ACTION DETECTION
USING MULTIPLE SPATIAL-TEMPORAL INTEREST POINT FEATURES

Liangliang Cad™,YingLi Tiari, Zicheng Liti, Benjamin Yab Zhengyou Zharigand Thomas S. Huarg

* Beckman Institute and Coordinate Science Lab, Dept. EClvddsity of lllinois at Urbana-Champaign
" Department of Electrical Engineering, City College of Newrk’
! Department of Statistics, University of California, Losgeles
® Communication and Collaboration Systems Group, MicroReftearch, Redmond

ABSTRACT

This paper considers the problem of detecting actions from
cluttered videos. Compared with the classical action rezog
tion problem, this paper aims to estimate not only the scene
category of a given video sequence, but also the spatial-
temporal locations of the action instances. In recent years
many feature extraction schemes have been designed to de
scribe various aspects of actions. However, due to the diffi- (a) (b)

culty of action detectione.g, the cluttered background and

potential occlusions, a single type of features cannotesolvFig. 1. Comparing the differences between action classifica-
the action detection problems perfectly in cluttered video tion and detection. (a): for a classification task we neegt onl
In this paper, we attack the detection problem by combinestimate the category label for a given video. (b) for aroacti
ing multiple Spatial-Temporal Interest Point (STIP) feag)  detection task we need not only estimate the category of the
which detect salient patches in the video domain, and deescri action but also the location of the action instance. The blue
these patches by feature of local regions. The difficulty oPounding box illustrate a desirable detection. It can be see
combining multiple STIP features for action detection istw that the action detection task is crucial when there isetatt
folds: First, the number of salient patches detected by difdackground and multiple persons in the scene.

ferent STIP methods varies across different salient patche

How to combine such features is not considered by existing crucial role in building surveillance system [7] and siiady
fusion methods [13] [5]. Second, the detection in the video uct In building surveilk y: : .
customer behaviors. With the increasing of web video clips

should be efficient, which excludes many slow machine learn : . .
. : e and the surveillance systems, it has become very impoant t
ing algorithms. To handle these two difficulties, we prop@se

new approach which combines Gaussian Mixture Model Witheffectlvely aqalyze V|de_o actlo.ns. . .
An effective analysis of video actions requires that the

Branch-and-Bound search to efficiently locate the action of A . :
ystems can answer not only “which action happens in the

interest. We build a new challenging dataset for our actior?.deo,, but also “when and where the action happens in the
detection task, and our algorithm obtains impressive tesul Vi » DU W w : PP !

On classical KTH dataset, our method outperforms the stat?v-'deo sequences-. _In othe_r words, it IS preferred _to_ detect
of-the-art methods. he action locations in the videos than simply classifying t

video clip to one of the existing labels. When the video file
is very long or contains multiple action, simple classificat
1. INTRODUCTION results are not useful. In practice, a surveillance videohm=

- as long as several hours, and a Youtube video might contains
In the past few years, computer vision researchers have wif-

: . : . uite a few different actions, where only the action detecti
nessed a surge of interest in human action analysis throuq

id H X o p died und sults algorithm can provide meaningful results.
videos. Human action recognmgn was 'rSt. studied under Despite its importance, action detection is known to be a
well controlled laboratory scenarios, e.g., with cleankbac

. challenging task. In complex scenes, the background is of-
ground _and no OC(.:I.US'(?”S. [18]. Later researc_h work Sh0W§en cluttered, and the crowds might occlude each other. In
that action recognition is important for analyzing and O +his case, it is difficult to distinguish the interestingiant

hizing online videos [14]. Moreover, action recognitioays with other video contents. The appearance of the actor might
*Cao would like to thank the support from UIUC CSE fellowship. look similar as the background. The motion field of the ac-




tion might be blocked by the other people in the scene. Duéacts. Another important video feature is designed by Dolla
to the difficulty of locating the human action, most famouset al.[6], which detects the salient patches by finding the max-
human action data sets [18] [1] involve only the classifmati imum of temporal Gabor filter responses. This method aims
task but not location, where the human actions are usuallip detect regions with spatially distinguishing charasters
recorded with clean backgrounds, and each video clip mostlyndergoing a complex motion. In contrast, patches under-
involves only one type of action (e.g., running or joggingdla going pure translational motion, or patches without sjigtia
only one person, who keeps doing this action within the wholalistinguishing features will in general not induce a resmon
video clip. After the salient patches are detected, the histogram of 3D
This paper considers the action detection problem usinguboid is introduced to describe the patch feature.
multiple STIP features [6] [11] [19]. An action is often asso Many action classification systems [11], [6], [15] [8],
ciated with multiple visual measurements, which can beeeith [21], [22] are built using Laptev’s or Dollar’s features. @e
appearance features (e.g., color, edge histogram) or motiawo features focus the short-term motion information iadte
features (e.g., optical flow, motion history). Differentfe of long-term motion, and motion field of a salient patch some-
tures describe different aspects of the visual charatiteyis time is contaminated by the background motions. However,
and demand different metrics. How to handle heterogeneousost of existing systems only classify the video clips to one
features for action detection becomes an important prablemof predefined categories, and does not consider the location
The difficulty of combining multiple features lies in the task.
heterogeneous nature of different features. DifferentP’STI  To overcome the limitation of existing salient patches de-

