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Estimation of sea ice motion at fine scales is important for a number of regional and local level applica-
tions, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe
navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to
accurately estimate motion from remote sensing images at a higher spatial resolution than the original
data. First, an external example learning-based super-resolution method is applied on the original images
to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution
images, identifying sparse correspondences and interpolating them to extract a dense motion vector field
with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on pas-
sive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor appli-
cations and different spatial resolutions. The approach estimates motion with similar or higher accuracy
than the original data, while increasing the spatial resolution of up to eight times. In addition, the
adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the
proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to
1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promis-
ing for numerous scientific and operational applications.
� 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Sea ice motion is a critical factor in climate models and local-
level human activities in the polar regions. It significantly affects
the thickness distribution of sea ice, causing leads—open water
areas—or ridging in cases of divergent or convergent motion,
respectively. These dynamic processes co-act with thermodynamic
ocean-atmosphere processes and affect the ice mass balance and
thickness which determine the survival or summer melting of
sea ice in a region (Haas, 2017). Convergent motion creates thicker
ice and enhances sea ice survival, whereas divergent motion pro-
motes energy and moisture fluxes (Meier, 2017; Gettelman and
Rood, 2016). In fact, sea ice motion has been a major factor in
the loss of multi-year ice in the Arctic through its advection out
of the region (Meier, 2017; Smedsrud et al., 2011). Given these
facts, it is an important component for the calculation, initializa-
tion, fine-tuning, or validation of climate models that quantify
exchanges of energy and mass between the ocean and the atmo-
sphere and predict polar ice pack conditions (Kræmer et al.,
2015; De Silva et al., 2015; Berg et al., 2013; Kimura et al., 2013;
Meier et al., 2000). Besides, sea ice motion can significantly affect,
or even endanger, human activities on a local level, including ship
navigation, fisheries, and oil/gas drilling. Considering the increas-
ing trends on average sea ice drift speed during the last decades
(Spreen et al., 2011; Rampal et al., 2009), accurately monitoring
sea ice motion at a fine scale is of great importance.

Data from a variety of satellite sensors have been employed to
estimate sea ice motion. They include (i) passive microwave sen-
sors, e.g., Special Sensor Microwave Imager (SSM/I), Advanced
Microwave Scanning Radiometer - Earth Observing System
(AMSR-E), Advanced Microwave Scanning Radiometer 2 (AMSR2)
(Tschudi et al., 2016b; Girard-Ardhuin and Ezraty, 2012;
Lavergne et al., 2010); (ii) microwave scatterometers, such as
QuikSCAT (Girard-Ardhuin and Ezraty, 2012; Haarpaintner,
2006); (iii) Synthetic Aperture Radars (SAR), e.g., ENVISAT
Advanced SAR (ASAR), RADARSAT-2, European Remote Sensing 1
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(ERS-1) SAR (Karvonen, 2012; Komarov and Barber, 2014; Berg and
Eriksson, 2014); and (iv) optical, such as Advanced Very High Res-
olution Radiometer (AVHRR), Moderate Resolution Imaging Spec-
troradiometer (MODIS) (Ninnis et al., 1986; Emery et al., 1991;
Tschudi et al., 2016b; Petrou and Tian, 2017). Although passive
microwave and scatterometer sensor data can provide daily cover-
age of the entire Arctic, their typical spatial resolution of around 5–
25 km makes monitoring of small leads and ridges difficult and is
prohibitively coarse for any fine-scale applications, such as ship
navigation. The resolution of optical data used in sea ice monitor-
ing studies can be one order of magnitude higher, between 250 m
and 1.1 km. Even in the case of SAR data which have higher reso-
lution of several tens to hundreds of meters, tasks such as estimat-
ing motion at a scale of a ship size still remains challenging.

Sea ice motion between two time instances is typically repre-
sented through a motion vector field. Each motion vector quanti-
fies the displacement, or velocity, of a sea ice parcel in a pixel or
patch in the image from the first to the second time instance. This
makes the spatial resolution of sea ice motion described as a two-
parameter problem: the first parameter is the density of the vector
field, i.e., the number of vectors originating from a unit area; the
second is the minimum detectable motion, i.e., the minimum possi-
ble non-zero motion that a vector can describe. Both parameters
are restricted by the inherent spatial resolution of the satellite
images used. Several sea ice motion estimation approaches have
attempted, implicitly or explicitly, to improve one or the other
parameter, but rarely both. In addition, most proposed approaches
have been evaluated in solely one, or sometimes two, types of sen-
sor data, mainly of similar spatial resolution and nature.

In this study we propose an approach that attempts to accu-
rately estimate sea ice motion, by both increasing the density of
the calculated motion field and reducing the minimum detectable
motion. An example-based super-resolution technique is explored
to increase the inherent resolution of the employed satellite
images. Then, an optical flow-based approach is applied to esti-
mate motion in a dense per-pixel field, providing vectors that
describe continuous subpixel displacements. In addition, to
demonstrate its robustness and transferability in local and regional
level studies, the method is extensively evaluated on passive
microwave, optical, and SAR data of different spatial resolutions.
To our best knowledge, it is the first sea ice motion methodology
applied in satellite data of such high diversity in sensor types
and spatial resolutions. In addition, it produces the highest resolu-
tion motion vector fields ever generated from each sensor type,
reaching up to around 1.5 km for passive and 20 m for SAR data.

This paper is organized as follows. Previous work related to sea
ice motion and super-resolution is presented in Section 2. Section 3
details the data employed in this study and Section 4 describes the
proposed methodology. Experimental results and discussions on
the outcomes are presented in Sections 5 and 6, respectively. Main
conclusions are drawn in Section 7.

2. Related work

The vast majority of sea ice motion estimation studies have
been based on pattern matching—or template matching—
approaches. Given a template on an image, i.e., an image patch,
these approaches search for the candidate template in a second
image, captured later in time, with the most similar pattern to
the first one. Based on the relative distance and orientation of
the two templates, the motion of the patch—and of the underlying
sea ice parcel—during the time interval between the two images
can be estimated. The motion has been expressed either as
displacement or as mean velocity, by dividing the displacement
with the time interval.
Normalized cross-correlation (NCC) has been a pattern similar-
ity measure widely employed to be maximized by several studies
with satellite data (Ninnis et al., 1986; Emery et al., 1991; Kwok
et al., 1998; Meier et al., 2000; Meier and Dai, 2006;
Haarpaintner, 2006; Lavergne et al., 2010; Girard-Ardhuin and
Ezraty, 2012; Tschudi et al., 2010, 2016b), and airborne data
(Hagen et al., 2014). For a template A centered in position
p ¼ ðx; yÞ in one image and a template B centered in position
pþ u ¼ ðxþ ux; yþ uyÞ in a second image, NCC is calculated as
NCCðuÞ ¼ covðA;BÞ=½rðAÞrðBÞ� (Gao and Lythe, 1996), where
covðA;BÞ stands for the covariance between A and B; rðAÞ and
rðBÞ for the standard deviations of the pixel values of A and B,
respectively, and u ¼ ðux; uyÞ for the motion vector. More recent
approaches employed Phase Correlation (PC) as a pattern similarity
measure alternative to (Karvonen, 2012; Berg and Eriksson, 2014)
or in combination with NCC (Thomas et al., 2008, 2011; Hollands
and Dierking, 2011; Komarov and Barber, 2014), to counterbalance
the inherent shortcoming of NCC in rotational motion. For tem-
plates A and B, PC is calculated in the Fourier domain as their nor-
malized cross-power spectrum and transformed back to the spatial
domain as PC ¼ F�1ðF�

AFB=jF�
AFBjÞ (Berg and Eriksson, 2014;

Karvonen, 2012), where F�
A represents the conjugate Fourier trans-

form of A; FB is the Fourier transform of B, and F�1 is the inverse
Fourier transform operator. PC is expressed as a matrix in the spa-
tial domain, with the relative motion of the templates estimated
from the location corresponding to the maximum value of the PC
matrix. In their conceptual form, both NCC and PC approaches
are able to express displacements at least equal, or larger, than
one pixel of the image. Thus, the estimated motion in each of the
two Euclidean axes is quantized to the pixel resolution.

