
Face Cataloger: Multi-Scale Imaging for Relating Identity 
to Location

Arun Hampapur, Sharat Pankanti, Andrew Senior,Ying-Li Tian, Lisa Brown, Ruud Bolle 
IBM T.J. Watson Research Center 

19 Skyline Drive, Hawthorne, NY 10532 USA 
{arunh,sharat,aws,yltian,lisabr}@us.ibm.com 

 

ABSTRACT 
  The level of security at a facility is directly 
related to how well the facility can keep track of “who is 
where?” The “who” part of this question is typically 
addressed through the use of face images for recognition 
either by a person or a computer face recognition system. 
The “where” part of this question can be addressed 
through 3D position tracking. The “who is where” 
problem is inherently multi-scale,  wide angle views are 
needed for location estimation and high resolution face 
images for identification. A number of other people 
tracking challenges like activity understanding are multi-
scale in nature. 

 An effective system to answer “who is where?” must 
acquire face images without constraining the users and 
must closely associate the face images with the 3D path of 
the person.  Our solution to this problem uses computer 
controlled pan-tilt-zoom cameras driven by a 3D wide-
baseline stereo tracking system. The pan-tilt-zoom 
cameras automatically acquire zoomed-in views of a 
person’s head, while the person is in motion within the 
monitored space.   

1. INTRODUCTION 

Video surveillance has become increasingly critical to 
ensuring security.  Existing research in this field has taken 
two distinct directions: the use of biometric identification 
to answer the ‘who’ question and video tracking 
technology to answer the ‘where’ question.  Our work is 
focused on building a system that can provide a solution 
to the combined ‘who is where’ question.  The 
fundamental innovation in this work is the acquisition of 
face images while the subjects are in motion, at various 
points along each subject’s path through the monitored 
space. We combine 3D position tracking, with head 
detection and automatic camera zooming to deliver a 
catalog of face images, each associated with a unique 3D 
track.  Clearly, one of the key requirements of such a 
system is real-time operation, since the zoom cameras 
need to capture a close-up of the subject. 

Continuous tracking of people provides a significant 
advantage to identification since we can apply the 
principle of continuity of identity [�2]. This says that, while 
we may only be able to identify a person occasionally 
(such as when we have a good view of their face, when 

they swipe an ID badge, or when they speak into a 
telephone), if we can reliably track the person, we know 
that all identifications associated with the track relate to 
the same person and apply throughout the track. Several 
(fallible) identification methods applied at different times 
and places can thus be combined and corroborated.   

Visual tracking has been a very active area of 
research[�1,�4,�5,�6,�8,�12,�13,�15,�16]. However there are 
relatively few efforts which have addressed the issue of 
multi-scale imaging. Peixoto et al. [�14] discuss a system, 
which uses a wide-angle camera to detect people in a 
scene. It uses a ground plane assumption to infer 3D 
position of the person. This position is then used to 
initialize a binocular-active camera to track the person. 
Optic flow from the binocular camera images is used in 
smooth pursuit of the target. Stillman et al. [�17] present a 
face recognition system for (at most two) people in the 
scene. They use two static and two pan-tilt-zoom cameras. 
The static cameras are used to detect people and to 
estimate their 3D position.  This position is used to 
initialize the pan-tilt-zoom (PTZ) camera. The PTZ -
camera images are used to track the target smoothly and 
recognize faces. The functionality of tracking using the 
PTZ -camera and face recognition is performed using 
FaceIt a commercial package from Identix [�10]. 

 Collins et al. [�3] present a wide area surveillance 
system using multiple cooperative sensors. The goal of 
the system is to provide seamless coverage of extended 
areas using a network of sensors. They use background 
subtraction to detect objects, normalized cross correlation 
to track targets between frames and classify objects into 
people and different types of vehicles. Human motion 
analysis is performed using a star-skeletonization 
approach. They use both triangulation and the ground 
plane assumption to determine the 3D position of objects. 
The camera-derived positions are combined with a digital 
elevation map. The system has 3D visualization capability 
for tracked objects and a sophisticated user interface for 
interacting with the multi-sensor system. 

Our approach is to estimate the true 3D position of a 
person’s head using head detection and triangulation, and 
to use this 3D position to control the pan-tilt-zoom 
camera.  There exists very little work in this area. The 
approach closest to our work is by Stillmann et al. [�17].  



