BCA: BI-SYMMETRIC COMPONENT ANALYSIS
FOR TEMPORAL SYMMETRY IN HUMAN ACTIONS

Chenyang Zhang and Yingli Tian

The City College of New York,
{czhang10@citymail, ytian@ccny }.cuny.edu

ABSTRACT

In the past, many research efforts are invested into discrimina-
tive action recognition task but the general temporal structure
of human actions is overlooked. In this paper, we focus on
a specific yet common structure of human actions: temporal
symmetry. The key contribution is that we model the temporal
symmetry property of human action and separate this signal
out of original action sequences without specifying which ac-
tion category. Based on this modeling, a novel and effective
method is proposed to detect the temporal symmetric part of
any given human action sequence. Experimental results on
two popular human action datasets verify that the temporal
symmetry benefits both action detection and action recogni-
tion.

Index Terms— Bi-symmetric, Action Detection

1. INTRODUCTION

Video understanding is an essential application in multime-
dia research and application areas. Human activity recog-
nition plays a very significant role in video understanding.
To make human activities detectable by computer algorithms,
researchers have proposed numerous models to describe hu-
man activities in many aspects, such as postures [1, 2], shapes
[3, 4, 5], motions [6, 7, 8] and local appearances [9, 10].
However, most of the previous action recognition algo-
rithms treat the problem as “video classification”, where a
compact video representation (such as a feature vector) is
computed based on all the contents inside the video and then a
classifier is trained and applied to map the representation vec-
tor to the class label. This framework is suitable for controlled
settings (where the start and end frames of the actions are
known) but problematic when the action of interest occupies
only a small and unknown portion of the whole video. In this
situation, action recognition needs the help from action detec-
tion, which provides a reasonable estimation of the spatial and
temporal locations of the action of interest [12, 13, 14, 15, 16].
Previous algorithms handle the action detection (or lo-
calization) within the scope of action recognition, i.e., firstly
action-specific templates or classifiers are modeled as action
templates; then the templates are used to probe that action in
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Fig. 1. An example of action temporal symmetry (“Waving”)
from the KTH dataset [11]. This symmetry pattern can be vi-
sualized and characterized by a frame-to-frame distance ma-
trix in some feature space (Frame Distance Matrix). The tem-
poral symmetric property can be characterized and visualized
by the Bi-symmetric property of this distance matrix as well
as the dark anti-diagonal in the distance matrix. (a) shows a
pair of frames which are temporal symmetric around (b) the
pivot frame, and their corresponding entries locate on the dark
anti-diagonal, and (c) shows a pair of frames which are distant
from each other.

test video sequences by matching [17, 18]. To the best of our
knowledge, there is no previous work trying to find an action
independent detector only by exploring its temporal structure.

Detecting human actions with pre-defined action tem-
plates has three drawbacks: 1) it needs a large dataset to train
a reliable action-specific detector because different subjects
perform the same action differently and even the same subject
performs differently under different scenarios. 2) For real-
time action detection systems, such as surveillance systems,
the complexity to detect an action is proportional to the num-
ber of pre-defined action classes, which is inefficient when the
number of action classes is large. 3) The whole system needs
to be retrained if new action classes are added. Therefore, it
is significant to explore possible solutions to detect temporal



extents of actions of interest without pre-defined action tem-
plates and instead using the temporal structure directly.

This paper focuses on a specific yet very common in-
trinsic property of human actions: temporal symmetry. We
concede that although not every action class contains tempo-
ral symmetric, there are many common action classes are (at
least partially) temporal symmetric. As shown in Fig 1, ac-
tion “Waving” shows strong temporal symmetry pattern and
the temporal pivot of symmetry is the frame where hands are
raised to the apex position.

Our key observation is that if an action sequence is tempo-
ral symmetric, its frame-to-frame distance matrix has the fol-
lowing characteristics: 1) it is bi-symmetric, i.e., symmetric
around both diagonal and anti-diagonal. 2) Both diagonal and
anti-diagonal have low-intensity entries. The frame-to-frame
distance matrix in Fig 1 visually characterize these patterns.
The contributions of this paper are two-folded:

e A new temporal symmetry structure of human actions
and apply it to human detection and recognition tasks.

e A mathematical model of the temporal symmetry pat-
tern is proposed by leveraging frame-distance matrix
and a novel quantitative method is proposed to video
analysis tasks.

Section 2 reviews some existing work about action recog-
nition and detection. Section 3 describes the proposed
model of the temporal symmetry structure and the quantita-
tive method for applying to video analysis tasks. Then the
evaluation of the proposed model on several public datasets
in action recognition and detection is presented in Section 4.
Section 5 concludes the paper.