A number of studies attempted to provide subpixel motion esti-
mation through modifications of the original pattern matching
approaches. Linear oversampling by a factor of four has been
applied in the vector field in order to approximate displacements
four times smaller than the original maximum cross-correlation
algorithm (Tschudi et al., 2016b; Meier and Dai, 2006; Meier and
Maslanik, 2003; Meier et al., 2000). Oversampling on the image
data by a factor of six was applied by Kwok et al. (1998) to provide
subpixel motion estimation, followed by a biquadratic surface fit-
ting in the correlation value domain. Lavergne et al. (2010)
expressed the search for a matching template as a continuous max-
imization problem, with subpixel motions being estimated using
bilinear interpolation. Despite the attempts to decrease the motion
quantization error, none of the studies explicitly attempted to
increase the density of the motion vector field.

Optical flow has been an alternative approach to pattern match-
ing for sea ice motion estimation. The approach is mainly based on
the brightness constancy assumption that the intensity of a pixel
remains the same during its motion between two images (Fleet
and Weiss, 2006). The relative displacement of each pixel between
the images is calculated, thus, optical flow approaches result in a
dense motion vector field. They usually involve a variational min-
imization process which results in motion vectors estimated in the
continuous domain. Although some early studies on sea ice motion
estimation employed optical flow (Sun, 1996; Leppäranta et al.,
1998; Gutiérrez and Long, 2003), pattern matching remained the
most popular choice. In a recent study, an optical flow method
applied to MODIS imagery outperformed a state-of-the-art pattern
matching approach in both accuracy and processing speed (Petrou
and Tian, 2017). Despite the fact that optical flow approaches pro-
vide dense motion vector fields, none has attempted to improve
this density beyond the boundaries imposed by the image
resolution.

Example-based image super-resolution has been popular in
recent studies. Different from other approaches where the prior
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or model is learned in a parametric form regularizing the whole
image, this group of methods utilizes the dependencies of small
exemplar patches across scales to upscale the low-resolution
instances. Learning of the dependencies can be performed via an
external dataset (Dong et al., 2015; Kim et al., 2016), within the
input image only (Huang et al., 2015; Xian and Tian, 2016), or from
combined resources (Yang et al., 2013; Xian et al., 2015). Image
super-resolution manages to enhance the image quality for further
analysis in a variety of applications such as medical imaging, video
surveillance, and remote sensing. A super-resolution variable-pixel
linear reconstruction method was described by Merino and Núñ
(2007) to obtain high spatial resolution satellite images utilizing
multiple lower resolution input images. Ardila et al. (2011) pre-
sented a probabilistic method using Markov random field based
super-resolution mapping to detect tree crowns in urban areas
from remote sensing datasets. In Li et al. (2014), a spatial-
temporal Hopfield neural network based super-resolution map-
ping was proposed to produce land cover maps with a finer spatial
resolution than the remotely sensed images. Super-resolution has
been recently effectively applied on reconstructing downsampled
passive microwave and infrared images for motion estimation
and tracking of sea ice floes (Xian et al., 2017).
Fig. 1. The entire depicted area represents the extent of the AMSR2 data used in the
study. The solid-line rectangle regions, MOD1 and MOD2, enclose the two selected
areas covered with MODIS images. The SEN1 dashed-line ellipse encloses two out of
the total nine selected areas covered with Sentinel-1 data, whereas SEN2 encloses
the rest seven areas. All data are projected on a polar stereographic grid (NSIDC,
2016).
3. Data

The proposed optical flow with super-resolution approach is
evaluated on datasets from sensors of different nature and spatial
resolutions. The extent of the AMSR2 data and the regions enclos-
ing the selected areas are drawn in Fig. 1. The precise coordinates
of each study area are described in Supplementary Material. To
encourage reproduction of or comparison with our results, all data
employed in this study will be publicly released. In particular,
these data include all original and super-resolved satellite images,
i.e., the finer-scale images generated by the super-resolution algo-
rithm, as well as the validation data described in Section 5.2.

3.1. AMSR2

Passive microwave AMSR2 data are provided by the JAXA Earth
Observation Research Center.1 The data offer daily coverage of the
entire Arctic, being insensitive to weather or sun illumination condi-
tions. In particular, daily averaging level 2 brightness temperature
swath data of horizontal polarization at 36.5 GHz are employed.
The daily images range from January 1–7, 2013, i.e., six pairs in total,
and cover the entire Arctic. The data are gridded on a 12.5 km polar
stereographic grid tangent to the Earth’s surface at 70 degrees north-
ern latitude (NSIDC, 2016). The size of these images is 608�896 pix-
els, i.e., covering an area of approximately 85 million km2.

3.2. MODIS

MODIS data have only been used recently in sea ice motion esti-
mation (Petrou and Tian, 2017), mainly due to the restricted avail-
ability under lack of sun illumination (polar winter) and cloud
contamination in the atmosphere. In this study, MODIS images
from two non-overlapping areas nearby the Beaufort Sea (Fig. 1,
regions MOD1 and MOD2) are employed, from the period between
March 4 and April 20, 2014. Based on the outcomes by Petrou and
Tian (2017), level 2G atmospherically corrected images from the
Terra satellite gridded into a sinusoidal map projection are used,
i.e., the MOD09GQ surface reflectance product (Vermote and
Wolfe, 2015). In particular, data from the near-infrared band 2
(841–876 nm), with a spatial resolution of 231.66 m, are used.
1 http://suzaku.eorc.jaxa.jp/GCOM_W/data/data_w_dpss.html.
The data are reprojected to a polar stereographic grid (NSIDC,
2016), using nearest-neighbor interpolation to preserve intensity
values and minimize any edge-smoothing effects. To reduce cloud
affected pixels, that appear brighter, a 3 � 3 pixel medium filter
and a 5 � 5 pixel minimum filter are applied. Overall, a set of 23
images with minimal cloud contamination are selected, organized
in 12 pairs with one-day interval. The sizes of the images of the
two areas are 360 � 360 and 512 � 360 pixels, covering areas of
approximately 6955 km2 and 9891 km2, respectively.

3.3. Sentinel-1

In addition to the coarse resolution passive microwave and
medium resolution optical data, high resolution SAR data from
Sentinel-1 are also employed to evaluate the proposed approach
under different datasets. Sentinel-1A data from nine areas, with
some overlaps, are selected, from different parts of the Arctic
region (Fig. 1, two areas enclosed within region SEN1 and seven
areas withing region SEN2) between January 1 and May 31, 2015.
Level-1 Ground Range Detected products with horizontal-
horizontal (HH) polarization from the Extra Wide Swath (EW) sen-
sor mode are retrieved from the Copernicus Open Access Hub.2 To
2 https://scihub.copernicus.eu/.
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enhance consistent detection of sea ice edge characteristics, only
ascending orbit images are selected. The images are radiometrically
calibrated, speckle filtered with a 7 � 7 pixel window Lee Sigma fil-
ter (Lee and Pottier, 2009), and orthorectified using Average Height
Range Doppler Ellipsoid (Small and Schubert, 2008). Similarly to
the previous products, the images are reprojected to a polar stereo-
graphic grid (NSIDC, 2016), using nearest-neighbor interpolation.
The calibrated sigma values are then converted to dB. The spatial
resolution of the original images is 40 m per pixel. However, in order
to monitor sea ice motion among sequences of images, the size of the
images would be significantly large, and would get even larger after
the super-resolution upsampling is applied. For computational pur-
poses, we do not directly apply super-resolution to the original
images of 40 m spatial resolution, but first downsample them to gen-
erate images of 160 m resolution using Lanczos filtering. We use the
latter images as the primary SAR data in our approach, i.e., we apply
the super-resolution algorithm on the images of 160 m spatial reso-
lution. Most of these images have a size of 360 � 360 pixels, covering
an extent of around 3318 km2. Overall, 75 images organized in 66
pairs are selected, with intervals ranging from one to five days.

