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ABSTRACT

This paper considers the problem of detecting actions from
cluttered videos. Compared with the classical action recogni-
tion problem, this paper aims to estimate not only the scene
category of a given video sequence, but also the spatial-
temporal locations of the action instances. In recent years,
many feature extraction schemes have been designed to de-
scribe various aspects of actions. However, due to the diffi-
culty of action detection,e.g., the cluttered background and
potential occlusions, a single type of features cannot solve
the action detection problems perfectly in cluttered videos.
In this paper, we attack the detection problem by combin-
ing multiple Spatial-Temporal Interest Point (STIP) features,
which detect salient patches in the video domain, and describe
these patches by feature of local regions. The difficulty of
combining multiple STIP features for action detection is two
folds: First, the number of salient patches detected by dif-
ferent STIP methods varies across different salient patches.
How to combine such features is not considered by existing
fusion methods [13] [5]. Second, the detection in the videos
should be efficient, which excludes many slow machine learn-
ing algorithms. To handle these two difficulties, we proposea
new approach which combines Gaussian Mixture Model with
Branch-and-Bound search to efficiently locate the action of
interest. We build a new challenging dataset for our action
detection task, and our algorithm obtains impressive results.
On classical KTH dataset, our method outperforms the state-
of-the-art methods.

1. INTRODUCTION

In the past few years, computer vision researchers have wit-
nessed a surge of interest in human action analysis through
videos. Human action recognition was first studied under
well controlled laboratory scenarios, e.g., with clean back-
ground and no occlusions [18]. Later research work shows
that action recognition is important for analyzing and orga-
nizing online videos [14]. Moreover, action recognition plays
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Fig. 1. Comparing the differences between action classifica-
tion and detection. (a): for a classification task we need only
estimate the category label for a given video. (b) for an action
detection task we need not only estimate the category of the
action but also the location of the action instance. The blue
bounding box illustrate a desirable detection. It can be seen
that the action detection task is crucial when there is cluttered
background and multiple persons in the scene.

a crucial role in building surveillance system [7] and studying
customer behaviors. With the increasing of web video clips
and the surveillance systems, it has become very important to
effectively analyze video actions.

An effective analysis of video actions requires that the
systems can answer not only “which action happens in the
video”, but also “when and where the action happens in the
video sequences”. In other words, it is preferred to detect
the action locations in the videos than simply classifying the
video clip to one of the existing labels. When the video file
is very long or contains multiple action, simple classification
results are not useful. In practice, a surveillance video can be
as long as several hours, and a Youtube video might contains
quite a few different actions, where only the action detection
results algorithm can provide meaningful results.

Despite its importance, action detection is known to be a
challenging task. In complex scenes, the background is of-
ten cluttered, and the crowds might occlude each other. In
this case, it is difficult to distinguish the interesting action
with other video contents. The appearance of the actor might
look similar as the background. The motion field of the ac-



tion might be blocked by the other people in the scene. Due
to the difficulty of locating the human action, most famous
human action data sets [18] [1] involve only the classification
task but not location, where the human actions are usually
recorded with clean backgrounds, and each video clip mostly
involves only one type of action (e.g., running or jogging) and
only one person, who keeps doing this action within the whole
video clip.

This paper considers the action detection problem using
multiple STIP features [6] [11] [19]. An action is often asso-
ciated with multiple visual measurements, which can be either
appearance features (e.g., color, edge histogram) or motion
features (e.g., optical flow, motion history). Different fea-
tures describe different aspects of the visual characteristics
and demand different metrics. How to handle heterogeneous
features for action detection becomes an important problem.

The difficulty of combining multiple features lies in the
heterogeneous nature of different features. Different STIP
features are based on different detectors, and the number of
detected features varies significantly. It is still an open ques-
tion how to effectively combine such features. A naive ap-
proach is to quantize STIP features and build histogram based
on quantization indices. However, much information is lostin
the quantization process, and a histogram representation over-
looks the differences in the number of detected features. Asa
result, simply combining histograms will result a poor detec-
tion results. This work employs a probabilistic representation
of the different features so that we can quantitatively evaluate
the contribution from different features. In our approach,we
model each feature vector with a Gaussian Mixture Models
(GMMs). GMMs with large number of components is known
to have the ability to model any given probability distribution
function. Based on GMMs, we can estimate the likelihood
of each feature vector belonging to a given action of interests.
The likelihood can be viewed as normalized contribution from
different features, and the optimal bounding box corresponds
the maximum of likelihood. The bounding box is found by a
branch-bound search [10], which is shown to be efficient and
effective to locate the action of interest.