features are based on different detectors, and the number &riptors, a hierarchical filtered motion field method hasrbe
detected features varies significantly. It is still an opaest  proposed recently for action recognition [19]. This work ap
tion how to effectively combine such features. A naive applies global spatial motion smoothing filter to eliminate-is
proach s to quantize STIP features and build histogramibasgated unreliable or noisy motions. To characterize the long
on quantization indices. However, much informationisiost - term motion feature, the Motion History Image (MHI) is em-
the quantization process, and a histogram representat@n o ployed as basic representations of the interest point. This
looks the differences in the number of detected features Asnew feature is named as Hierarchical Filtered Motion Field
result, simply combining histograms will result a poor @ete (HFMF) and works well in crowd scenes. We believe the
tion results. This work employs a probabilistic represéota  HFMF describes complementary aspects of video actions and

of the different features so that we can quantitatively@atd  this work will combine HFMF with the existing features of
the contribution from different features. In our approask,  [6] [12] for action detection tasks.

model each feature vector with a Gaussian Mixture Models Compared with classification task, action detection is

(GMMs). GMMs with large number of components is known e challenging. There are only a few works devoted to ac-
to haye the ability to model any given prqbabll|ty d|s.tr|im.ut tion detection task [9], [7], [24], [23], [4]. These workslgn
function. Based on GMMs, we can estimate the likelihoodse single type of features. Although multiple featuredasi

of each feature vector belonging to a given action of intsres |55 proved to be effective in action classification [13] 8],
The likelihood can be viewed as normalized contributionfro s stjll an untouched problem to combine multiple featuges f

different features, and the optimal bounding box corresison gction detection.
the maximum of likelihood. The bounding box is found by a

branch-bound search [10], which is shown to be efficient angec
effective to locate the action of interest.

The difficulty of applying multiple features for action de-
tion is two fold: First, existing fusion methods [13] [5]
assumes that each sample has the same number of features.
However, in action detection, different features corresbo

2. RELATED WORKS to different detectors, and the numbers of detected salient

patches are usually different subject to different feagugeec-

Motivated by the recent success of SIFT and HOG in im-ond, detecting actions in the videos involves a searchiog pr
age domain, many researchers have designed various cowess in x-y-t dimensions, which is very computationally ex-
terparts to describe the spatial salient patches in video d@ensive. Many existing feature fusion methods [5] are usu-
main. Laptev and Lindeberg [11] generalized Harris de-ally too slow for this task. This paper employs Gaussian Mix-
tector to spatial-temporal space. They aim to detect imageire Models (GMMs) to model heterogeneous features, and
patches with significant local variations in both space andhe probability of a given feature vector is estimated effec
time. and compute their scale-invariant spatio-tempoeal d tively based on the GMM model. To locate the action of in-
scriptors. This approach is laterimproved by [12] whichegiv terests, we employ branch-and-bound methods to find the op-
up scale selection but uses a multi-scale approach and etimal subvolumes which correspond the largest GMM scores.
tract features at multiple levels of spatio-temporal staldhe  Note that although this paper only combines three features
improved method yields reduced computational complexityfrom [12], [19], [6], our method is a general framework and
denser sampling, and suffers less from scale selection aritan be used to fuse more features [3], [17], [25].