3.4. Additional data

In order to train the super-resolution model described in Sec-
tion 4.1, a set of 6152 natural images (non-satellite images) are
used. The images are collected from the Berkeley segmentation
(Martin et al., 2001) and LabelMe (Russell et al., 2008) datasets,
including a variety of natural images with different objects and
scenes.
4. Methods

Fig. 2 draws the flowchart of the proposed approach, which con-
sists of two main components. The super-resolution component
creates higher resolution images that serve as input to the optical
flow component, which calculates the motion vectors between
each image pair.

4.1. Super-resolution

In our framework as illustrated in Fig. 2, we adopt an external
example learning-based super-resolution approach presented by
Xian et al. (2015), which relies on learning multiple regression
models from an external image dataset to ensure a stable super-
resolution performance. Different from the hybrid attempt in
Xian et al. (2015, 2017), the self-awareness step is not performed
in the proposed system. It is based on the observation that since
large scaling factors are needed in the aforementioned applica-
tions, the gradient level self-awareness step takes relatively longer
time as the scaling factor gets larger and additional reconstruction
process is needed. Besides, contrary to ordinary super-resolution
applications where performance is evaluated based on signal-to-
noise ratio measures or how visually pleasing the generated
images are, in this application performance is based on the accu-
racy of the motion vectors. Experimental results indicate that skip-
ping the self-awareness step provides similar or more accurate
vectors overall for the variety of sensor data than including it.
Therefore, we adopt an external example-based approach to
ensure the efficiency and maximize the practicality.

A group of pre-trained regression models is firstly generated
utilizing a large external image dataset. The input feature space
is modeled with Gaussian Mixture Models (GMM) to ensure a tar-
geted and effective learning. GMM is selected since it is a genera-
tive model with the capacity to model any given probability
distribution function when the number of the Gaussian compo-
nents is large enough. During the offline training, low-resolution/
high-resolution patch pairs in the training dataset are associated
with the corresponding Gaussian component, and later within each
Gaussian component a regression model is trained and saved. Dur-
ing the online super-resolution, each low-resolution patch in the
input image is assigned to a Gaussian component according to
the posterior where the corresponding regression model is applied
to obtain the high-resolution patch. Simple averaging is adopted to
blend overlapping pixels to generate the final high-resolution
output.

4.2. Optical flow

An optical flow approach is employed to estimate sea ice
motion between each image pair. The approach is based on the
methodology implemented by Petrou and Tian (2017), that has
shown advantageous properties over a state-of-the-art pattern
matching approach using MODIS images. Motion is calculated on
a dense field, i.e., for each pixel of the images. This means that
for each upscaled version of the images generated by the super-
resolution approach, the same increase in the density of the calcu-
lated motion vector is achieved.

The motion estimation approach begins with the detection of
edges in the first image of an image pair. Edges mainly represent
the boundaries between neighboring ice floes, and indicate areas,
i.e., ice parcels, where motion can be considered rigid. The edges
are detected following a structured learning approach (Dollár and
Zitnick, 2015). The image is split into patches and random forests
are employed to assign structured labels, i.e., local edge masks, to
each patch. The patch level masks are then aggregated and form
the final edge mask of the image, in a computationally efficient
manner. Independently to the edge detection process, the image
pair is employed to detect sparse correspondences. This step is
applied to detect distinct matching features in the two images that
will facilitate the flow estimation at a later step of the process. The
correspondences are calculated following a multi-stage approach
(Weinzaepfel et al., 2013). The first image of the pair is split into
small non-overlapping patches and the Scale Invariant Feature
Transform (SIFT) descriptor (Szeliski, 2011) is calculated. Each
patch is split into four quadrants and their best matching corre-
spondences in the second image are detected. The process is
repeated increasing at each step the dimensions of the patches
by a factor of two and using the information from the previous
step. This hierarchical approach discourages locally inconsistent
matching, which allows at the same time discovery of matches that
correspond to inhomogeneous motion or non-rigid transforma-
tions, e.g., creation of leads and ridges, in ice floes. Finally, a num-
ber of sparse correspondences with a high density are detected.
Additionally to Petrou and Tian (2017), an upper distance thresh-
old to look for a matching correspondence is applied in this study,
that considerably speeds up the detection process without sacri-
ficing the accuracy. The threshold is selected to be 2.5 times the
theoretical maximum daily motion for sea ice of 60.48 km, as
adopted in previous studies (Tschudi et al., 2016b). This threshold
is small enough to restrict the search for matching correspon-
dences to only the possible motion range that significantly speeds
up the process, and large enough to safely capture even the maxi-
mum motions.

The outcomes of the edge detection and sparse correspondence
estimation steps are used as inputs to calculate the optical flow.
Sparse-to-dense interpolation is performed on the image pair to
estimate correspondences for every pixel. Each pixel, p, of the first
image that does not belong to the sparse correspondences detected
in the previous step is assigned to its closest pixel, pc , in the sparse
correspondence set, C, based on a geodesic distance. The geodesic
distance is calculated as the minimum distance among all paths



Fig. 2. Flowchart of the proposed optical flow with super-resolution approach. Input and output data are shown in pink blocks, intermediate results in green, mandatory
processing steps in blue with solid-line border and optional steps, depending on processing requirements, in blue blocks with dashed-line border. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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between p and pc , penalizing the paths that involve crossing the
edges detected at the first step, as described in Eq. 3 in Revaud
et al. (2015). For each pixel, p, on the first image, its nearest neigh-
bors, pc 2 C, are identified, together with their matching pixels, p0

c ,
in the second image. The matching pixel of p in the second image,
p0, is found as a locally-weighted affine transformation
p0 ¼ Appþ tp, where Ap and tp are the affine transformation param-
eters for p. The parameters are estimated by forming a least-square
system of equations using the matching correspondences of the
closest neighbors of p in C. Based on the solution of the system,
the correspondences of all pixels p R C on the first image are
detected on the second one. Then, variational energy minimization
is performed on the resulting dense correspondences to calculate
the final optical flow for the image pair (Revaud et al., 2015).

An additional processing step is introduced to account for cases
of super-resolved image pairs, mainly by four or eight times, where
the optical flow cannot be directly calculated because of computa-
tional memory constraints. In such cases, the images are split into
9 (3 � 3) or 49 (7 � 7) overlapping subimages and the optical flow
is calculated for each subimage separately. Two side-by-side
subimages overlap by half their size, e.g., when splitting an original
image of size W � H into nine subimages (three at each direction),
the size of the subimages is W=2� H=2, and the overlapping area
between two side-by-side subimages is W=4� H=2 for the hori-
zontal direction (W=2� H=4 for the vertical direction). The ratio-
nale behind overlapping subimages is to attenuate
discontinuities near the edges of a subimage after merging the
individually calculated optical flow subimages to a single flow
image of the original size. The subimages are weighted element-
wise with 2D rotationally symmetric Gaussian lowpass filter with
the same size as the subimage. Thus, in the merging process, the
optical flow value of a pixel where two or more subimages overlap
is calculated as the normalized weighted sum of the corresponding
overlapping pixels, where each pixel is weighted inversely propor-
tionally to its distance from the center of the subimage it belongs
to. This favors optical flow values calculated near the center of
the corresponding subimage and assigns less confidence to the val-
ues close to the edges. Thus, this approach encourages the calcula-
tion of a smooth and consistent optical flow field after merging the
individual subimages, and attenuates discontinuities in the subim-
age edges. After experimentation, the standard deviation of the
Gaussian filters is set equal to minimumðw;hÞ=8, where w and h
stand for the width and height of the subimages in pixels,
respectively.