2. RELATED WORKS

Motivated by the recent success of SIFT and HOG in im-
age domain, many researchers have designed various coun-
terparts to describe the spatial salient patches in video do-
main. Laptev and Lindeberg [11] generalized Harris de-
tector to spatial-temporal space. They aim to detect image
patches with significant local variations in both space and
time. and compute their scale-invariant spatio-temporal de-
scriptors. This approach is later improved by [12] which gives
up scale selection but uses a multi-scale approach and ex-
tract features at multiple levels of spatio-temporal scales. The
improved method yields reduced computational complexity,
denser sampling, and suffers less from scale selection arti-

facts. Another important video feature is designed by Dollar
et al.[6], which detects the salient patches by finding the max-
imum of temporal Gabor filter responses. This method aims
to detect regions with spatially distinguishing characteristics
undergoing a complex motion. In contrast, patches under-
going pure translational motion, or patches without spatially
distinguishing features will in general not induce a response.
After the salient patches are detected, the histogram of 3D
cuboid is introduced to describe the patch feature.

Many action classification systems [11], [6], [15] [8],
[21], [22] are built using Laptev’s or Dollar’s features. These
two features focus the short-term motion information instead
of long-term motion, and motion field of a salient patch some-
time is contaminated by the background motions. However,
most of existing systems only classify the video clips to one
of predefined categories, and does not consider the location
task.

To overcome the limitation of existing salient patches de-
scriptors, a hierarchical filtered motion field method has been
proposed recently for action recognition [19]. This work ap-
plies global spatial motion smoothing filter to eliminate iso-
lated unreliable or noisy motions. To characterize the long-
term motion feature, the Motion History Image (MHI) is em-
ployed as basic representations of the interest point. This
new feature is named as Hierarchical Filtered Motion Field
(HFMF) and works well in crowd scenes. We believe the
HFMF describes complementary aspects of video actions and
this work will combine HFMF with the existing features of
[6] [12] for action detection tasks.

Compared with classification task, action detection is
more challenging. There are only a few works devoted to ac-
tion detection task [9], [7], [24], [23], [4]. These works only
use single type of features. Although multiple feature fusion
was proved to be effective in action classification [13] [5],it
is still an untouched problem to combine multiple features for
action detection.

The difficulty of applying multiple features for action de-
tection is two fold: First, existing fusion methods [13] [5]
assumes that each sample has the same number of features.
However, in action detection, different features correspond
to different detectors, and the numbers of detected salient
patches are usually different subject to different features. Sec-
ond, detecting actions in the videos involves a searching pro-
cess in x-y-t dimensions, which is very computationally ex-
pensive. Many existing feature fusion methods [5] are usu-
ally too slow for this task. This paper employs Gaussian Mix-
ture Models (GMMs) to model heterogeneous features, and
the probability of a given feature vector is estimated effec-
tively based on the GMM model. To locate the action of in-
terests, we employ branch-and-bound methods to find the op-
timal subvolumes which correspond the largest GMM scores.
Note that although this paper only combines three features
from [12], [19], [6], our method is a general framework and
can be used to fuse more features [3], [17], [25].



3. ADAPTIVE ACTION DETECTION

Given a video sequenceV , we employ different STIP de-
tectors to detect a collection of local feature vectors{xm

p }.
wherep ∈ V denotes the location of the feature, andm de-
notes the feature type with1 ≤ m ≤ M . We employ the
Gaussian Mixture Model (GMM) to model the probability
thatxm belongs to the given action. Suppose a GMM con-
tainsK components, the probability can be written as

Pr(xm|θm) =
K
∑

k=1

wm(k)N (xm;µm(k),Σm(k))

whereN (·) denotes the normal distribution, andµm(k) and
Σm(k) denote the mean and variance ofkth normal com-
ponent for featurem. The set of all parameters of GMM
model is denoted asΘ = [θ1, θ2, ..., θM ], where θm =
{wm(k), µm(k),Σm(k)}.

The advantages of GMM are that it is based on a well-
understood statistical model, and it is easy to combine mul-
tiple features using GMMs. With GMM, we can estimate
the probability that each feature vectorxm belongs to the
background or the action of interest. Suppose there are
C categories of actions with parameter ofΘ1,Θ2, · · · ,ΘC .
Each category corresponds to GMMs withM featuresΘc =
[θ1c , · · · , θ

M
c ].

