. And EM distance is adapted
to measure the difference between the real and the generated
mask as it has been proved to be a smooth metric [11].

Given a generator, the discriminator approximates the dis-
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TABLE I: Performance comparison of different LGAN struc-
tures.

Mean Median
Model IOU Hausdorff IOU Hausdorff

U-net [12] 0.6248 6.1062 0.7582 5.8310
LGANBasic 0.9018 3.3672 0.9655 3.1622

LGANRegression 0.9225 3.3802 0.9715 3.1622

tance of the distribution of the ground truth (GT) and generated
mask (MK) via EM loss:

EM(GT,MK) = E[GT ]− E[MK]. (1)

3) Training Loss: We formulate the task of image segmen-
tation into the framework of GAN by modify the training loss.
Specifically, we modify the loss of generator G by adding a
Binary Cross Entropy (BCE) loss which calculates the cross-
entropy between the generated mask and ground truth mask.
Therefore, the loss of the generator network is:

BCE[G(x), Real]− Ex∼Pz
[D(x)], (2)

where Pz is the learned distribution from the ground-truth
mask by G.

B. Our proposed LGAN structures

We propose five different LGAN structures, each with
different Discriminator designs. Due to page limit, we are
presenting our basic design and the best design, LGANBasic

and LGANRegression, which can be shown in Fig. 3. For
LGANBasic, the discriminator network is to evaluate the
generated mask and the ground truth mask separately and
minimize the distance between them. For LGANRegression,
we design the discriminator as a regression network to ap-
proximate the E[D(G(z))]−E[D(Real)] where D(G(z)) and
D(Real) are evaluated together in the same network setting.

III. EXPERIMENTAL RESULTS

A. Experiment Design

Our proposed LGAN structures are validated and compared
on a dataset from Dr. Lihong Li’s previous work [13] contain-
ing 220 patients selected from the publicly available LIDC-
IDRI dataset [9]. Each scan contains more than 130 slices with
a size of 512× 512 pixels. We randomly select 180 patients’
scans as the training data and the other 40 patients’ scans as
the testing data for experiments. The ground-truth for lung
segmentation masks are from [13], which were obtained by
first using Vector Quantization-based Lung segmentation to
filter out major lung parts, then applying region growing to
smooth the result, and finally corrected by radiologists.

We use Adam [14] optimizer with a batch size of 32.
All models are trained from scratch without using pretrained
weights. The learning rate is set to 10−5, momentum to 0.9,
and weight decay to 0.0005. The network is initialized with a
Gaussian distribution. During testing, only the mask generator
network is employed to generate the final mask. The source
code will be made publicly available on the project website
following the acceptance of the paper.
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Fig. 4: Visualization of the activation maps of the generator
network. The activation maps from (b) to (i) correspond to
the output maps from lower to higher layers in the generator.
We select the most representative activation in each layer for
effective visualization. The image (a) is the input image and
image (k) is the predicted mask. The finer details of the lung
are revealed, as the features are forward-propagated through
the layers in the generator. It shows that the learned filters
tend to capture the boundary of the lung.

B. Evaluation Metrics

We take two metrics to evaluate the performance of the
networks: segmentation quality and shape similarity.

1) Segmentation Quality: Intersection over Union (IOU)
score is a commonly used for semantic segmentation. Given
two images X and Y , where X is the predicted mask and Y
is the ground truth. The IOU score is calculated as:

IOU =
X ∩ Y

X ∪ Y
, (3)

which is the proportion of the overlapped area to the combined
area.

2) Shape Similarity: To evaluate the similarity between
shapes, the commonly used Hausdorff distance [15] is em-
ployed to measure the similarity between the segmented lung
and the ground truth. In this paper, we use the symmetrical
Hausdorff distance mentioned in [16] as the shape similarity
evaluation metric.

Given generated mask M and groundtruth G, the symmet-
rical Hausdorff distance is calculated as:

HausDist(M,G) = max

{
supx∈M infy∈G ‖x− y‖ ,
supx∈G infy∈M ‖x− y‖

}
. (4)

For all three evaluation metrics, we compute and compare
their mean values as well as their median values.

C. Effectiveness of the proposed Discriminator Structure

The goal of our first experiment has two folds. The first is to
demonstrate the improvement of our proposed LGAN structure
compared with U-net alone. The other is to compare our two
LGAN structure designs, LGANBasic and LGANRegression.
As shown in Table I, both LGAN structures achieve a sig-
nificant improvement compared with U-Net, with more than
20% higher performance, which demonstrates the effectiveness
of the LGAN. Furthermore, LGANRegression significantly
outperforms the LGANBasic by a large margin.
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TABLE II: Performance Comparison with the state-of-the- arts
(3D Dice-score).

Model Mean Median
Morph [3] 0.862±2.93 -
U-net [12] 0.970±0.59 0.98449

SegCaps [5] - 0.9847
LGANRegression 0.985±0.03 0.9864

D. Comparison with the State-of-the-arts

Furthermore, we compare the performance of our LGAN
model with the current state-of-the-arts of lung segmentation
on LIDC-IDRI dataset, including the traditional benchmark
method [3], U-net model [12], and SegCaps [5]. The com-
monly used 3D Dice-score metrics and the mean as well as
median values are calculated following the same settings. As
shown in TABLE II, our model achieves the highest score
comparing to current state-of-the-arts with an average Dice-
score of 0.985 and a median Dice-score of 0.9864.

E. Discussion

The experimental results demonstrate that our proposed
LGAN structures significantly outperform the U-Net structure,
which shows the effectiveness of the LGAN schema. Our
model outperforms current state-of-the-arts of segmentation
task on a subset of LIDC-IDRI dataset with higher Dice-score.

The generator network in our LGAN model is designed
based on the currently most widely used benchmark method,
U-Net. As the task of finding an optimal network structure is
still ongoing, our LGAN schema could also be optimized cor-
respondingly. A deeper network design would extract higher-
level features but requires more data as well as more param-
eters and higher computation cost. Patch normalization and
random initialization in our model training show a significant
effect and the optimization method by Adam [14] is also used
in our work.

IV. CONCLUSIONS

Lung segmentation is usually performed by methods such
as thresholding and region growing. Such methods, on the
one hand, require dataset-specific parameters, and on the
other hand, require a series of pre- and post-processing to
improve the segmentation quality. To reduce the processing
steps for lung segmentation and eliminate the empirical based
parameters adjustments, we have proposed a Generative Ad-
versarial Network based lung segmentation schema (LGAN)
by redesigning the discriminator with EM loss. The lung
segmentation is achieved by the adversarial between the mask
generator network and the discriminator network which can
differentiate the real mask from the generated mask. Such
adversarial makes the generated mask more realistic and accu-
rate than a single network for image segmentation. Moreover,
our schema can be applied to different kinds of segmentation
networks.
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