Finally, same as in previous studies (Petrou and Tian, 2017;
Tschudi et al., 2016b), a maximum daily motion threshold is
applied. In particular, any optical flow vectors exceeding a magni-
tude equivalent to 60.48 km/day, are cropped to 60.48 km.
5. Results

5.1. Comparison with pattern matching

The proposed optical flow approach is compared against a state-
of-the-art pattern matching approach, described by Petrou and
Tian (2017), and noted hereafter as ‘‘MCC” (Maximum Cross-
Correlation) approach. MCC is based on a multi-resolution hierar-
chical approach (Thomas et al., 2011; Hollands and Dierking,
2011) involving both NCC and PC as similarity measures to esti-
mate motion between images.
5.2. Validation strategy

The motion vectors calculated by the optical flow and MCC
approaches are evaluated against buoys from the International
Arctic Buoy Programme (IABP) (Tschudi et al., 2016a). Their esti-
mated position accuracy is approximately 0.5 km/day (Meier and
Dai, 2006; Tschudi et al., 2016a). Buoy positions are reported every
12 h. In this study, the reported positions at 12:00 GMT are used to
estimate the ground-truth daily motion. Due to the limited number
of buoys, especially for the Sentinel-1 images which may have only
one buoy for reference, the motion vectors from the National Snow
and Ice Data Center (NSIDC) gridded Polar Pathfinder daily 25 km
EASE-Grid (Equal-Area Scalable Earth Grid) version 3 product
(Tschudi et al., 2016b) are additionally used to evaluate the pro-
posed motion estimation approach. The vectors are produced using
information from buoys, AVHRR, and passive microwave data.
Their spatial resolution of 25 km is significantly coarser than the
estimated motion and the reported accuracy lies in 3.29–5.24
cm/s (Tschudi et al., 2016b), i.e., around 3–4 km/day. However,
the product is employed here as an additional source of evaluating
mainly the consistency in the direction of the estimated vectors.
Besides, the availability of a larger number of vectors than the IABP
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buoys further enhance the statistical analysis. Both the IABP and
Polar Pathfinder vectors are reprojected to the adopted polar stere-
ographic grid (NSIDC, 2016).

For consistency of the optical flow and MCC evaluation, the
optical flow vectors in the same position as the MCC motion vec-
tors are considered. Following the commonly adopted approaches
(Meier and Dai, 2006; Lavergne et al., 2010), and in order to avoid
interpolating neighboring MCC motion vectors that would require
potentially erroneous distribution assumptions, the closest motion
vector to each buoy or grid motion vector is employed for the eval-
uation. It is noted that all evaluations are performed based on the
drift, or displacement, rather than motion velocity. Average veloc-
ity vectors for each image pair can be extracted through a simple
division of these displacements by the time interval between the
image pair.

To allow reproduction or comparison of the results, the data
used in this study, including the images and the validation vectors
as well as useful code, are publicly available.3

5.3. AMSR2 motion vectors

The AMSR2 images are upscaled by two, four, and eight times
using the proposed super-resolution approach, resulting in 6.25
km, 3.125 km, and 1.5625 km resolution images, respectively.
Optical flow and MCC are calculated for each of the six image pairs
in each resolution and compared against the ground-truth buoy
and grid vector data.

Table 1 presents the average performance of the different reso-
lution and method pairs under various evaluation measures, in
particular mean-absolute error (MAE), root mean-squared error
(RMSE), relative squared error (RSE), and Pearson correlation coef-
ficient (P), for both the horizontal and vertical motion directions.
The proposed optical flow approach with the super-resolved
images by two (X2) and four (X4) times provides more accurate
results than the optical flow applied in the original images. That
is, besides the increase of the density of the motion vector field
by 4 (2 � 2 for the two directions of the X2 images) and 16 (4 �
4) times, increase in the accuracy of the detected motion is addi-
tionally achieved. Even further, comparing MCC results on the orig-
inal and X8 images, it appears that super-resolution leads to both
more accurate results and an increase in vector field density by
64 times (8 � 8). Optical flow outperforms MCC for the original
as well as the X2 and X4 super-resolved images. The optical flow
on the X8 super-resolved images is calculated separately in the
overlapping subimages of an image and then merged together
(Section 4.2). For these images MCC provides more accurate
results. Moreover, all super-resolved images under both optical
flow and MCC provide more accurate results compared with the
current state of the art, i.e., the application of MCC on the original
images. The results are consistent among the different evaluation
measures employed, further supporting these observations.

Fig. 3 offers a close look on the calculated motion vectors on the
central Arctic region for a X2 super-resolved indicative image pair.
The optical flow vectors (Fig. 3a) appear to correlate significantly
better with the reference buoy vectors than the MCC ones
(Fig. 3b), both in the motion direction and magnitude. This can
be observed more clearly on the left part of the images, where
the MCC motion vector field has several changes in magnitude
and direction within the same and across the spatial resolution
images, whereas the flow vectors appear more consistent. The
results are similar for the original as well as the X4 and X8
super-resolved images which are drawn in Supplementary
Material.
3 http://media-lab.ccny.cuny.edu/wordpress/Code/flow_sr_dataset.zip.
In the aforementioned results, the MCC vector nearest to each
buoy is used for the evaluation, since MCC vectors are not calcu-
lated for each pixel. For a fair comparison, the optical flow vectors
on the same position in the image with the selected MCC vectors
are employed. It is noteworthy, though, that evaluating the optical
flow vectors on the exact position of the buoys, instead, can slightly
further decrease the estimation errors, as shown in Fig. 4.

The evaluation against the 25-km NSIDC grid vectors (overall
127,428 vectors for the entire six-pair image set) provides in gen-
eral consistent indications with the buoys. A subset of the results is
shown in Table 2, with the rest shown in Supplementary Material.
Optical flow consistently outperforms MCC in all image resolu-
tions, with MCC in the original image set providing the least accu-
rate results. Optical flow calculated on the original image
resolution appears slightly more accurate than the super-
resolved versions in this case. However, the super-resolved images
still lead to increased density in the calculated vector field com-
pared with the original images by up to 64 times (in upscaling
by eight in the two dimensions) without significantly sacrificing
accuracy. It can be observed that some fine scale motions captured
in the super-resolved images might not be appropriately expressed
by the coarser 25-km resolution grid vectors.

5.4. MODIS motion vectors

Similar to the AMSR2 data, the MODIS original resolution
images are super-resolved by a factor of two, four, and eight,
resulting in images with 115.83 m, 57.92 m, and 28.96 m spatial
resolution, respectively.

Table 3 presents the evaluation accuracy results on the 12
image pairs compared with the IABP buoys (81 buoy vectors in
total). Vectors calculated with the original images are more accu-
rate than the super-resolved sets both for the optical flow and
MCC methods. However, the performance with the super-
resolved images remains similarly high, especially for the X2 and
X4 versions, increasing the density of the motion vector field with-
out significantly sacrificing accuracy. As far as the estimation
methodologies are concerned, optical flow consistently outper-
forms MCC for all image versions, apart from the motion on the
vertical axis captured with the X8 images.

Fig. 5 illustrates an indicative example of the calculated motion
vectors for the second area of MODIS images (area M2, see Supple-
mentary Material, enclosed within region MOD2 in Fig. 1) and the
image pair of March 28 and 29, 2014. In line with the quantitative
results, the optical flow vectors are more consistent than the MCC
ones, especially on the right part of the image. On the same part of
the image, some optical flow vectors from the X8 image with incor-
rect direction or underestimated magnitude can also be observed.
On the largest part of the area, though, including the limited area
where buoys fall, the resulting vectors are similar for the original
and the super-resolved versions, for both the optical flow and
MCC methods, indicating that no significant loss in accuracy is
observed for even the X8 super-resolved images.