The parameters of GMM can be estimated using maxi-
mum likelihood estimation. A straightforward way is to in-
dependently train the model for each category and each fea-
ture. However, as shown by Reynolds [16], it is more ef-
fective to obtainθm

1
, θm

2
, · · · , θmC coherently by the use of a

universal background model. Following [16] we first train a
background modelθm

0
which is independent to all the vectors

Xall using themth feature. Then we adaptθm
1
, · · · , θmC from

θm
0

by EM algorithm in the following way.
We first estimate posterior probability of eachxm

i subject
to the background modelθm

0

pck(x
m
p ) =

w(k)N (xm
p ;µm

0
(k),Σm

0
(k))

∑

j w(j)N (xm
p ;µm

0
(j),Σm

0
(j)

(1)

Then we can updateµm
c (k) by

µm
c (k) =

1

nc

∑

x
m
p ∈Xc

pck(x
m
p )xm

p . (2)

Although we can updateΣc based onpck(x
m
p ), in practice we

forcewm
c (k) = wm

0
(k) andΣm

c (k) = Σm
0
(k), which is com-

putationally robust.
The advantage of employing background model are two-

fold: First, adapting GMM parameters from background
model is more computational efficient and robust. Second,
updating based on background model leads to a good align-
ment of different action models over different components,
which makes the recognition more accurate.

After obtaining the GMM parameters and a video clipV ,
we can estimate the action category by

c∗ = argmax
c

M
∑

m=1

∑

x
m
p ∈V

logPr(xm
p |θmc ) (3)

Next we discuss the action detection task. We use a
3D subvolume to represent a region in the 3D video space
that contains an action instance. A 3D subvoumeQ =
[x0, x1, y0, y1, t0, t1] is parameterized as a 3D cube with six
degrees of freedom in(x, y, t) space. Spatial and temporal
localization of an action in a video sequence is rendered as
searching for the optimal subvolume. The spatial locations
of the subvolume identify where the action happens, while
the temporal locations of the subvolume denote when the ac-
tion happens. Given a video sequence, the optimal spatial-
temporal subvolumeQ∗ yields the maximum GMM scores

Q∗ = argmax
Q⊆V

L(Q|Θc) = argmax
Q⊆V

∑

m

∑

p∈V

logPr(xm
p |θmc )

(4)

By assigning each patch a scoref(xm
p ) =

logPr(xm
p |θmc ), Equation (4) can be solved by branch-

and-bound algorithm [10] [24]. Branch-and-bound approach
was first developed for integer programming problems.
Lampertet al. [10] [2] showed that branch-and-bound can be
used for object detection in 2D image base on an smart for-
mulation. Yuanet al. [24] developped an efficient algorithm
which generalizes branch-and-bound algorithm to 3D space
of videos. In this paper, we perform max-subvolume search
using the 3D branch-and-boundalgorithm in [24], which is an
extension of the 2D branch-and-bound technique [10]. The
detailed technical description of the 3D branch-and-bound
algorithm is omitted due to limited space.

4. EXPERIMENTAL RESULTS

To validate our action detection scheme, we collect a new
dataset in Microsoft Research Redmond (we call it MSR-II
dataset in this paper)1, with cluttered background and mul-
tiple people in each frame. We do not use the CMU action
dataset [9] since there is only a single sequence for training in
it. Hu et al. [7] used videos from retailing surveillance, how-
ever, the dataset is confidential due to the privacy issue. Wang
et al.[20] collected an dataset of social game events, but their
problem is about classification but not detection. Our MSR-
II dataset includes 54 video sequences, each of which con-
tains several different actions, e.g., hand waving, clapping,
and boxing. These videos are taken with the background of
parties, outdoor traffic, and walking people. Actors are asked
to walk into the scene, perform one of the three kinds of ac-
tion, and then walk out of the scenes with these backgrounds.

1http://research.microsoft.com/∼zliu/ActionRecoRsrc.



Figure 1 shows the differences between KTH dataset (a) and
MSR-II dataset (b). Note that in MSR-II dataset there are a lot
of people in the scene and we need locate person with action
of interest from the scene.

To evaluate the detection results of our model, we man-
ually labeled the MSR-II dataset with bounding subvolumes
and action types. By denoting the subvolumes ground truth
as Qg = {Qg

1
, Qg

2
, . . . , Qg

m}, and the detected subvol-
umes asQd = {Qd

1
, Qd

2
, . . . , Qd

n}, we useHG(Qg
i ) to de-

note whether a groundtruth subvolumeQg
i is detected, and

TD(Qd
j) to denote whether a detected subvolume makes

sense or not.HG(Qg
i ) andTD(Qd

j ) are judged by check-
ing whether the overlapping is above a threshold (1/4 in our
experiment).