3. ADAPTIVE ACTION DETECTION After obtaining the GMM parameters and a video dlip

we can estimate the action category by
Given a video sequencE, we employ different STIP de-

tectors to detect a collection of local feature vectp§'}. ) M i
wherep € V denotes the location of the feature, andde- ¢ = argmax Z Z log Pr(x;'(0") ®3)
notes the feature type with < m < M. We employ the m=1xgeV

Gaussian Mixture Model (GMM) to model the probability Next we discuss the action detection task. We use a
m : .

thgtx belongs to the given act_l_on. Supposg a GMM conp gybyolume to represent a region in the 3D video space

tains K components, the probability can be written as that contains an action instance. A 3D subvou@e—

K [0, 21,90, y1,t0,t1] is parameterized as a 3D cube with six
Pr(x™|0™) = Zwm(k)/\/—(xm;lum(k)’ ¥ (k)) degrees of freedom iz, y,t) space. Spatial and temporal
=1 localization of an action in a video sequence is rendered as
searching for the optimal subvolume. The spatial locations
of the subvolume identify where the action happens, while
the temporal locations of the subvolume denote when the ac-
tion happens. Given a video sequence, the optimal spatial-
temporal subvolumé&* yields the maximum GMM scores

whereN/(-) denotes the normal distribution, apd’ (k) and
¥™(k) denote the mean and variance /g¢h normal com-
ponent for featuren. The set of all parameters of GMM
model is denoted a® = [0',6?%,...,0M], whereg™ =
e detvantages of GMM are that it is based I
e advantages o are that it is based on a wellp* — aro max £(Q|O.) = arg max log Pr(x"67"
understood statistical model, and it is easy to combine muP gQQV (Q[6) gQEV;;, g Prixglec)
tiple features using GMMs. With GMM, we can estimate (4)
the probability that each feature vectet* belongs to the
background or the action of interest. Suppose there are By assigning each patch a scorg(x)') =

C categories of actions with parameter®f, ©,,--- ,0¢.  log Pr(x;'|67"), Equation (4) can be solved by branch-
Each category corresponds to GMMs with features9,. =  and-bound algorithm [10] [24]. Branch-and-bound approach
[0, .- 0M]. was first developed for integer programming problems.

The parameters of GMM can be estimated using maxitampertet al.[10] [2] showed that branch-and-bound can be
mum likelihood estimation. A straightforward way is to in- used for object detection in 2D image base on an smart for-
dependently train the model for each category and each feaaulation. Yuaret al. [24] developped an efficient algorithm
ture. However, as shown by Reynolds [16], it is more ef-which generalizes branch-and-bound algorithm to 3D space
fective to obtairgi”, 65", --- , 07 coherently by the use of a of videos. In this paper, we perform max-subvolume search
universal background model. Following [16] we first train ausing the 3D branch-and-bound algorithmin [24], which is an
background model;* which is independent to all the vectors extension of the 2D branch-and-bound technique [10]. The

X ysing themth feature. Then we adagy’, - - - , 07 from  detailed technical description of the 3D branch-and-bound
05" by EM algorithm in the following way. algorithm is omitted due to limited space.

We first estimate posterior probability of eaxft subject
to the background modéj’ 4. EXPERIMENTAL RESULTS

P(x) = w(k)j\./(x;";ugl(k),.xgl(k)). (1)  To validate our action detection scheme, we collect a new
v > wHN (x5 1 (5), 25 (4) dataset in Microsoft Research Redmond (we call it MSR-II
dataset in this papér)with cluttered background and mul-
tiple people in each frame. We do not use the CMU action
dataset [9] since there is only a single sequence for trginin
pe (k) = — Z ()% () it Huetal. [7] used videos from retailing surveillance, how-
Cxpexe ever, the dataset is confidential due to the privacy issueigWa
et al.[20] collected an dataset of social game events, but their
LN m i e, o problem is about classification but not detection. Our MSR-
forcew" (k) = wg (k) andx" (k) = g (k), which is com- Il dataset includes 54 video sequences, each of which con-

putationally robust. . ) ) . .
The advantage of employing background model are two'galns several different actions, e.g., hand waving, clagpi

fold: First, adapting GMM parameters from backgroundand boxing. These videos are taken with the background of

. . - arties, outdoor traffic, and walking people. Actors aresdsk
model is more computational efficient and robust. Second, . .
. . 1o walk into the scene, perform one of the three kinds of ac-
updating based on background model leads to a good aligr- .
X . . tion, and then walk out of the scenes with these backgrounds.
ment of different action models over different components,
which makes the recognition more accurate. Lhttp://research.microsoft.comzliu/ActionRecoRsrc.