Comparison with the 25-km resolution NSIDC grid data pro-
vides overall consistent results. In fact, under this evaluation data-
set, optical flow vectors in the X2 super-resolved images provide
the best overall results, outperforming even the optical flow on
the original images, under almost all accuracy evaluation measures
(Table 4). The grid vectors are almost double in number than the
buoy ones, and are spread more uniformly in the area (on a 25-
km orthogonal grid) contrary to the buoys whose positions follow
more randomized patterns (e.g., Fig. 5). Thus, they apply different
spatial sampling and contribute complementary information to
the statistical errors measured with the buoys. The evaluation with
the grid data further supports the advantages brought by the
super-resolution approach. It is also noteworthy that the MAE

http://media-lab.ccny.cuny.edu/wordpress/Code/flow_sr_dataset.zip


Table 1
Accuracy evaluation of the optical flow (‘‘Flow”) and pattern matching (‘‘MCC”) vectors, for all six image pairs of AMSR2 data, against IABP buoys, 122 vectors for the overall
period. Super-resolved images by two, four, and eight times are indicated as ‘‘X2,” ‘‘X4,” and ‘‘X8,” respectively. Evaluations are performed on both the vertical (‘‘dx”) and
horizontal (‘‘dy”) axes, through mean-absolute error in km (MAE), root mean-squared error in km (RMSE), relative squared error (RSE), and the Pearson correlation coefficient (P).
For MAE, RMSE, and RSE the smaller numbers indicate more accurate results, while the opposite holds for P. The best results for each measure are highlighted in bold.

dx dy

MAE RMSE RSE P MAE RMSE RSE P

Flow 1.944 3.090 0.387 0.803 1.917 2.728 0.110 0.944
Flow-X2 1.487 2.524 0.258 0.883 1.382 2.103 0.065 0.967
Flow-X4 1.720 3.204 0.416 0.812 1.284 2.000 0.059 0.970
Flow-X8 2.651 4.696 0.893 0.481 3.198 5.156 0.393 0.792

MCC 3.571 5.234 1.110 0.490 4.724 7.054 0.735 0.702
MCC-X2 2.836 4.270 0.739 0.628 2.880 4.528 0.303 0.856
MCC-X4 2.209 3.886 0.612 0.676 2.176 3.163 0.148 0.927
MCC-X8 2.560 4.185 0.710 0.627 3.060 4.642 0.318 0.843

Fig. 3. Close-up look of the calculated motion vectors on the super-resolved AMSR2
images by a factor of two from Jan. 2 to Jan. 3, 2013. For better illustration, only
subset of the vectors are drawn. (a) Optical flow vectors. (b) MCC vectors.

Fig. 4. MAE of optical flow vectors for AMSR2 of the entire period (122 buoy
vectors), when the optical flow vectors on the exact position of each buoy (‘‘At-
buoy”) and the ones at the position of the MCC vector nearest to the respective buoy
(‘‘NN”) are used for evaluation. ‘‘F-Xi” stands for optical flow on the super-resolved
images by a factor of i.

Table 2
Accuracy evaluation of the optical flow and MCC vectors for AMSR2 data against 25-
km NSIDC grid vectors, 127,428 vectors for the overall period. MAE in km is shown for
the vertical (‘‘MAE-x”) and horizontal (‘‘MAE-y”) axes.

MAE-x MAE-y

Flow 1.970 2.240
Flow-X2 2.090 2.389
Flow-X4 2.425 2.475
Flow-X8 2.737 2.484

MCC 4.656 5.698
MCC-X2 3.794 4.115
MCC-X4 3.815 4.081
MCC-X8 4.403 4.579

The best results for each category of error or correlation are indicated in bold.
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and RMSE errors are overall larger in grid data than with buoys
(Table 3), due to the coarse resolution of the former that heavily
quantizes motion that can be captured in more detail by the buoys
and the MODIS images.

5.5. Sentinel-1 motion vectors

As previously, super-resolved versions of the Sentinel-1 images
by a factor of two, four, and eight are created. These result in
images with 80 m, 40 m, and 20 m spatial resolution, respectively.
The calculated motion vectors are first evaluated against the
IABP buoys (Table 5). For each specific spatial resolution, the calcu-
lated motion vectors with optical flow and MCC appear to have
similar accuracies, with the latter slightly outperforming the for-
mer. The overall best results are achieved when MCC is applied
on the super-resolved images by a factor of two. In fact, the
super-resolved X2 images provide better results than the original
images for both optical flow and MCC, whereas the X4 images pro-
vide similar results. This demonstrates the fact that, besides the
increase on the density of the motion vector field of even up to
16 times (4 � 4), insignificant loss or even an increase in accuracy
is also achieved by the proposed super-resolution approach.



Table 3
Accuracy evaluation of the optical flow andMCC vectors, for all 12 image pairs of MODIS data, against IABP buoys, 81 vectors for the overall period. MAE and RMSE errors are in km.

dx dy

MAE RMSE RSE P MAE RMSE RSE P

Flow 1.092 1.811 0.262 0.860 0.942 1.383 0.445 0.850
Flow-X2 1.136 1.823 0.265 0.859 0.983 1.369 0.436 0.833
Flow-X4 1.313 2.104 0.354 0.809 1.330 2.360 1.295 0.670
Flow-X8 3.044 4.197 1.407 0.395 1.582 2.084 1.010 0.518

MCC 1.242 1.984 0.314 0.836 1.091 1.579 0.580 0.812
MCC-X2 1.303 1.975 0.312 0.833 1.417 2.044 0.972 0.708
MCC-X4 1.572 2.228 0.396 0.786 1.606 2.244 1.171 0.664
MCC-X8 1.773 2.620 0.548 0.700 2.058 3.117 2.259 0.562

The best results for each category of error or correlation are indicated in bold.

Fig. 5. Calculated motion vectors on the original and super-resolved MODIS images for the second of the two areas from Mar. 28 to Mar. 29, 2014. For better illustration, only
subset of the vectors are drawn. (a) From top to bottom, optical flow vectors from the original and super-resolved images by a factor of two, four, and eight. (b) The respective
MCC vectors.
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Table 4
Accuracy evaluation of the optical flow original and X2 super-resolved image vectors,
for all six image pairs of MODIS data, against NSIDC grid vectors, 150 vectors for the
overall period. MAE and RMSE errors are in km.

Flow Flow-X2

dx MAE 1.292 1.279
RMSE 1.798 1.768
RSE 0.270 0.261
P 0.856 0.862

dy MAE 1.137 1.151
RMSE 1.649 1.642
RSE 0.792 0.785
P 0.880 0.894

The best results for each category of error or correlation are indicated in bold.
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Due to the high resolution of the Sentinel-1 images, the covered
area is smaller than the MODIS images, and significantly smaller
than the AMSR2 images. This results in having only one or two
buoy vectors present on each image, 75 in total. In order to artifi-
cially double the number of statistical samples, we additionally
consider the horizontal and vertical components of the vectors as
individual vectors, as has been applied in sea-ice motion studies
with limited number of vectors (Hollands and Dierking, 2011).
Two-sample Kolmogorov-Smirnov test confirms—does not
reject—the null-hypothesis that the horizontal and vertical compo-
nents come from the same distribution at the 5% significance level.
Analysis of the 150 vectors together provides consistent results
with the ones reported in Table 5.

Evaluating the calculated vectors against the NSIDC grid data
(311 vectors overall), optical flow on the original resolution images
provides the best overall accuracy. This is an indication that the
proposed optical flow and MCC vectors perform similarly well on
the Sentinel-1 data. Due to the fact that the distribution of buoys
and grid data is very sparse, with only around one and five vectors
per image pair, respectively, the evaluations cannot statistically
capture potential diversity in the entire image area. Fig. 6 provides
an indicative example of the calculated vectors on an image pair on
the first of the selected areas (area S1, see Supplementary Material,
enclosed within region SEN2 in Fig. 1). As observed, the vectors cal-
culated from both optical flow andMCC in all image resolution ver-
sions are similar and well aligned with buoy and grid data. Only
one buoy and four grid vectors fit inside this area, so a large part
of the image is not adequately sampled. For instance, some incon-
sistent vectors are generated from optical flow and MCC on the
bottom-left and the bottom-right parts of the image, respectively.
A buoy or grid vector in the position of one such inconsistent vec-
tor may influence the statistical evaluation in favor of the optical
flow or MCC and may favor one or the other in the overall statistics.
However, in general, both methods provide similarly high quality
vectors in all super-resolved versions. As an indicative example,
MCC vectors on X8 images are the second most accurate compared
Table 5
Accuracy evaluation of the optical flow and MCC vectors, for all 66 image pairs of Sentine

dx

MAE RMSE RSE P

Flow 0.378 0.599 0.050 0.97
Flow-X2 0.362 0.590 0.049 0.97
Flow-X4 0.368 0.637 0.057 0.97
Flow-X8 0.653 1.746 0.427 0.76

MCC 0.339 0.476 0.032 0.98
MCC-X2 0.312 0.449 0.028 0.98
MCC-X4 0.360 0.694 0.068 0.97
MCC-X8 0.420 0.813 0.093 0.96

The best results for each category of error or correlation are indicated in bold.
with the NSIDC grid vectors. This further demonstrates that the
accuracy of the vectors remains high even by upscaling images to
20 m spatial resolution, i.e., eight times finer than the original ones,
or even outperforms results with coarser images.

