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Abstract. This paper presents a novel framework for human action
recognition based on sparse coding. We introduce an effective coding
scheme to aggregate low-level descriptors into the super descriptor vec-
tor (SDV). In order to incorporate the spatio-temporal information, we
propose a novel approach of super location vector (SLV) to model the
space-time locations of local interest points in a much more compact way
compared to the spatio-temporal pyramid representations. SDV and SLV
are in the end combined as the super sparse coding vector (SSCV) which
jointly models the motion, appearance, and location cues. This repre-
sentation is computationally efficient and yields superior performance
while using linear classifiers. In the extensive experiments, our approach
significantly outperforms the state-of-the-art results on the two public
benchmark datasets, i.e., HMDB51 and YouTube.

1 Introduction

Action recognition has been widely applied to a number of real-world appli-
cations, e.g., surveillance event detection, human-computer interaction, content-
based video search, etc. It is of great challenge to recognize actions in
unconstrained videos due to the large intra-class variations caused by factors
such as viewpoint, occlusion, motion style, performance duration, and cluttered
background. Most of recent action recognition approaches rely on the bag-of-
visual-words (BOV) representation which consists in computing and aggregat-
ing statistics from local space-time features [15] [26] [27]. In this framework, a
video representation can be obtained by extracting low-level features, coding
them over a visual dictionary, and pooling the codes in some well-chosen sup-
port regions. A significant progress has been made in the development of local
space-time features [26] [27]. After low-level feature extraction, the approaches
similar to those used for object recognition are generally employed.

In the basic BOV framework, a visual dictionary is learned by K-means and
used to quantize low-level features through hard-assignment [15]. A number of
coding variants have been proposed and reported to achieve the state-of-the-art
results in image and video recognition, e.g., local soft assignment [19], sparse
coding [30], and locality-constrained linear coding [28]. These approaches re-
duce information loss by relaxing the restrictive cardinality constraint in coding
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Fig. 1. Frameworks of STP (up) and SSCV (bottom). STP represents a video by
concatenating BOVs from the entire sequence and spatio-temporal cells. SSCV jointly
models the motion, appearance, and location information. (a) A visual dictionary of
local descriptors is learned by sparse coding. (b) 3D space-time locations are associated
to each visual word in (a) according to the assignments of descriptors. (c) A visual
dictionary of locations is learned by sparse coding for each set in (b). SSCV is obtained
by the combination of (d) SDV and (e) SLV.

descriptors. Accordingly, the average pooling can be replaced by the max pool-
ing [30]. Recently, several coding schemes have emerged to encode descriptors
with respect to the visual words that they are assigned to, e.g., Fisher vector
[23], super vector coding [31], and vector of locally aggregated descriptors [10].
These methods usually retain high order statistics and have noticeably better
performances [25].

The basic BOV aggregates the assignments over an entire video to generate
the final representation. It obviously incurs a loss of information by discarding all
the spatio-temporal locations of local space-time features. An extension to the
completely orderless BOV for action recognition is the spatio-temporal pyramid
(STP) [15] [26], inspired by the spatial pyramid matching (SPM) [16] for image
classification. In this approach, a video sequence is repeatedly and evenly subdi-
vided into a set of spatial and temporal cells where descriptor-level statistics are
pooled. It can be used to roughly capture the spatial layout and temporal order
of an action sequence. However, the concatenation of BOV histograms over many
subvolumes of a video dramatically increases feature dimensions, which largely
increase the learning and storage costs.

In this paper, we propose a novel action recognition framework on low-level
feature coding and spatio-temporal information modeling, as illustrated in Fig.
1. We first employ a sparse coding approach [20] to compute the visual dictionary
and coefficients of local descriptors. Each descriptor is coded by recording the
difference of the local descriptor to all visual words. The coefficient-weighted
difference vectors are then aggregated for each visual word through the whole
video. These vectors of all visual words are in the end concatenated as the
representation of super descriptor vector (SDV), which is used to characterize the
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motion and appearance cues. We further model the spatio-temporal information
by computing the super location vector (SLV) of the space-time coordinates of
local descriptors assigned to each visual word. We combine SDV and SLV as the
super sparse coding vector (SSCV) which jointly models the motion, appearance,
and spaio-temporal information.