C

Then we can update? (k) by

Although we can updatg, based o (x,"), in practice we




Figure 1 shows the differences between KTH dataset (a) and handclapping

MSR-Il dataset (b). Note thatin MSR-Il dataset there ar¢ alo o
of people in the scene and we need locate person with action 3 { M S
of interest from the scene. 5 It UV I
To evaluate the detection results of our model, we man- 5 lree combined m
ually labeled the MSR-II dataset with bounding subvolumes handwaving
and action types. By denoting the subvolumes ground truth 1{ LU S P,
as Q! = {Qf,Q%,...,Q%}, and the detected subvol- e
umes a? = {QY,Q4,...,Q%}, we useHG(Q?) to de- ;i’“mﬁb.snm o
note whether a groundtruth subvolur@¥ is detected, and & tree combined B, e e e e
TD(Q?) to denote whether a detected subvolume makes . boxing
sense or not. HG(QY) and TD(Q‘}) are judged by check- { *\Mw .
ing whether the overlapping is above a threshaldi(in our &5:75152; o S I,
experiment). D T T
d g
HEQ?) = { 1, ir3Qf, st 90l S5 )
0, otherwise, Fig. 2. Precision-Recall for MSR-Il dataset
g. 2. Precision-Recall curves for ataset.

g d
1, if 3Q7, s.t.‘QfgﬁjBaQ
J

0, otherwise,

d1 ando, are setag /4.
Based o G andT D, precision and recall are defined as

YU HG@D oo S TP
m ’ n Fig. 4. Our detector successfully detects the action even with
heavy occlusion.

Precision =

Given a collection of detected subvolumes, we can com
pute the precision-recall values. By using different thres

olds of the region scoreger f(x), we apply the branch- o ] S ]
and-bound algorithm multiple times and obtain the preisio thatcombining multiple relevant features will significantlyim
recall curves for three actions in MSR-I1 dataset. prove the detection, while combining irrelevant featurgmi

In MSR-II dataset, we use half of the videos for trainingd€crease the results
and the remaining half videos for testing. We compare the Figure 3 shows the action detection results using our mul-
detection results of each of the three features [12], [#]], [ tiple feature model. Even the background is cluttered and
and find that both Laptev's feature [12] and Hierarchical Fil there are multiple persons in both close and distant view, ou
ter Motion feature [19] can obtain reasonable detection redetector works well and can locate the action of interest ver
sults, while Dollar’s feature [6] leads to bad detectioruiess ~ accurately. Moreover, our detector is robust subject tatsho
The reason for the failure of Dollar’s feature might be et t term occlusions. Figure 4 shows the detection results with
Gabor filter based features are heavily affected by the clufieavy occlusion.
tered background, since most of the detected patches fall in To compare our method with previous work, we test our
the background instead of action of interests. Since Dsllar algorithm on the public KTH dataset [18]. In KTH dataset,
feature fails to detect some actions, we only compare esuleach video sequence exhibits one individual action from be-
of two single feature detection and the multiple feature deginning to end, locating the actions of interest is trividh
tection using our model. Figure 2 show the precision-recaléach video of the KTH dataset, we need not estimasince
curves for three features. It can be seen that hierarchieal fithere is only one actor repeating the same action without
ter motion feature works better than Laptev’s in handclagpi background motions involved, and all the STIPs in the video
and boxing, but slightly worse than Laptev’s feature in handare associated with the action. However, the classification
waving. However, combining these two detectors, our multitask on KTH dataset can still show how our multiple fea-
ple feature detection works significantly better than using  ture fusion method outperforms single feature based method
single features in all the three actions. Itis also inténgdb  Following the standard experimental setting of KTH dataset
see that if we incorporate the inappropriate feature, thie coas in [18], our method estimate the label of each video clip by
responding detection rate will decrease. The results confir (3). Table 1 shows that our feature fusion method outperform



Table 1. Comparing the accuracy on KTH

9]

Work Accuracy

Schuldtet al.[18] 71.71% [10]

Dollar et al.[6] 80.66%

Niebles and Fei-Fei [15]] 83.92%

Huanget al.[8] 91.6%
Laptevet al.[12] 91.8% [11]

Yuanet al.[24] 93.3%
Our work 94.10% [12]
the single feature classification results. [13]
5. CONCLUSION [14]

This paper considers the problem of combining multiple fea-
tures for action detection. We build a novel framework which 15]
combines GMM-based representation of STIPs and branclL-
and-bound based detection. We collect a new challenging

dataset to validate our detection approach. The experime
tal results show that our approach can effectively deteet th

action even with cluttered background and partial occhsio

Our approach also outperforms the single feature classificafx17

tion results on KTH dataset.
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Fig. 3. Detection examples of MSR-Il dataset. The bounding boxmte the detected location using Branch-and-Bound
search. The color of the bounding box denotes the actiolgeoatered for hand clapping, green for hand waving, and biue f
boxing.