As mentioned in Section 3.3, due to computational constraints
and lack of density buoy vectors for validation, the originally
acquired SAR images of 40 m spatial resolution are first downsam-
pled to 160 m before our SR approach is applied. Thus, the X4
super-resolved images have the same resolution with the origi-
nally acquired SAR images. As a further evaluation step of our
approach, we additionally calculate motion using the original
SAR images. Table 6 presents the evaluation results. Comparing
with Table 5, it is observed that the motion calculated by the orig-
inal 40 m images falls between the results obtained with the X2
and X4 super-resolved images. The original image results are sim-
ilar with the optical flow X4 results for the x axis, whereas outper-
forming the latter for MCC and the optical flow on the y axis. The
results are promising for the performance of the proposed SR
approach. It is also noteworthy that the motion calculation on
the 80 m X2 super-resolved images is more accurate than the orig-
inal SAR images, whose spatial resolution is doubled. This is an
indication of the ability of the proposed SR approach to maintain
the structure of the original images and their sharpness to the
degree appropriate for the detection of edges and shapes required
for the accurate calculation of motion between image pairs.

6. Discussions

The experimental results demonstrate that the proposed combi-
nation of optical flow and super-resolution provides better or com-
parable results with finer scale images of two, four, or even eight
times than the original ones. Comparison with previous studies,
although not always straightforward due to variations in the study
area, sensors, or validation sources, can further support this out-
come. Table 7 reports the accuracies by previous state-of-the-art
methods with similar validation means to this study, together with
indicative results from the proposed approach that demonstrate its
efficiency. Employing similar 36.5 GHz horizontal polarization
AMSR-E data with 12.5 km spatial resolution, Meier and Dai
(2006) reported RMSE of 4.5–4.83 km for the two motion direc-
tions. Our proposed approach provides almost half error values
applying optical flow, while achieving up to four times upscaling,
and similar results when upscaling by eight times. The results out-
perform even genuinely higher resolution AMSR-E data (Girard-
Ardhuin and Ezraty, 2012). Regarding optical data, the super-
resolved MODIS images provide accuracies on par or higher than
previously reported accuracies, while increasing the spatial resolu-
tion of the motion vector field up to 29 m. Highly accurate motion
estimation has been achieved in some previous studies (Thomas
et al., 2011; Karvonen, 2012) with SAR data. However, despite
the high resolution original images, the resulting motion vector
l-1 data, against IABP buoys, 75 vectors for the overall period.

dy

MAE RMSE RSE P

6 0.437 1.047 0.124 0.971
7 0.435 1.017 0.117 0.972
2 0.742 2.340 0.622 0.651
1 0.732 2.040 0.472 0.750

5 0.432 0.927 0.097 0.977
7 0.354 0.620 0.044 0.987
4 0.439 1.009 0.116 0.948
6 0.503 1.072 0.130 0.943



Fig. 6. Calculated motion vectors on the original and super-resolved Sentinel-1 images for the first of the nine areas from Jan. 3 to Jan. 6, 2015. For better illustration, only
subset of the vectors are drawn. (a) From left to right, optical flow vectors from the original and super-resolved images by a factor of two, four, and eight. (b) The respective
MCC vectors.

Table 6
Accuracy evaluation of the optical flow and MCC vectors, for the 40 m resolution 66 image pairs of the originally acquired Sentinel-1 images, against IABP buoys, 75 vectors for the
overall period.

dx dy

MAE RMSE RSE P MAE RMSE RSE P

Flow-orig 0.352 0.620 0.054 0.974 0.442 1.129 0.145 0.928
MCC-orig 0.317 0.504 0.036 0.983 0.409 0.686 0.054 0.984
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field resolution is in the order of several hundred meters. On the
contrary, the proposed approach manages to provide comparable
performance while increasing the resolution of the final vector
field, and is able to provide accurate estimation in up to 20 m spa-
tial resolution; to our knowledge, this is the highest resolution
reported in sea ice motion studies with satellite imagery.

As shown in the experimental results, optical flow outperforms
the pattern matching method in most cases. However, in certain
images, mainly at the highest super-resolved levels, MCC appears
to provide more accurate motion vectors. This is mainly attributed
to two reasons: (i) In some images with texture with repetitive
patterns or edges sharpened during super-resolution, the sparse
correspondences detected in the second step of the optical flow
calculation are not spatially consistent. These mis-calculated corre-
spondences are then fed to the sparse-to-dense interpolation step,
providing a weaker initialization input for the dense optical flow
calculation. (ii) Splitting large images into subimages, as necessary
step due to memory limitation to calculate optical flow, provides
weaker results than the ones where the entire process could run
at once. This is explicitly tested by applying splitting into smaller
images where direct processing is also feasible. In such cases, opti-
cal flow calculated on the entire image at one pass is more accurate
than flow from merging the split images. This shortcoming is more
evident in super-resolved images of a factor of eight, where split-
ting is more intense. Having adequate processing resources that
would allow direct calculation in the entire image, the optical flow
results are expected to be more accurate. It is noted that MCC is
unaffected by this process, since no splitting is applied and all
images are processed at one pass. Although our proposed SR
methodology can be applied for an arbitrarily large upscaling fac-
tor, we limit upscaling to eight times in this study due to the mem-
ory constraints.

Application of super-resolution increases the density of the
motion vector field by several times, i.e., 4, 16, and 64 times for
the X2, X4, and X8 upscaling, respectively. This increase applies
equally to both optical flow and MCC methods and is a main ben-
efit of the proposed super-resolution component over previous
approaches where upsampling was attempted implicitly on the
resulting motion vector field. However, a further improvement
brought by the optical flow is on the minimum detectable motion.
As expected, MCC is able to capture one-pixel motion as the min-
imum non-zero motion. Although this improves as the resolution
of the images increases, it is still coarser than the subpixel motion
estimated by optical flow in the continuous space. It is also



Table 7
Comparison of the proposed approach with previous state-of-the-art studies, evaluated mainly with buoys.

Method Data Res. MAE RMSE

Passive microwave
Meier and Dai (2006) AMSR-E 12.5 4.50–4.83
Emery et al. (1997) SSM/I 12.5 �6.00⁄

Girard-Ardhuin and Ezraty (2012) AMSR-E 6.25 6.20–8.20⁄

Flow-X2 AMSR2 6.25 1.38–1.49 2.10–2.52
Flow-X4 AMSR2 3.125 1.28–1.72 2.00–3.20
Flow-X8 AMSR2 1.563 2.65–3.2 4.70–5.16

Optical
Petrou and Tian (2017) MODIS 0.232 2.88–4.72a 5.71–8.12a

Flow-X2 MODIS 0.116 1.15–1.28a 1.64–1.77a

Flow-X4 MODIS 0.058 1.55–1.81a 2.33–3.39a

Flow-X8 MODIS 0.029 1.58–3.04a 2.08–4.20a

SAR
Komarov and Barber (2014) RADARSAT-2 0.100 0.43b⁄

Thomas et al. (2011) RADARSAT-1 0.050c 0.20–0.40
Karvonen (2012) RADARSAT-2, ASAR 0.1–0.15d 0.14–0.85⁄

Flow-X2 Sentinel-1 0.080 0.36–0.44 0.60–1.05
MCC-X2 Sentinel-1 0.080 0.31–0.35 0.45–0.62
Flow-X8 Sentinel-1 0.020 0.65–0.73 1.75–2.04
MCC-X8 Sentinel-1 0.020 0.42–0.50 0.81–1.07

a Evaluated with 25-km NSIDC grid vectors.
b Evaluated with sea ice beacons.
c Spatial resolution of the final vector field is 400 m.
d Spatial resolution of the final vector field is 800 m.