Our approach uses shape-based head detection to 
establish correspondence between the two static views. 
Stillman et al. use a narrow stereo baseline and color 
correlation to establish correspondence. They also use 
face tracking in the fine view to keep the face centered in 
the high-resolution view.  Our approach of using the 
coarse scale tracking to drive the PTZ cameras is more 
robust since losing track at the higher resolution is more 
likely. Their approach does not scale to multiple people 
and other body parts, both of which we are poised to 
address. 
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Figure 1 Plan view of the monitored space, with two 
fixed cameras (Cohu1, Cohu2) and two pan-tilt-zoom 
cameras (EviD30,  EviD100). 

2. SYSTEM OVERVIEW 
Figure 1 shows the camera setup for the face cataloging 
system.  The two static cameras (Cohu 1000) have 
overlapping fields of view and are used for wide baseline 
stereo triangulation. The two pan-tilt-zoom cameras 
(Sony EviD30, EviD100) are used to zoom in on the 
moving targets. All the cameras, both static and pan-tilt 
are calibrated to a common coordinate system. We have 
used the OpenCV [�11] camera calibration code. The 
monitored space is about 20ft x 19ft.  The tracking and 
camera control components of the face cataloging system 
run real time on a dual 2GHz Pentium machine. The 
video recorder is on a separate server which 
communicates with the tracking server via a socket 
interface. Sample videos of the system can be found at 
http://www.research.ibm.com/people/a/aws/peoplevision/
videos.html 

Figure 2 shows a high level block diagram of the face 
cataloging system. Each of the static camera images is 
segmented using background subtraction [�9].   The 
foreground blobs are tracked  by the 2D Multi-blob 
Tracker. The outputs of the two 2D trackers are combined 

by the 3D Multi-Blob Tracker to generate 3D tracks.  
Each 3D track is analyzed to detect the head in the 
component 2D views. The 2D head positions are used to 
determine the true 3D position of the persons head.  The 
3D head positions are then used by the active camera 
manager to assign the cameras to appropriate tracks and 
drive pan-tilt-zoom parameters of the cameras. There are 
a variety of policies for active camera assignment and 
control. The details of each of the major components are 
described in the following sections. 
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Figure 2: Block diagram of face cataloger system. 

 

3. 3D MULTI-BLOB TRACKING  
Figure 3 shows the key components of the 3D multi-blob 
tracking system.  The 2D blob tracking relies on 
appearance models which are image templates. New 
appearance models are created when an object enters a 
scene. In every new frame, each of the existing tracks is 
used to try to explain the foreground pixels. The fitting 
mechanism used is correlation, implemented as 
minimization of sum of absolute pixel differences over a 
predefined search area. During occlusions, foreground 
pixels may be overlapped by several appearance models. 
Color similarity is used to determine which model lies in 
front and infer a relative depth ordering for the tracks. 



Once this relative depth ordering is established, the tracks 
are correlated in order of depth. The correlation process is 
gated by the explanation map which holds at each pixel 
the identities of the tracks explaining the pixels. Thus 
foreground pixels that have already been explained by a 
track do not participate in the correlation process with 
more distant models.  The explanation map is now used to 
update the appearance models of each of the existing 
tracks. Regions of foreground pixels that are not 
explained by existing tracks are candidates for new tracks. 
A detailed discussion of the 2D multi-blob tracking 
algorithm can be found in [�18].  The 2D multi-blob 
tracker is capable of tracking multiple objects moving 
within the field of view of the camera, while maintaining 
an accurate model of the shape and color of the object. 
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Figure 3 Block Diagram of 2D Multi-Blob Tracker. 

Figure 4 shows a block diagram of the 3D tracker which 
uses wide baseline stereo to derive the 3D positions of 
objects.  At every frame, we measure the color distance 
between all possible pairings of tracks from the 2 views. 
We use the Bhattacharya distance between the normalized 
color histograms of the tracks. For each pair we also 
measure the triangulation error, which is defined as the 
shortest 3D distance between the rays passing through the 
centroids of the appearance models in the two views. The 
triangulation error is generated using the camera 
calibration data. To establish correspondence we 
minimize the color distance between the tracks from the 
view with the smaller number of tracks to the view with 
the larger number. This process can potentially lead to 
multiple tracks from one view being assigned to the same 

track in the other. We use the triangulation error to 
eliminate such multiple assignments.  The triangulation 
error for the final correspondence is thresholded to 
eliminate spurious matches that can occur when objects 
are just visible in one of the two views. Once a 
correspondence is available at a given frame, we now 
need to establish a match between the existing set of 3D 
tracks and 3D objects present in the current frame.  We 
use the component 2D track identifiers of a 3D track and 
match them against the component 2D track identifiers of 
the current set of objects to establish the correspondence. 
The system also allows for partial matches, thus ensuring 
a continuous 3D track even when one of the 2D tracks 
fails. Thus the 3D tracker is capable of generating 3D 
position tracks of the centroid of each moving object in 
the scene. It also has access to the 2D shape and color 
models from the two views that make up the track. 