The main contributions of this paper are summarized as follows. First, we
provide an effective coding scheme to aggregate low-level features into a dis-
criminative representation, which relies on a smaller visual dictionary. Second,
we propose a novel approach to incorporate the spaio-temporal information in
a much more compact representation, which correlates and models the motion,
appearance, location cues in a unified way. Third, we perform a systematic evalu-
ation of the state-of-the-art coding and pooling methods in the context of action
recognition.

The remainder of this paper is organized as follows. Section 2 introduces the
related work of feature aggregation and spatio-temporal information modeling.
Section 3 describes the detailed procedures to compute SDV, SLV, and SSCV.
A variety of experimental results and discussions are presented in Section 4.
Finally, Section 5 summarizes the remarks of this paper.

2 Notations and Related Work

In this section, we introduce the notations used throughout this paper and sum-
marize the related work on aggregating local descriptors and modeling spatial
(temporal) information. We represent a video sequence V by a set of low-level
descriptors X = {x1, . . . ,xn} in R

m×n and associated locations L = {l1, . . . , ln}
in R

3×n. C indicates the space-time cells defined in a spatio-temporal pyramid
with Cj denoting the jth cell. D = {d1, . . . ,dK} is a visual dictionary with K
visual words dk ∈ R

m.

2.1 Feature Aggregation

Let F and G denote the coding and pooling operators, respectively. The final
representation of V is the vector z obtained by sequentially coding, pooling, and
concatenating over all space-time cells:

αi = F(xi), i = 1, . . . , n, (1)

hj = G ({αi}i∈Cj

)
, j = 1, . . . , |C|, (2)

zT =
[
hT
1 . . .hT

|C|
]
. (3)

In the basic BOV framework, hard assignment F minimizes the distance of
xi to D that is usually learned by K-means. G performs the averaging over each
pooling cell Cj :

αi ∈ {0, 1}K,αi,j = 1 iff j = argmin
k

‖xi − dk‖22, (4)
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hj =
1

|Cj |
∑

i∈Cj

αi. (5)

In order to enhance the probability density estimation, soft assignment was
introduced in [5]. It codes a descriptor xi by multiple visual words in D using
a kernel function (e.g., the Gaussian function) of the distance between xi and
dk. Liu et al. proposed local soft assignment in [19] to further improve the
membership estimation to visual words. By taking account of the underlying
manifold structure of local descriptors, F in local soft assignment only employs
the K nearest visual words NK (xi) to code a descriptor xi and sets its distances
of the remaining visual words to infinity:

αi,k =
exp

(
−βd̂ (xi,dk)

)

∑K
j=1 exp

(
−βd̂ (xi,dj)

) , (6)

d̂ (xi,dk) =

{‖xi − dk‖2 if dk ∈ NK (xi) ,
∞ otherwise,

(7)

where β is a smoothing factor to control the softness of assignment. As for G in
local soft assignment, it was observed that max pooling in the following equation
outperformed average pooling:

hj,k = max
i∈Cj

αi,k, for k = 1, . . . ,K. (8)

Parsimony has been widely employed as a guiding principle to compute sparse
representation with respect to an overcomplete visual dictionary. Sparse coding
[20] approximates xi by using a linear combination of a limited number of visual
words. It is well known that the �1 penalty yields a sparse solution. So the sparse
coding problem can be solved by:

min
D,α

1

n

n∑

i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
, (9)

subject to dT
k dk ≤ 1, ∀k = 1, . . . ,K,

where λ is the sparsity-inducing regularizer to control the number of non-zero
coefficients in αi. It is customary to combine sparse coding with max pooling as
shown in Eq. (8).