⁄ Error in vector magnitude.
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noteworthy that the calculation of optical flow is in general faster
than MCC, especially when no image splitting is conducted. As an
indicative example, it takes around 79 s to calculate optical flow
on an image pair of 720 � 720 pixels using a four-core Intel�

Xeon� CPU E5506 at 2.13 GHz, while the computing time for
MCC is around 263 s, i.e., almost four times slower.

As a final note on the theoretical strengths and limitations of
the proposed SR approach, it is reminded that the approach uses
a number of natural images to learn dependency relations between
high-/low-resolution exemplars, through small patch instances.
The motivation behind this is that natural images hold certain pri-
ors and small image patches (after normalization) tend to repeat
themselves. Based on this observation, generic image super-
resolution methods, trained with natural images, are suitable for
images captured by imaging systems, as opposed to synthetic
images. This is also confirmed in this paper. In situations where
the target images do not obey such priors, e.g., in synthetic images,
microscopy images, etc., the current generic image super-
resolution approach is not expected to be appropriate.

Overall, the proposed approach is able to generate accurate
daily motion vectors at a spatial resolution of up to 1.5 km for
the entire Arctic using AMSR2 data. This resolution largely benefits
enhancing large-scale modeling of climate and ocean–atmosphere
interactions. On the other side, vector estimations at a resolution of
20 m, as achieved with the Sentinel-1 data, open the floor to more
accurate fine-scale monitoring of sea ice at the level of the size of a
ship, and safer navigation and sea operations. In this study,
because of processing limitations, the SAR data are first downsam-
pled by four times, whereas the maximum upscaling attempted by
the SR algorithm for all sensor images is eight. Without such limi-
tations, the proposed approach can be effective in estimating
motion at an even higher resolution.

7. Conclusion

In this study, we have proposed a super-resolution and optical
flow approach to estimate sea ice motion at fine scales. The
approach managed to increase both the density of the calculated
motion vector field and the minimum detected motion at subpixel
levels. The effectiveness of the proposed method is evaluated on
data from three different types of sensors and spatial resolutions,
namely coarse-resolution passive microwave, medium-resolution
optical, and high-resolution SAR data. The proposed approach
achieves increase of up to eight times in image resolution without
sacrificing or even with increasing the accuracy of the estimated
vectors compared with the original data. Comparison with a
state-of-the-art pattern matching approach demonstrates the
advantages brought by optical flow. The results support the use
of the approach for regional and local level applications and its
potential for further improvements.

Acknowledgment

This work was supported in part by USA Office of Naval
Research (ONR) grant N000141310450.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.isprsjprs.2018.01.
020.

References

Ardila, J.P., Tolpekin, V.A., Bijker, W., Stein, A., 2011. Markov-random-field-based
super-resolution mapping for identification of urban trees in VHR images. ISPRS
J. Photogramm. 66, 762–775.

Berg, A., Axell, L., Eriksson, L.E.B., 2013. Comparison between SAR derived sea ice
displacement and hindcasts by the operational ocean model HIROMB. In: IEEE
Int. Geoscience and Remote Sensing Symp., pp. 3630–3633.

Berg, A., Eriksson, L.E.B., 2014. Investigation of a hybrid algorithm for sea ice drift
measurements using Synthetic Aperture Radar images. IEEE Trans. Geosci.
Remote Sens. 52 (8), 5023–5033.

De Silva, L.W.A., Yamaguchi, H., Ono, J., 2015. Ice-ocean coupled computations for
sea-ice prediction to support ice navigation in Arctic sea routes. Polar Res. 34,
25008.

Dollár, P., Zitnick, C.L., 2015. Fast edge detection using structured forests. IEEE
Trans. Pattern Anal. Mach. Intell. 37 (8), 1558–1570.

Dong, C., Loy, C.C., He, K., Tang, X., 2015. Image super-resolution using deep
convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38 (2), 295–307.

Emery, W.J., Fowler, C., Maslanik, J.A., 1997. Satellite-derived maps of Arctic and
Antarctic sea-ice motion: 1988 to 1994. Geophys. Res. Lett. 24 (8), 897–900.

https://doi.org/10.1016/j.isprsjprs.2018.01.020
https://doi.org/10.1016/j.isprsjprs.2018.01.020
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0005
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0005
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0005
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0015
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0015
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0015
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0020
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0020
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0020
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0025
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0025
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0030
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0030
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0035
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0035


Z.I. Petrou et al. / ISPRS Journal of Photogrammetry and Remote Sensing 138 (2018) 164–175 175
Emery, W.J., Fowler, C.W., Hawkins, J., Preller, R.H., 1991. Fram Strait satellite
image-derived ice motions. J. Geophys. Res. 96 (C3), 4751–4768.

Fleet, D., Weiss, Y., 2006. Optical flow estimation. In: Paragios, N., Chen, Y., Faugeras,
O. (Eds.), Handbook of Mathematical Models in Computer Vision. Springer, New
York, NY, pp. 239–257. Chapter 15.

Gao, J., Lythe, M.B., 1996. The maximum cross-correlation approach to detecting
translational motions from sequential remote-sensing images. Comput. Geosci.
22 (5), 525–529.

Gettelman, A., Rood, R.B., 2016. Demystifying Climate Models: A Users Guide to
Earth System Models. Springer, Berlin, Heidelberg, pp. 87–108, Chapter 6.

Girard-Ardhuin, F., Ezraty, R., 2012. Enhanced arctic sea ice drift estimation merging
radiometer and scatterometer data. IEEE Trans. Geosci. Remote Sens. 50 (7),
2639–2648.

Gutiérrez, S., Long, D.G., 2003. Optical flow and scale-space theory applied to sea-ice
motion estimation in Antarctica. In: IEEE Int. Geoscience and Remote Sensing
Symp., vol. 4, pp. 2805–2807.

Haarpaintner, J., 2006. Arctic-wide operational sea ice drift from enhanced-
resolution QuikScat/SeaWinds scatterometry and its validation. IEEE Trans.
Geosci. Remote Sens. 44 (1), 102–107.

Haas, C., 2017. Sea ice thickness distribution. In: Thomas, D.N. (Ed.), Sea Ice. third
ed. John Wiley & Sons, Chichester, UK, pp. 42–64. Chapter 2.

Hagen, R.A., Peters, M.F., Liang, R.T., Ball, D.G., Brozena, J.M., 2014. Measuring Arctic
sea ice motion in real time with photogrammetry. IEEE Geosci. Remote Sens.
Lett. 11 (11), 1956–1960.

Hollands, T., Dierking, W., 2011. Performance of a multiscale correlation algorithm
for the estimation of sea-ice drift from SAR images: initial results. Ann. Glaciol.
52 (57), 311–317.

Huang, J., Singh, A., Ahuja, N., 2015. Single image super-resolution from transformed
self-exemplars. In: CVPR.

Karvonen, J., 2012. Operational SAR-based sea ice drift monitoring over the Baltic
Sea. Ocean Sci. 8 (4), 473–483.

Kim, J., Lee, J.K., Lee, K.M., 2016. Deeply-recursive convolutional network for image
super-resolution. In: CVPR.

Kimura, N., Nishimura, A., Tanaka, Y., Yamaguchi, H., 2013. Influence of winter sea-
ice motion on summer ice cover in the Arctic. Polar Res. 32, 20193.

Komarov, A.S., Barber, D.G., 2014. Sea ice motion tracking from sequential dual-
polarization RADARSAT-2 images. IEEE Trans. Geosci. Remote Sens. 52 (1), 121–
136.

Kræmer, T., Johnsen, H., Brekke, C., 2015. Emulating Sentinel-1 Doppler radial ice
drift measurements using Envisat ASAR data. IEEE Trans. Geosci. Remote Sens.
53 (12), 6407–6418.

Kwok, R., Schweiger, D.A., Rothrock, D.A., Pang, S., Kottmeier, C., 1998. Sea ice
motion from satellite passive microwave imagery assessed with ERS SAR and
buoy motions. J. Geophys. Res. 103 (C4), 8191–8214.

Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H., Breivik, L.A., 2010. Sea ice motion
from low-resolution satellite sensors: an alternative method and its validation
in the Arctic. J. Geophys. Res. 115 (C10), C10032.

Lee, J.-S., Pottier, E., 2009. Polarimetric SAR Radar Imaging: From Basic to
Applications. CRC Press, Boca Raton, FL.