  

Object To Track Matching

2D Multi-
blob tracker

2D Multi-
blob tracker

Camera
Calibration

Data

Color
Histogram
Matching

Triangulation
Error

Color and Shape
Models from 2D

Trackers

Object
Correspond

ence

Existing
3D Tracks

Update 3D Tracks  

Figure 4 Block Diagram of 3D Multi-blob tracker. 

  

4. HEAD DETECTION  
The head detection uses the smoothed silhouette of the 
foreground object as segmented using background 
subtraction. To interpret the silhouette, we use a simple 
human body model consisting of six body parts: head, 
abdomen, two hands, and two feet. First, we generate a 
one-dimensional “distance profile” that is the distance of 
each contour pixel from the contour centroid, following 
the contour clockwise. This distance profile is parsed into 
peaks and valleys based on the relative magnitudes of the 
successive extrema.  The peaks of the distance transform 
are used to hypothesize candidate locations of the five 



body parts: the head, two feet, and two hands. 
Determination of the head among the candidate locations 
is currently based a number of heuristics based on the 
relative positions of the candidate locations and the 
curvatures of the contour at the candidate locations. More 
specifically, the following objective function is used to 
decide the location of the head: 

      (a)                           (b) 
 Figure 5. Head detection steps. (a) The silhouette 
information (b) Distance profile showing significant 
peaks and the radii of curvature at the significant peaks. 

( ) * | ( ) | * *i i c x c i r i e iO Y Y w X X w R w E= − + − + − , 

where ( , )c cX Y , ( , )i iX Y denote the co-ordinates of the 
centroid of the body contour and center of the circle fitted 
to the contour segment associated with i th peak. iR , iE  

denote radius and residue of least square fitting of the i th 
circle. ( 1)xw = , ( 1)rw = , and ( 10)ew =  are weights 
associated with three components of the objective 
function. In other words, the objective function 
hypothesizes that smaller, more circular extrema are more 
likely to be heads. Similarly, the circles that are higher 
and vertically more aligned with the center of the body 
are preferred as heads.  Our approach is similar to [�7]. 

 
5. ACTIVE CAMERA MANAGEMENT 

There are two components in the active camera manager: 
the camera parameter controller (CPC) and the camera 
assignment manager (CAM). The CAM is charged with 
the responsibility of assigning the fixed number of pan-
tilt-zoom cameras to the objects that are active within the 
monitored space. Given that an active camera has been 
assigned to acquire close-up views of an object, the CPC 
is in charge of controlling the pan-tilt-zoom parameters of 
the camera on an ongoing basis. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 6 Output of the head detector on sample 
foregrounds obtained from the background 
subtraction. (a)-(d) show successful detection where as 
(e), (f) illustrate failure modes. 
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Camera Assignment Manager:  
The camera assignment manager is essentially a resource 
allocation algorithm. The resource allocation problem is 
made simpler when the number of active cameras is 
greater than the number of currently active tracks, but in 
all cases a number of different policies can be followed 
for assigning cameras to the subjects in the monitored 
space. The choice of policy will be driven by the 
application goals, following are few examples. 

• Location-Specific Assignment: Here the active 
cameras are assigned to objects moving near certain 
locations within the monitored space. For example, 
zoom in on persons near entrances. 

• Orientation-Specific Assignment: Here people are 
assigned cameras in front of them so that the clearest 
view of each person’s face is obtained. 

• Round Robin Sampling: Here the cameras are 
periodically assigned to different objects within the 
scene with the goal of uniformly covering all objects 
with close-up views. 

• Activity Based Assignment: Here the cameras can 
be assigned to people or objects performing certain 
activity. For example, in an airport, active cameras 
could automatically be assigned to track people who 
are running. 