Fisher vector [23] extends the BOV representation by recording the deviation
of xi with respect to the parameters of a generative model, e.g., the Gaussian
mixture model (GMM) characterized by {πk,μk,σk, k = 1, . . . ,K}. πk, μk, and
σk are the prior mode probability, mean vector, and covariance matrix (diag-
onal), respectively. Let γk

i be the soft assignment of xi to the kth Gaussian



Super Sparse Coding Vector with Spatio-temporal Awareness 731

component. We obtain the Fisher vector of X by concatenating the gradient
vectors from K Gaussian components:

ρk =
1

n
√
πk

n∑

i=1

γk
i

(
xi − μk

σk

)
, τ k =

1

n
√
2πk

n∑

i=1

γk
i

[
(xi − μk)

2

σ2
k

− 1

]

, (10)

where ρk and τ k are m-dimensional gradients with respect to μk and σk of the
kth Gaussian component. The relative displacements of descriptors to the mean
and variance in Eq. (10) retain more information lost in the traditional coding
process. The superiority of Fisher vector was recently identified in both image
classification [25] and action recognition [29].

2.2 Spatial and Temporal Information

The orderless representation of a video completely ignores the spatial and tempo-
ral information, which could convey discriminative cues for action recognition.
We outline the relevant representative work that attempts to account for the
spatial and temporal locations of low-level features.

The dominant approach to incorporate spatial and temporal information is the
spatio-temporal pyramid (STP), as illustrated in Fig. 1. Inspired by the spatial
pyramid matching (SPM) [16], Laptev et al. [15] proposed to partition a video
to a set of space-time cells in a coarse-to-fine manner. Each cell is represented
independently and the cell-level histograms hj are finally concatenated into the
video-level histogram z as in Eq. (2-3). This representation has been proven to
be effective when the action categories exhibit characteristic spatial layout and
temporal order.

In image classification, the feature augmentation based methods were pro-
posed in [21] [24] to append a weighted location li to the corresponding de-
scriptor xi. As opposed to SPM, this approach does not increase the feature
dimensionality thus makes the learning more efficient. Krapac et al. [12] intro-
duced the spatial Fisher vector to encode the spatial layout of local image fea-
tures. The location model can be learned by computing per visual word the mean
and variance of spatial coordinates of the assigned local image patches. While
these representations are more compact, the evaluation results only showed
marginal improvement over SPM in terms of classification accuracy.

3 Super Sparse Coding Vector

We describe the detailed procedures of computing SSCV in this section. We pro-
pose a novel feature coding scheme based on sparse coding to aggregate descrip-
tors and locations into discriminative representations. The space-time locations
are included as part of the coding step, instead of only coding motion and ap-
pearance cues and leaving the spatio-temporal coherence to be represented in the
pooling stage. This enables SSCV to jointly characterize the motion, appearance,
and location information.
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3.1 Modeling Space-Time Features

We represent each local feature as the descriptor-location tuple f i = (xi, li). By
employing a generative model (e.g., GMM) over descriptors and locations, we
model f i as:

p(f i) =
K∑

k=1

p(w = k)p(xi|w = k)p(li|w = k), (11)

where p(w = k) denotes the prior mode probability of the kth Gaussian com-
ponent in the descriptor mixture model, and w is the assignment index. We
assume the prior mode probabilities are equal, i.e., p(w = k) = 1/K, ∀k. The
kth Gaussian of descriptors is defined by:

p(xi|w = k) = N (xi;μk,σk) , (12)

where μk and σk are the mean and covariance (diagonal) of the kth Gaussian.
As illustrated in Fig. 1, we jointly model the spatio-temporal information by
associating the locations of descriptors to the corresponding visual descriptor
word, i.e., the Gaussian of descriptors in this context. We define the spatio-
temporal model by using a GMM distribution over the locations associated with
the kth visual word:

p(li|w = k) =
G∑

g=1

πkgN
(
li;μkg

,σkg

)
, (13)

where πkg , μkg
, and σkg are the prior mode probability, mean, and covariance

(diagonal) of the gth Gaussian of locations in the kth visual descriptor word.
We again assume the prior mode probabilities are equal, i.e., πkg = 1/G, ∀g.