2. RELATED WORK

Human action detection and recognition play important roles
in many computer vision applications such as video surveil-
lance [15, 14] and media retrieval [12]. In [12], combination
of shape and motion cues is investigated in a “drinking” ac-
tion recognizer to detect its spatial-temporal extents in movie
segments. In surveillance videos, since the backgrounds are
more complex and cluttered, human detection and tracking
are employed to generate hypothesis for further processes
[15]. Besides the different feature extraction and hypothe-
sis proposal methods, these models share similar structures
with other action recognition frameworks. Different from the
detect-and-recognize framework, Yuan et al. proposed to use
a recognize-and-detect framework: 1) Firstly each space-time
interest point is assigned a class-dependent weight from a
learning model. 2) Then an efficient 3D branch-and-bound
algorithm is applied to search for an optimal 3D-bounding
volume for that action. However, although these two kinds
of methods are very different in their architectures, they did
not explore the intrinsic temporal structures of human actions

and are still dependent on action-specified contents. Different
from previous methods, we focus on exploring a specific tem-
poral structure of actions and propose an action independent
detector.

3. PROPOSED METHOD

3.1. Problem Statement

We firstly review the definition of a persymmetric matrix. Fol-
lowing the convention in [19], a superscript F' is used to refer
to flip-transpose (transpose over the anti-diagonal). If a ma-
trix M is equal to its flip transposed one, M*', then M is a
Persymmetric matrix. Similarly, if a matrix is both symmet-
ric and persymmetric, it is “Bisymmetric”. Therefore, for a
bisymmetric matrix M, there is:

M=MT=MF. 6

Given a video sequence V' which is composed of 7" frames
V ={I, I, ..., I7}, where I, represents the i*" image frame
in the video. A video description generator (feature descrip-
tor) ¢(-) is applied to each frame: f; = ¢(I;).

In our work, the Bag-of-Words [20] model together with
some local feature extractors are employed. The local feature
extractors are different for different image modalities, more
implementation details are described in section 4. After the
feature extraction step, the description of the input video V
can be described as:

(V) ={f1, f2,.., fr}, ()

where all f; is the descriptor vector of image frame 4 and all
descriptors across all frames are of the same dimension.

Therefore, if the video sequence is exactly temporal sym-
metric, there is:

Il fi — fr—it1l| = 0,Vi = 1,2,...T. 3)

Subsequently, a frame-to-frame distance matrix D can be
computed by:

Dij = |Ifi — fill, Vi, = 1,2,..T. “)

Thus, based on the properties of Bisymmetric matrix, an
ideal temporal symmetric sequence’s frame-to-frame distance
matrix is perfectly Bisymmetric, and the elements on both of
its diagonal and anti-diagonal are zeros.

As illustrated in Fig 2, if a video sequence is ideally tem-
poral symmetric, the frame distance matrix D should be like
the one in (a), where only the two diagonals are zeros and
elsewhere are non-zeros, and it is bisymmetric.

In reality, due to variance in appearances and different
temporal structures (such as offset and different execute rates)
of the action performed by a real human being, D may be dif-
ferent from the perfect one in different videos. For example,
some different distance matrices are visualized in Fig 2 (b).



(a) Ideal

(b) Reality

Fig. 2. [Tllustration of frame distance matrices of (a) an
ideal temporal symmetric sequence and (b) real feature se-
quences from samples from MSR Action3D Dataset [21].
Cyan dashed boxes show the sub-matrices which most follow
the bisymmetric properties.

We observe some facts: 1) the anti-diagonal is not all-zeros,
but it is much darker than other entries. 2) The dark “anti-
diagonal” may not align perfectly with the real anti-diagonal
due to variances in action execution rates and appearances. 3)
Instead of the whole distance matrix, a submatrix of it may be
more suitable to be considered as a bisymmetric matrix due
to different starting and ending time of the action execution.

Although the frame distance matrix is not perfect, we can
still observe the two visual patterns from them: 1) near bi-
symmetric and 2) a dark anti-diagonal in parts labeled by
cyan dashed boxes. In this paper, we propose a method called
“Bisymmetric Component Analysis”(BCA) to find the most
temporal symmetric segment by detecting the most bisym-
metric sub-matrix.

3.2. Bisymmetric Component Analysis

Fig. 3. Illustration of “off-diagonal” cost. Yellow dashed line
is the anti-diagonal and blue line is the weighted-shortest path
from bottom-left to top-right. For each point on that path, the
off diagonal distance is d (colored in red).