Camera Parameter Control:  
This module is in charge of controlling the pan, tilt and 
zoom parameters of the camera. The objective of the 
camera control is to maintain the person being tracked 
within center of its view and to provide a closer view of 
the person. We use 3D position and velocity of the person 
for steering the pan tilt zoom camera.  The pan and tilt of 
the camera are controlled to position the detected head 
location at the center of the active camera image. Ideally, 
one would like to zoom the camera to maximize of 
portion of the image depicting head. This is not feasible 
because it entails tracking speeds not achievable by a 
typical low-cost steerable camera, especially, when the 
person is moving briskly close to the camera. The exact 
relationship between the effective zoom value, z , and the 
tracked person is governed by 

min
min max min

max min

( )* ( , )*t

d d
z z z z s v v f

d d
� �−= + − � �−� � , 

where [ ]min max,d d
,[ ]min max,z z

 denote the ranges of 

distances in the operating space and camera zooms. d is 
distance of the person from the camera and v  is speed of 

the person. (.)f , (.,.)s  represent distance and speed 

based zoom modulating functions.  In our system, (.)f  is 
implemented as a continuous function and can be one of 

the following two policies: (a) linear, when ( )f x x= . 

Or (b) sublinear, when ( )f x x= . On the other hand, 

we have implemented ( , )ts v v  as a discrete function:  

,
( , )

,
c t

t
w t

m v v
s v v

m v v

<�
= � ≥	  

where, tv  is a speed threshold, and ,c wm m  denote zoom 
multipliers corresponding to close-up and wide-angle 
views of the scene. That is, the system steers the zoom of 
the camera in two modes: (a) Close-up: when the person 
is deemed to be static or moving with sufficiently small 
velocity, the zoom multiplier of the camera is set to  a 

predetermined high value ( 0.1)cm = ; (b) Wide Angle: 
when the person is moving with higher speeds, the zoom 

multiplier is set to predetermined  low value ( 0.0)wm =   
. Figure 7 shows the zoom values switching to close-up at 
low velocity points. 

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600

3D
 V

el
oc

ity
 M

ag
ni

tu
de

 (m
m

/F
ra

m
e)

Frame Number

Velocity
Zoom Multiplier (x400)

 

Figure 7: Zoom control signal and relationship to 
measured head velocity. 

6. ERROR ANALYSIS 
The ultimate goal of the face cataloger is to obtain good 
close-up head shots of people walking through the 
monitored space.  The quality of the close-up face clips is 
a function of the accuracy of a number of underlying 
components. Following are the potential sources of errors 
in the system. 

• Tracking Continuity Errors: These are errors 
in the continuous tracking of objects, these could 
be  

o 2D Track Breakage: These errors occur 
when the tracker prematurely terminates 
a track and creates a new track for the 
same object.  

o 2D Track Swap: This error occurs when 
the objects being represented by a track 



get interchanged, typically after an 
occlusion. 

o 3D Track Swap: This can occur due to 
errors in the inter-view correspondence 
process. 

• 2D Head Detection Errors: These are errors in 
the position and size of the head detected in each 
of the 2D views. 

• True Head Center Error.  Since we are 
detecting the head in two widely different views, 
the centers of the two head bounding boxes do 
not correspond to a single physical point and 
hence will lead to errors in the 3D position. 

• 3D Head Position Errors: There are errors in 
the 3D position of the head due to inaccuracy in 
the camera calibration data. 

• Active Camera Control Errors: These are 
errors that arise due to the active camera control 
policies. For example, the zoom factor of the 
camera is dependent on the velocity of the 
person, thus any error in velocity estimation will 
lead to errors in the zoom control. 

• Active Camera Delays: The delay in the control 
and physical motion of the camera will cause the 
close-up view of the head to be incorrect. 

7. EXPERIMENTS 
The errors discussed in the previous section break 

down into two distinct classes, errors in multi object 
tracking, and errors in acquiring close-up face images.  In 
this paper we focus on the evaluation of the ability to 
acquire close-up images of the face. Early performance 
metrics of our 2D multi-object tracking system have been 
reported in [�18]. Sample results on the multi-object 
tracking can be seen on our web page 
http://www.research.ibm.com/people/a/aws/peoplevision/
videos.html.  