Leppäranta, M., Sun, Y., Haapala, J., 1998. Comparisons of sea-ice velocity fields from
ERS-1 SAR and a dynamic model. J. Glaciol. 44 (147), 248–262.

Li, X., Ling, F., Du, Y., Feng, Q., Zhang, Y., 2014. A spatial-temporal Hopfield neural
network approach for super-resolution land cover mapping with multi-
temporal different resolution remotely sensed images. ISPRS J. Photogramm.
93, 76–87.

Martin, D., Fowlkes, C., Tal, D., Malik, J., 2001. A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics. In: ICCV.

Meier, W.N., 2017. Losing Arctic sea ice: observations of the recent decline and the
long-term context. In: Thomas, D.N. (Ed.), Sea Ice. third ed. John Wiley & Sons,
Chichester, UK, pp. 290–303. Chapter 11.

Meier, W.N., Dai, M., 2006. High-resolution sea-ice motions from AMSR-E imagery.
Ann. Glaciol. 44, 352–356.

Meier, W.N., Maslanik, J.A., 2003. Effect of environmental conditions on observed,
modeled, and assimilated sea ice motion errors. J. Geophys. Res. 108 (C5),
3152.
Meier, W.N., Maslanik, J.A., Fowler, C.W., 2000. Error analysis and assimilation of
remotely sensed ice motion within an Arctic sea ice model. J. Geophys. Res. 105,
3339–3356.

Merino, M.T., Núñez, J., 2007. Super-resolution of remotely sensed images with
variable-pixel linear reconstruction. IEEE Trans. Geosci. Remote Sens. 45 (5),
1446–1457.

Ninnis, R.M., Emery, W.J., Collins, M.J., 1986. Automated extraction of pack ice
motion from advanced very high resolution radiometer imagery. J. Geophys.
Res. 91 (C9), 10725–10734.

NSIDC, 2016. Documentation: Polar Stereographic Projection and Grid. National
Snow and Ice Data Center. <http://nsidc.org/data/polar-stereo/ps_grids.html>
(Accessed on: Jul. 18, 2016).

Petrou, Z.I., Tian, Y., 2017. High-resolution sea ice motion estimation with optical
flow using satellite spectroradiometer data. IEEE Trans. Geosci. Remote Sens. 55
(3), 1339–1350.

Rampal, P., Weiss, J., Marsan, D., 2009. Positive trend in the mean speed and
deformation rate of Arctic sea ice, 1979–2007. J. Geophys. Res. 114 (C5),
C05013.

Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C., 2015. EpicFlow: edge-
preserving interpolation of correspondences for optical flow. In: IEEE Conf.
Computer Vision and Pattern Recognition, pp. 1164–1172.

Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T., 2008. LabelMe: a database
and web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173.

Small, D., Schubert, A., 2008. Guide to ASAR geocoding. Tech. Rep. 1.0, University of
Zurich, ESRIN Contract No. 20907/07/I-EC.

Smedsrud, L.H., Sirevaag, A., Kloster, K., Sorteberg, A., Sandven, S., 2011. Recent wind
driven high sea ice area export in the Fram Strait contributes to Arctic sea ice
decline. Cryosphere 5 (4), 821–829.

Spreen, G., Kwok, R., Menemenlis, D., 2011. Trends in arctic sea ice drift and role of
wind forcing: 1992–2009. Geophys. Res. Lett. 38 (19), L19501.

Sun, Y., 1996. Automatic ice motion retrieval from ERS-1 SAR images using the
optical flow method. Int. J. Remote Sens. 17 (11), 2059–2087.

Szeliski, R., 2011. Computer Vision: Algorithms and Applications. Springer, London,
United Kingdom.

Thomas, M., Geiger, C.A., Kambhamettu, C., 2008. High resolution (400 m) motion
characterization of sea ice using ERS-1 SAR imagery. Cold Reg. Sci. Technol. 52,
207–223.

Thomas, M., Kambhamettu, C., Geiger, C.A., 2011. Motion tracking of discontinuous
sea ice. IEEE Trans. Geosci. Remote Sens. 49 (12), 5064–5079.

Tschudi, M., Fowler, C., Maslanik, J., Stewart, J.S., Meier, W., 2016a. Polar Pathfinder
Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3, Buoys. Boulder,
Colorado USA: NASA National Snow and Ice Data Center Distributed Active
Archive Center. doi:https://doi.org/10.5067/O57VAIT2AYYY (Accessed: Dec. 20,
2016).

Tschudi, M., Fowler, C., Maslanik, J., Stewart, J.S., Meier, W., 2016b. Polar Pathfinder
daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3, Daily Grids. Boulder,
Colorado USA: NASA National Snow and Ice Data Center Distributed Active
Archive Center. doi: https://doi.org/10.5067/O57VAIT2AYYY (Accessed on: Jul.
14, 2016).

Tschudi, M., Fowler, C., Maslanik, J., Stroeve, J., 2010. Tracking the movement and
changing surface characteristics of Arctic sea ice. IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens. 3 (4), 536–540.

Vermote, E., Wolfe, R., 2015. MOD09GQ MODIS/Terra Surface Reflectance Daily L2G
Global 250 m SIN Grid v006. NASA EOSDIS Land Processes DAAC, 2015. doi:
http://doi.org/10.5067/MODIS/MOD09GQ.006.

Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C., 2013. DeepFlow: Large
displacement optical flow with deep matching. In: IEEE Int. Conf. Computer
Vision, pp. 1385–1392.

Xian, Y., Petrou, Z., Tian, Y., Meier, W., 2017. Super-resolved fine scale sea ice motion
tracking. IEEE T Geosci Remote 55 (10), 5427–5439.

Xian, Y., Tian, Y., 2016. Single image super-resolution via internal gradient
similarity. J. Vis. Commun. Image R. 35, 91–102.

Xian, Y., Yang, X., Tian, Y., 2015. Hybrid example-based single image super-
resolution. In: ISVC.

Yang, J., Lin, Z., Cohen, S., 2013. Fast image super-resolution based on in-place
example regression. In: CVPR.

http://refhub.elsevier.com/S0924-2716(18)30025-X/h0040
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0040
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0045
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0045
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0045
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0050
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0050
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0050
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0055
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0055
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0060
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0060
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0060
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0070
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0070
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0070
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0075
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0075
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0080
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0080
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0080
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0085
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0085
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0085
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0095
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0095
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0105
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0105
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0110
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0110
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0110
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0115
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0115
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0115
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0115
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0120
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0120
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0120
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0125
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0125
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0125
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0130
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0130
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0135
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0135
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0140
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0140
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0140
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0140
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0150
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0150
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0150
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0155
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0155
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0160
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0160
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0160
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0165
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0165
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0165
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0170
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0170
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0170
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0175
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0175
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0175
http://nsidc.org/data/polar-stereo/ps_grids.html
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0185
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0185
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0185
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0190
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0190
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0190
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0200
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0200
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0210
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0210
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0210
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0215
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0215
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0220
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0220
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0225
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0225
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0230
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0230
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0230
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0235
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0235
https://doi.org/10.5067/O57VAIT2AYYY
https://doi.org/10.5067/O57VAIT2AYYY
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0250
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0250
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0250
http://doi.org/10.5067/MODIS/MOD09GQ.006
http://refhub.elsevier.com/S0924-2716(18)30025-X/h9000
http://refhub.elsevier.com/S0924-2716(18)30025-X/h9000
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0270
http://refhub.elsevier.com/S0924-2716(18)30025-X/h0270

	Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation
	1 Introduction
	2 Related work
	3 Data
	3.1 AMSR2
	3.2 MODIS
	3.3 Sentinel-1
	3.4 Additional data

	4 Methods
	4.1 Super-resolution
	4.2 Optical flow

	5 Results
	5.1 Comparison with pattern matching
	5.2 Validation strategy
	5.3 AMSR2 motion vectors
	5.4 MODIS motion vectors
	5.5 Sentinel-1 motion vectors

	6 Discussions
	7 Conclusion
	Acknowledgment
	Appendix A Supplementary material
	References