Sliding windows of varied sizes are employed to generate
a possible temporal proposal set:

P={pi}, pi = (si,e;,Di), Q)

where the tuple (s;,e;, D;) indicating the starting/ending
frames and corresponding sub-matrix of proposal p;. To find

the top K proposals among all, we first rank them by a scoring
function and then discard a portion of them using an eigen-
value property of bisymmetric matrices.

3.2.1. Ranking the Temporal Proposals

The first scoring term is defined based the fact that the sub-
matrix should be persymmetric:

s1(pi) = | Di — Df || (6)

The second scoring term is based on the fact that the elements
of the sub-matrix near the off-diagonal should be close to
zeros, as visualized in Fig 2 (b) and Fig 3. The weighted-
shortest path is first computed from bottom-left to top-right
of each D, the cost of such a path is the summation of matrix
values the path covers. Because a “dark” anti-diagonal is pre-
ferred for a good D;, the following scoring term is employed
to model this:

s2(pi) = (Bjee;d;)/€il, 0]
while ¢; is the shortest path of D; and d; is the off-diagonal
distance for each pixel j on ¢;, as illustrated in Fig 3. To
rank all proposals, a weighed sum of s; and s9 is employed:
s(pi) = w181(p;) + (1 — wy)s2(p;). In our experiments, we
set wy to 0.5.

3.2.2. Temporal Proposal Purification

The proposed submatrices are further purified by selecting
those whose properties are more compatible with the bisym-
metric matrices’ properties elaborated as follows.

As proved in [19], for bisymmetric matrices, we have the
following theorem:

THEOREM 1 The eigenvalues of a bisymmetric matrix G,
which have the following structure:

F T
(4 %]w

where A is symmetric and B is persymmetric matrices such
that the eigenvalues of G are also the eigenvalues of A +
BR and A — BR. R has ones along the anti-diagonal and
zeros elsewhere. Whenever v is an eigenvector of A + BR,
[vT RT w117 is an eigenvector of G with the same eigenvalue.

For more detailed proof of this theorem, please see [19].

Based on this theorem, we can evaluate submatrices pro-
posed from the last step by leveraging the number of matched
eigenvalue eigenvector pairs as a scoring function to evaluate
how a matrix G follows the previous stated theorem:

Y(v, \) € eig(G), (v, \') € eig(A+ BR) :

AA—N|. O

C((’U, /\)7 (U,7 )‘l)) = g([v,TRT7U,T]U) X g(l - W)’

where c(+) is the cost function between pairs.



A small threshold is set for ¢(-) for matching and all pro-
posals where there are less than 50% matched Eigen pairs
are discarded. In this way, a “good” submatrix proposal has
a high score in this function is ensured because most of its
Eigen value and Eigen vector pairs can be found in corre-
sponding matrix A + BR.

4. EXPERIMENTAL RESULTS

4.1. Datasets

MSR Action Dataset: MSR Action dataset [13] is composed
of 16 video sequences and 63 action segments: 14 hand clap-
ping, 24 hand waving, and 25 boxing, performed by 10 sub-
jects. Both Indoor and outdoor scenes are addressed and some
are captured under clutter moving backgrounds. This dataset
is selected to evaluate action detection result for two reasons:
1) the action classes (e.g., hand waving) have temporal sym-
metric properties and 2) studying temporal symmetric prop-
erty in clutter backgrounds is more realistic.

MSR Action3D Dataset: MSR Action3D Dataset [21]
is a depth-based dataset captured by a Kinect camera. There
are 20 gaming-related action categories ranging from “Two-
arm Waving” to “Golf-swing”. There are also 10 subjects
involved in this dataset and each subject performs each action
2 or 3 times. There are 567 depth video sequences in total.
The resolution is also 320x240. This dataset contains rela-
tive more action classes than the MSR Action Dataset. This
dataset is employed to evaluate how BCA will benefit action
recognition. Although this dataset is not as realistic as MSR
Daily [22], MSR Action3D is designed for gaming applica-
tions and contains more temporal symmetric actions, which is
more suitable to our study than MSR Daily. Sample frames
from the datasets and the temporal symmetric property of ac-
tions are illustrated in Fig 4.

Two arm waving

Two arm waving

M’
Hiih lhruwini

Hand clapping

Fig. 4. Sampled frames from MSR Action Dataset(the top
row) and MSR Action3D Dataset (the rest). Temporal extents
of symmetry and pivot frame are also illustrated.