Head Close-Up Performance: Figure  8 shows the 
results of a sample run, where a person walked through 
the space. Figure 9 shows the corresponding static and 
close-up camera images at two positions along the path. 
This video was acquired using the sub-linear zoom policy 
discussed above. Clearly the close-up images have much 
more information relating to identity. These images 
however are not yet suitable for current day face 
recognition algorithms which require a fairly frontal view 
of the face. The acquisition of frontal facial images 
requires face orientation estimation and appropriate 
deployment of pan-tilt-zoom cameras. This is one of the 
enhancements that are planned to the system presented 
herein. 
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Figure 8:  Plot of the X,Y positions of the persons path 
through the monitored space.  Number along the path 
indicate positions where the “velocity control policy” 
zoomed in on the person.  Images at two of these 
points are shown in Figure 9. 

 

 

Figure 9: Left Top: Image from EviD100 at frame 395. 
Left Bottom: Image from Cohu2 at frame 395. Right 
Top: Image from EviD100 at frame 930. Right 
Bottom: Image from Cohu1 at frame 930. 

Experimental Procedure: The basic experiment for all 
the results on head close-up performance involves a single 
person walking around the monitored space. In all these 
experiments the zoom was set a fixed value  of 



approximately 1/3rd of the maximum allowable zoom for 
both the PTZ cameras.   The following are the steps. 

1. Run the face cataloger with one person walking 
around the monitored space. 

2. Both the outputs of the PTZ cameras and the static 
cameras are saved as AVI files, which are then used 
for ground truth marking. 

3. Manually annotate the position of the head in the 
close-up views and the zoomed in views at regular 
intervals through the sequence. The head is marked 
using a bounding rectangle on a GUI. 

2D Head Detection Performance   
Here we measure the distance between the centroids of 
the bounding boxes of the head in the static view as 
marked by the human annotator and as detected by the 
head detection algorithm. Figure 10 shows the errors in 
pixel position over a single run and Figure 11 shows the 
error distribution over multiple runs. Clearly, the head 
detection process is very accurate for normal activities 
like walking. Dealing with adversarial behavior will 
require further work. 
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Figure 10 Pixel distance between the head centroid 
position reported by the head detector and annotated 
ground truth for a sample run. 

3D Head Position Detection Performance:  
The primary source of this error is camera calibration. A 
good measure of this error is the distance between the 
center of the head (as detected by the 2D head detection 
system) and the re-projected position of the head from 
3D, after triangulation. If the calibration data were 
perfect, the  re-projected point would coincide with the 
2D head centroid. Figure 12 shows the pixel distance 
between the 2D head position and the re-projected 
position at each point along the persons trajectory. Clearly 
the error is not uniform at all parts of the space and is a 
function of the relative position with reference to the two 
static cameras. Figure 13 shows the re-projection error 
distribution. Better calibration can improve the 
performance of the system. 
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Figure 11 Head position error (from ground truth) 
distribution over multiple runs. Errors reported for 
both static cameras. 
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Figure 12: Pixel distance between the head centroid 
position reported by the head detector and the re-
projection of the 3D head position onto one of the 
static views. 
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Figure 13 3D Head re-projection error distribution 
over multiple runs. Errors reported for both static 
cameras. 

 



Close-up Head Capture Performance: 
 Figure 14 shows how the probability of head 
capture as a function of the zoom factor. This was 
computed by measuring the distance of the head (as 
marked by the annotator)  in the close-up views from the 
centre of the close-up image at the default zoom value. 
These measurements are then used to generate the 
probability at higher zoom factors by appropriately 
scaling the size of the image and determining if the entire 
bounding box of the head is contained within the zoomed 
in view. The EviD100 has faster mechanical motion than 
the EviD30, this is clearly visible in the plot.   
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Figure 14: Probability of head capture as a function of 
zoom 

8. CONCLUSIONS 
This paper has presented a novel system for linking 
identity to location for security and surveillance 
applications. The system uses active cameras to zoom in 
on the head region of people as they move freely about 
the monitored space. The paper presented the first set of 
evaluations of the face cataloging system.  Our plans 
include long term evaluations of the system, evaluations 
of camera control policies and evaluation in the targeted 
environments (like airports, stores etc). 

Clearly, achieving high levels of security at a 
facility is a complex challenge of which technology is one 
of the components. The system presented herein beings to 
address one of the critical challenges of video 
surveillance, namely the ability to selectively focus 
attention of the system  and to acquire information at 
multiple scales. Face cataloging is one instantiation of 
multi-scale imaging. A similar system could be used to 
acquire close-up videos of suspicious activities, or 
zoomed in pictures of cars on a freeway. 
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