3.2 Computing Super Descriptor Vector (SDV)

We utilize sparse coding to learn a visual dictionary and code descriptors. We ag-
gregate the coefficient-weighted differences between local descriptors and visual
words into a vector, rather than directly pooling the coefficients.

The generation process of xi is modeled by the probability density function
in Eq. (12). The gradient of the log-likelihood of this function with respect to
its parameters describes the contribution of the parameters to the generation
process [8]. Here we focus on the gradient with respect to the mean:

∂ ln p(xi|w = k)

∂μk

= ρki σ
−1
k (xi − μk) , (14)

where ρki denotes the posterior p(w = k|xi). If making the three approximations:

1. the posterior is estimated by the sparse coding coefficient, i.e., ρki = αk
i ,

2. the mean is represented by the visual word in sparse coding, i.e., μk = dk ,
3. the covariance is isotropic, i.e., σk = εI with ε > 0 ,
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we can simplify Eq. (14) to αk
i (xi − dk), where αk

i is the coefficient of the ith
descriptor xi to the kth visual word dk in Eq. (9).

We choose sparse coding in the approximation because it is much cheaper
to compute the means (dictionary) compared to the Expectation Maximization
(EM) algorithm in training GMM. Especially, it was recently shown in [3] that
a reasonably good dictionary can be created by some simple methods, e.g., ran-
dom sampling in a training set. Moreover, our empirical evaluations show the
approximations based on sparse coding improves the recognition accuracy. We
then apply average pooling to aggregate the coefficient-weighted difference vec-
tors for each visual word:

uk =
1

n

n∑

i=1

αk
i (xi − dk) . (15)

The final vector representation U of SDV is the concatenation of uk from K
visual words and is therefore with the dimensionality of mK:

U =
[
uT
1 . . .uT

K

]T
. (16)

SDV has several remarkable properties: (1) the relative displacements of de-
scriptors to visual words retain more information lost in the traditional coding
process; (2) we can compute SDV upon a much smaller dictionary which reduces
the computational cost; (3) it performs quite well with simple linear classifiers
which are efficient in terms of both training and testing.

3.3 Computing Super Location Vector (SLV)

The descriptors quantized to the same visual word exhibit characteristic spatio-
temporal layout. In order to capture this correlation between motion, appear-
ance, and location, we associate space-time locations to the visual descriptor
words that corresponding descriptors are assigned to. We also employ sparse
coding to learn a visual location dictionary to code the location set associated
with each visual descriptor word, as illustrated in Fig. 1(c). The coefficient-
weighted differences between locations and visual location words are aggregated
as the spatio-temporal representation.

In order to describe the contribution of the parameters to the generation
process of li, we take the gradient of the log-likelihood of Eq. (13) with respect
to the mean:

∂ ln p (li|w = k)

∂μkg

= ρ
kg

i σ−1
kg

(
li − μkg

)
, (17)

where ρ
kg

i denotes posterior p (t = g|li, w = k) and t is the assignment index. We

can interpret ρ
kg

i as a spatio-temporal soft assignment of a descriptor location li
associated with the kth visual descriptor word to the gth Gaussian component
in the location mixture model.
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Algorithm 1. Computation of SSCV

Input: a video sequence V
a visual descriptor dictionary Dx = {dk}
a visual location dictionary Dl =

{
dkg

}

Output: SSCV Z
1 compute spatio-temporal features X = {xi} and L = {li} from V
2 compute coefficients

{
αk
i

}
of X on {dk}Kk=1 by sparse coding

3 for visual descriptor word k = 1 to K do

4 uk := average pooling αk
i (xi − dk), xi ∈ X

5 associate locations to the kth visual descriptor word: Lk =
{
li|αk

i > 0
}

6 compute coefficients
{
α
kg

i

}
of Lk on

{
dkg

}G

g=1
by sparse coding

7 for visual location word g = 1 to G do

8 vkg := average pooling α
kg

i

(
li − dkg

)
, li ∈ Lk

9 end

10 Zk :=
[
uT

k ,v
T
k1

. . .vT
kG

]T

11 end

12 Z :=
[
ZT

1 . . .ZT
K

]T

13 signed square rooting and �2 normalization

If we enforce the approximations (1-3) in Section 3.2, Eq. (17) can be simplified

to α
kg

i

(
li − dkg

)
, where α

kg

i is the sparse coding coefficient of the ith location
li to the gth visual location word dkg associated with the kth visual descriptor
word dk. As illustrated in Fig. 1(b), let Lk denote the set of locations that are
associated to the kth visual descriptor word according to the positive assignments
of their descriptors, i.e., Lk =