HG(Qg
i ) =

{

1, if ∃Qd
k, s.t.

|Qd
k∩Q

g

i
|

|Qg

i
|

> δ1

0, otherwise,
(5)

TD(Qd
j) =

{

1, if ∃Qg
k, s.t.

|Qg

k
∩Qd

j |

|Qd
j
|

> δ2

0, otherwise,

where| · | denotes for the area of the subvolume , andδ1, δ2
are parameters to judge the overlapping ratio. In this paper,
δ1 andδ2 are set as1/4.

Based onHG andTD, precision and recall are defined as

Precision =

∑m

i=1
HG(Qg

i )

m
,Recall =

∑n

j=1
TD(Qd

j )

n

Given a collection of detected subvolumes, we can com-
pute the precision-recall values. By using different thresh-
olds of the region scores

∑

x∈Q f(x), we apply the branch-
and-bound algorithm multiple times and obtain the precision-
recall curves for three actions in MSR-II dataset.

In MSR-II dataset, we use half of the videos for training
and the remaining half videos for testing. We compare the
detection results of each of the three features [12], [19], [6],
and find that both Laptev’s feature [12] and Hierarchical Fil-
ter Motion feature [19] can obtain reasonable detection re-
sults, while Dollar’s feature [6] leads to bad detection results.
The reason for the failure of Dollar’s feature might be that the
Gabor filter based features are heavily affected by the clut-
tered background, since most of the detected patches fall in
the background instead of action of interests. Since Dollar’s
feature fails to detect some actions, we only compare results
of two single feature detection and the multiple feature de-
tection using our model. Figure 2 show the precision-recall
curves for three features. It can be seen that hierarchical fil-
ter motion feature works better than Laptev’s in handclapping
and boxing, but slightly worse than Laptev’s feature in hand-
waving. However, combining these two detectors, our multi-
ple feature detection works significantly better than usingany
single features in all the three actions. It is also interesting to
see that if we incorporate the inappropriate feature, the cor-
responding detection rate will decrease. The results confirm
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Fig. 2. Precision-Recall curves for MSR-II dataset.

Fig. 4. Our detector successfully detects the action even with
heavy occlusion.

thatcombining multiple relevant features will significantly im-
prove the detection, while combining irrelevant feature might
decrease the results.

Figure 3 shows the action detection results using our mul-
tiple feature model. Even the background is cluttered and
there are multiple persons in both close and distant view, our
detector works well and can locate the action of interest very
accurately. Moreover, our detector is robust subject to short-
term occlusions. Figure 4 shows the detection results with
heavy occlusion.

To compare our method with previous work, we test our
algorithm on the public KTH dataset [18]. In KTH dataset,
each video sequence exhibits one individual action from be-
ginning to end, locating the actions of interest is trivial.In
each video of the KTH dataset, we need not estimateQ since
there is only one actor repeating the same action without
background motions involved, and all the STIPs in the video
are associated with the action. However, the classification
task on KTH dataset can still show how our multiple fea-
ture fusion method outperforms single feature based methods.
Following the standard experimental setting of KTH dataset
as in [18], our method estimate the label of each video clip by
(3). Table 1 shows that our feature fusion method outperforms



Table 1. Comparing the accuracy on KTH
Work Accuracy

Schuldtet al. [18] 71.71%
Dollar et al. [6] 80.66%

Niebles and Fei-Fei [15] 83.92%
Huanget al. [8] 91.6%

Laptevet al. [12] 91.8%
Yuanet al. [24] 93.3%

Our work 94.10%

the single feature classification results.

5. CONCLUSION

This paper considers the problem of combining multiple fea-
tures for action detection. We build a novel framework which
combines GMM-based representation of STIPs and branch-
and-bound based detection. We collect a new challenging
dataset to validate our detection approach. The experimen-
tal results show that our approach can effectively detect the
action even with cluttered background and partial occlusions.
Our approach also outperforms the single feature classifica-
tion results on KTH dataset.
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Fig. 3. Detection examples of MSR-II dataset. The bounding boxes denote the detected location using Branch-and-Bound
search. The color of the bounding box denotes the action category: red for hand clapping, green for hand waving, and blue for
boxing.