4.2. Action Detection

Firstly, the proposed BCA method is evaluated in action de-
tection using the MSR Action Dataset. The labeled spatial
bounding boxes are used to generate 63 test video sequences
which focus on the subject performing the action of interest.
The reason of utilizing the bounding boxes is that instead of
detecting actions in spatial extents, this paper focuses more
on detecting in temporal extents.

STIP [10] is densely extracted from the video sequences
and HOG-HOF descriptor is used for video description. The
K-means algorithm is employed to generate a visual vocab-
ulary of 3000 visual words. Therefore, each frame is rep-
resented by a bag-of-words (BoW) vector of 3000 elements.
The frame-to-frame distance matrix of each video sequence
is calculated by the [5 distance between BoW vectors of each
pair of frames.

After applying description on video sequences, the pro-
posed bisymmetric component analysis method (BCA) is em-
ployed to find a subsequence of the video sequence which
complies mostly with the bisymmetric property, which will
be treated as the temporal extent detection of an action.

To quantitatively evaluate the detection results, the F-1
measures are computed based on detection precision and re-
call. The top K temporal proposals are selected and the union
frames of them is used to compare with the ground-truth.
Since to our best knowledge there is no general detection
methods reported before, we compare our results with two
baselines: randomly and uniformly sampling temporal pro-
posals. For random sampling, the evaluation is repeated 10
times and the average numbers of 10 runs are reported. The
results are visualized in Fig 5. When set K' = 1, which means
only the top proposal is accepted, our method is advantageous
to the baselines by a large margin. With the increased num-
ber of proposals, two baselines almost meet but our method
(BCA) is consistently advantageous.

4.3. Action Recognition based on Detection

To evaluate whether action detection can help action recogni-
tion, we conduct experiments on the MSR Action 3D Dataset.
H3DF features [23] are densely sampled and BoW represen-
tation are generated in the same scheme as in the previous ex-
periment. Since the dataset is not collected for detection, we
create 46 “diluted” versions of this dataset by adding random
frames from the same subject but different actions before and
after the original sequences. The dilute ratio ranges from 0.5
to 5, which means we randomly add 50% to 500% random
frames to the original videos.

Under such a setting, the detection becomes very critical
to the final action recognition results because with up to 500%
noise, the true signal is easily overwhelmed. The recognition
is based on max-pooling and linear SVMs. Compared with
baseline “non-selective” as in Fig 6, it is easy to find that if
there is no such detection, the recognition rates drop very fast
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Fig. 5. Action detection scores in F-1 measures on the MSR Action Detection Dataset. We compare our method (BCA) with
two baselines using uniform sampling and random sampling methods, respectively. (a) and (b) are for actions “Waving” and
“Boxing” only while (c) shows the average scores over all three action categories (action “Clapping” is not shown here since the
movement of this action is very subtle to observe the symmetry pattern.) The margin of performances of BCA over baselines is
the largest when only the top video segment proposal is used. With the number of proposals increases, the margin decreases to

some degree but BCA is advantageous consistently.
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and (c) show action classes “two-arm waving”,

hand clapping” and “bending”, respectively. (d) shows the overall results. With

the increasing dilute ratios (the detection gets harder), the proposed detection generates stable results while recognition without

detection decreases quickly.

with increasing dilute ratio, however, our method performed
consistently well (Fig 6 (d)) and there is only small decrease
in recognition rates.

To further investigate the discovered temporal structures,
we also combine the proposed method and baseline method
with the well-known temporal pyramid to capture some struc-
ture information, in this experiment, we apply two layers
pyramids. The performances are illustrated as yellow and red
curves in Fig 6 (d). We can observe that if the temporal lo-
cation is accurately detected, adding temporal pyramid helps
adding more information (yellow curve is above green curve).
If there is no accurate detection, adding pyramids can only
bring more noise (red curve is under blue curve). This ob-
servation further demonstrates the accuracy of the proposed
detection algorithm.

5. CONCLUSION

This paper have addressed the following question: can we
detect an action without knowing which class it is? While
traditional action detection can only detect a specific type of
action by probing the segments from video sequences using a
pre-trained template or classifier, we have proposed a general
action detector focusing on the temporal symmetry pattern
without specifying action category. We concede that not all
action classes are suitable for symmetry detection, but at least
the temporal symmetry is a very common pattern in many
actions. With experiments on two popular action datasets,
we have demonstrated the validity of the proposed BCA al-
gorithm based on frame-to-frame distance matrices and ob-
served that the detection contributes to action recognition.
Our future work will be further discovering other temporal
patterns (e.g. repetitive.)
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