{
li|αk

i > 0
}
. We then employ the average pooling

to aggregate the coefficient-weighted difference vectors for each visual location
word:

vkg =
1

|Lk|
∑

li∈Lk

α
kg

i

(
li − dkg

)
. (18)

The concatenation of vkg from G visual location words associated with K
visual descriptor words forms the final representation V of SLV with a dimen-
sionality of 3GK:

V =
[
vT
11 . . .v

T
1G . . .vT

K1
. . .vT

KG

]T
. (19)

SLV shares the same remarkable properties as SDV. Moreover, SLV can be
computed on much smaller visual descriptor dictionary (e.g., K = 100) and vi-
sual location dictionary (e.g., G = 5). If we combine SDV and SLV, the resulting
vector is of (m+3G)K dimensions, where the descriptor dimensionality m (e.g.,
162 in STIP [14]) is normally much larger than 3G. So another major benefit
is that, as opposed to STP, SLV only slightly increases feature dimensions thus
making the learning and predicting more efficient.
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We adopt the two normalization schemes introduced in [23] on SDV and SLV,
i.e., signed square rooting and �2 normalization. As illustrated in Fig. 1, each
visual word in (a) is in the end characterized by two parts, i.e., uk in (d) and
[vk1 . . .vkG ] in (e). They are used to model the motion (appearance) and location
cues, respectively. We summarize the outline of computing SSCV of an action
sequence in Algorithm 1.

4 Experiments and Discussions

In this section, we extensively evaluate the proposed method on the two public
benchmark datasets: HMDB51 [13] and YouTube [18]. In all experiments, we
employ LIBLINEAR [4] as the linear SVM solver. Experimental results show
that our algorithm significantly outperforms the state-of-the-art methods. Our
source code for computing SSCV is available online.1

4.1 Experimental Setup

Datasets. The HMDB51 dataset [13] is collected from a wide range of sources
from digitized movies to online videos. It contains 51 action categories and 6766
video sequences in total. This dataset includes the original videos and the sta-
bilized version. Our evaluations are based on the original ones. We follow the
same experimental setting as [13] using three training/testing splits. There are 70
videos for training and 30 videos for testing in each class. The average accuracy
over the three splits is reported as the performance measurement. The YouTube
dataset [18] contains 11 action classes collected under large variations in scale,
viewpoint, illumination, camera motion, and cluttered background. This dataset
contains 1168 video sequences in total. We follow the evaluation protocol as in
[18] by using the leave-one-out cross validation for a pre-defined set of 25 groups.
We report the average accuracy over all classes as the performance measurement.

Low-Level Feature Extraction. We evaluate our approach on five low-level
visual contents using appearance and motion features. STIP is used to detect
sparse interest points and compute HOG/HOF as the descriptor [14]. Motivated
by the success of dense sampling in image classification and action recognition, we
also employ the dense trajectories [26] to densely sample and track interest points
from several spatial scales. Each tracked interest point generates four descriptors:
HOG, HOF, trajectory (TRA), and motion boundary histogram (MBH). HOG
focuses on static appearance cues, whereas HOF captures local motion infor-
mation. TRA characterizes the geometric shape of a trajectory. MBH computes
gradient orientation histograms from horizontal and vertical spatial derivatives
of optical flow. It has been proven effective to represent motion information and
suppress camera motion. So for each action sequence, we compute five features:
STIP (162), HOG (96), HOF (108), TRA (30), and MBH (192), where the num-
ber in parentheses denotes the descriptor dimensionality.

1 http://yangxd.org/code

http://yangxd.org/code
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Fig. 2. Recognition accuracy (%) of FV and SDV using different descriptors with a
variety of visual dictionary size K on the HMDB51 dataset. The bars in light color and
deep color denote the results of FV and SDV, respectively. This figure is better viewed
on screen.

4.2 Evaluation of Feature Aggregation Schemes

In this section, we compare and analyze the performance of a variety of feature
aggregation schemes. We focus on the HMDB51 dataset for a detailed evaluation
of the coding and pooling parameters. Note: the spatio-temporal information is
discarded in the experiments of this section.

The baseline aggregation method is the hard assignment (Hard) paired with
average pooling in Eq. (4-5). The local soft assignment (LocalSoft) and max
pooling in Eq. (6-8) are employed with K = 10 nearest neighbors and β = 1.
We also adopt the sparse coding (SC) with max pooling in Eq. (8-9) and set the
regularizer λ = 1.2/

√
m as suggested in [20]. As a successful feature aggregation

scheme, Fisher vector (FV) in Eq. (10) is compared as well. Before computing
FV, we follow the preprocess in [23] [25] to apply PCA to project the descriptors
to half dimensions. This step is mainly used to decorrelate the data and make it
better fit the diagonal covariance matrix assumption in GMM.

SDV is compared to other feature aggregation schemes in Table 1. We set the
visual dictionary size K = 4000 for Hard, LocalSoft, SC, and K = 500 for FV
and SDV. As shown in this table, LocalSoft consistently outperforms Hard due
to the enhanced membership estimation of descriptors to visual words. While
still inferior to our method, SC largely improves the accuracy over Hard and

Table 1. Recognition accuracy (%) of different aggregation schemes using a variety of
descriptors on the HMDB51 dataset

Hard LocalSoft SC FV SDV

STIP 19.2 24.5 28.6 32.8 34.2
TRA 17.3 18.7 21.9 22.1 23.9
HOG 21.0 25.3 31.5 33.3 33.1
HOF 22.0 25.8 34.5 36.9 37.3
MBH 31.1 32.6 36.1 44.6 44.3



Super Sparse Coding Vector with Spatio-temporal Awareness 737

Fig. 3. Evaluations of SLV on the HMDB51 dataset. (a) Performance (%) of SLV and
SSCV using STIP for a variety of visual location dictionary size G. (b) Performance
(%) of SLV, SDV, and SSCV for a variety of features.

LocalSoft by introducing the sparsity in coding descriptors. SDV outperforms
FV in STIP, TRA, and HOF, and yields comparable results to FV in HOG
and MBH. We further conduct a detailed evaluation of FV and SDV as shown
in Fig. 2. SDV systematically outperforms FV in STIP and TRA, irrespective
of the visual dictionary size. For HOG, HOF, and MBH, SDV achieves higher
recognition accuracy than FV in a relatively small size. SDV and FV tend to
have comparable results as the visual dictionary size enlarges. In addition to
the superior recognition accuracy, SDV is computationally more efficient. This
is because more information is stored per visual word, which enables SDV to
perform quite well by using a much more compact visual dictionary. We use
K = 500 to compute SDV in the following experiments if not specified.

4.3 Evaluation of Spatio-temporal Models

Here we evaluate different approaches on modeling the spatio-temporal informa-
tion and report results for the HMDB51 dataset.

STIP is first used to investigate the impact of the size of visual location
dictionary on SLV. As shown in Fig. 3(a), the results of SLV ranges from 22.4%
to 25.0% as G increases from 5 to 40. The performance of SDV is plotted as a
reference. When SDV and SLV are combined to SSCV, it is not very sensitive to
the size and achieves the best result using only 5 visual location words. In the
following experiments, we use G = 5 to compute SLV. Fig. 3(b) demonstrates
the results of SLV, SDV, and SSCV for a variety of features. SSCV consistently
and significantly outperforms SDV for all features. This shows SLV is effective
to model and provide the complementary spatio-temporal information to the
motion and appearance cues in SDV. It is interesting to observe that SLV based
on the pure space-time information even outperforms SDV in the feature TRA.

SSCV is then compared to the widely used spatio-temporal pyramid (STP)
on modeling the space-time information. We use in our experiments four dif-
ferent spatio-temporal grids. For the spatial domain we employ a 1 × 1 whole
spatial block and a 2 × 2 spatial grid. For the temporal domain we apply the
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Table 2. Performance (%) of STP and SSCV on modeling the spatio-temporal infor-
mation for a variety of features on the HMDB51 dataset

STIP TRA HOG HOF MBH

SDV 34.2 23.9 33.1 37.3 44.3
STP 35.4 (+1.2) 28.8 (+4.9) 34.4 (+1.3) 38.1 (+0.8) 46.9 (+2.6)
SSCV 37.4 (+3.2) 29.9 (+6.0) 36.9 (+3.8) 39.7 (+2.4) 48.0 (+3.7)

entire sequence and two temporal segments. The combination of these subdivi-
sions in both spatial and temporal domains generate 15 space-time cells in total.
We compute a separate SDV from each cell and concatenate them as the final
representation of STP. As shown in Table 2, both STP and SSCV improve the
results because of the spatio-temporal cues complemented to SDV. However, for
all features SSCV achieves more significant improvement than STP, while with
much more compact representation. In our experimental setting, the dimensions
of STP and SSCV are 15mK and (m+ 15)K, where m is the descriptor dimen-
sionality. So in comparison to STP, our approach can also considerably reduce
the computation and memory costs in both training and testing.

Table 3. Comparison of SSCV and the state-of-the-art method for each individual
feature on the HMDB51 and YouTube datasets

HMDB51 (%) YouTube (%)

STIP TRA HOG HOF MBH STIP TRA HOG HOF MBH

WKSL’13 [26] - 28.0 27.9 31.5 43.2 69.2 67.5 72.6 70.0 80.6
SSCV 37.4 29.9 36.9 39.7 48.0 77.4 70.9 80.4 77.0 83.2

4.4 Comparison to State-of-the-Art Results

In this section, we compare our results to the state-of-the-arts on the two bench-
mark datasets: HMDB51 and YouTube. SSCV is first compared to the results
in [26] for each individual feature as demonstrated in Table 3. SSCV signifi-
cantly outperforms the approach in [26], though both methods are based upon
the same features. This is mainly because SDV is more representative than BOV
to capture the motion and appearance information, and SLV is more effective
than STP to model the spatio-temporal cues. Moreover, SSCV employs the lin-
ear SVM which is more efficient than the non-linear SVM with χ2 kernel used
in [26]. We combine all the features and compare with the most recent results in
the literature as displayed in Table 4. We can observe that SSCV significantly
outperforms the state-of-the-art results on the two datasets.
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Table 4. Comparison of SSCV to the state-of-the-art results as reported in the cited
publications

HMDB51 % YouTube %

GGHW’12 [6] 29.2 ICS’10 [7] 75.2
WWQ’12 [29] 31.8 LZYN’11 [17] 75.8
JDXLN’12 [11] 40.7 BSJS’11 [1] 76.5
WKSL’13 [26] 48.3 BT’10 [2] 77.8
PQPQ’13 [22] 49.2 WKSL’13 [26] 85.4
JJB’13 [9] 52.1 PQPQ’13 [22] 86.6
SSCV 53.9 SSCV 88.0

5 Conclusion

In this paper, we have presented a novel framework for action recognition. An
effective coding scheme SDV is proposed to capture motion and appearance cues
by sparse coding low-level descriptors and average pooling coefficient-weighted
difference vectors between descriptors and visual words. A novel approach SLV
is introduced to incorporate the spatio-temporal cues in a compact and dis-
criminative manner. The combination of SDV and SLV constitutes the final
representation of SSCV which jointly models the motion, appearance, and loca-
tion information in a unified way. Our approach is extensively evaluated on two
public benchmark datasets and compared to a number of most recent results.
Experimental results demonstrate that our approach significantly outperforms
the state-of-the-art methods.
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