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Abstract 
 

    We present a new method to robustly and efficiently 
analyze foreground when we detect background for a 
fixed camera view by using mixture of Gaussians models 
and multiple cues. The background is modeled by three 
Gaussian mixtures as in the work of Stauffer and 
Grimson [11]. Then the intensity and texture information 
are integrated to remove shadows and to enable the 
algorithm working for quick lighting changes. For 
foreground analysis, the same Gaussian mixture model is 
employed to detect the static foreground regions without 
using any tracking or motion information. Then the 
whole static regions are pushed back to the background 
model to avoid a common problem in background 
subtraction – fragmentation (one object becomes 
multiple parts). The method was tested on our real time 
video surveillance system. It is robust and run about 130 
fps for color images and 150 fps for grayscale images at 
size 160x120 on a 2GB Pentium IV machine with MMX 
optimization.  

1. Introduction 
Robust detection of moving objects in video streams is a 
significant issue for video surveillance. Background 
subtraction (BGS) is a conventional and effective 
approach to detect moving objects in the stationary 
background. To detect moving objects in a dynamic 
scene, adaptive background subtraction techniques have 
been developed [1, 3-13]. Stauffer and Grimson [11] 
modeled each pixel as a mixture of Gaussians and used 
an on-line approximation to update the model. Their 
system can deal with lighting changes, slow-moving 
objects, and introducing or removing objects from the 
scene. Monnet et al. [10] proposed a prediction-based 
online method for the modeling of dynamic scenes. Their 
approach has been tested on a coast line with ocean 

waves and a scene with swaying trees. However, they 
need hundreds of images without moving objects to learn 
the background model, and the moving object cannot be 
detected if they move in the same direction as the ocean 
waves. Mittal and Paragios [9] presented a motion-based 
background subtraction by using adaptive kernel density 
estimation.  In their method, optical flow is computed and 
utilized as a feature in a higher dimensional space. They 
successfully handled the complex background, but the 
computation cost is relatively high.  Some hybrid change 
detectors have been developed which combine temporal 
difference imaging and adaptive background estimation 
to detect regions of change [1, 5].  Huwer et al. [5] 
proposed a method of combining a temporal difference 
method with an adaptive background model subtraction 
scheme to deal with lighting changes. However, none of 
these methods can adapt to quick image variations such 
as a light turning on or off. Recently, Li et al. [7] 
proposed a Bayesian framework that incorporates 
spectral, spatial, and temporal features to characterize the 
background appearance at each pixel. Their method can 
handle both the static and dynamic backgrounds and good 
performance was obtained on image sequences containing 
targets of interest in a variety of environments, e.g., 
offices, public buildings, subway stations, campuses, 
parking lots, airports, and sidewalks.  
      Although many researchers focus on the background 
subtractions, few papers can be found in the literature for 
foreground analysis [2, 13].  Cucchiara et al. [2] analyzed 
the foreground as moving object, shadow, and ghost by 
combining the motion information. The computation cost 
is relatively expensive for real-time video surveillance 
systems because of the computation of optical flow. 

      Recently, the mixture of Gaussians method is 
becoming popular because it can deal with slow lighting 
changes, periodical motions from clutter background, 
slow moving objects, long term scene changes, and 
camera noises. But it cannot adapt to the quick lighting 



changes and cannot handle shadows well. A number of 
techniques have been developed to improve the 
performance of the mixture of Gaussians method [3, 4, 8, 
12]. In this paper, we employ a mixture of Gaussians 
method to analyze the foreground as moving objects, 
abandoned objects, or removed objects (ghosts) while 
detecting the background. The intensity and texture 
information are integrated to remove shadows and to 
make the algorithm working for quick lighting changes. 
Our method provides a solution for the following 
problems: 

 
• Extending the mixture of Gaussians BGS 

method works for quick lighting changes by 
integrating texture information.  

• Removing shadows for the mixture of Gaussians 
BGS method by using normalized cross-
correlation of the intensities. 

• Detecting the static foreground regions by using 
the same mixture of Gaussians of the 
background model. 

• Avoiding the fragments of foreground objects by 
pushing the whole static foreground regions 
back to the background model. 

• Classifying the static foreground regions as 
abandoned or removed objects (ghosts). 

2. Adaptive Background Mixture Models     
Stauffer and Grimson [11] introduced a mixture of K 
Gaussians ( K is from 3 to 5) for BGS. For a pixel X at 
time t, the probability of the pixel can be written as [11]: 
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where µ is the mean,α  is the learning rate and tkM , is 1 

for the model which matched and 0 for the remaining 
models. By assuming the red, green, and blue pixel 
values are independent and have the same variances, 
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where T is the minimum portion of the background 
model. In implementation, two significant parameters --
α  and T are needed to be set. See more details in 
Stauffer and Grimson [11]. In our system, we set K = 3  
(three Gaussians), α =0.005, and T = 0.4. We implement 
the method on both grayscale and RGB video inputs. 

     The mixture of Gaussians method is robust to slow 
lighting changes, periodic motions from a cluttered 
background, slow moving objects, long term scene 
changes, and camera noises. But it cannot adapt to the 
quick lighting changes and cannot handle shadows. We 
describe some solutions for above problems in the next 
section. 

3. Foreground Analysis 
3.1 Texture integration for quick lighting 
changes 
The mixture of Gaussians method generates large areas of 
false positive foreground when there are quick lighting 
changes (see Fig. 2a). To make the mixture of Gaussians 
method work for quick lighting changes, we integrate the 
texture information to the foreground mask for removing 
the false positive areas. The basic idea is that the texture 
in the false positive foreground areas which is caused by 
lighting changes should be similar to the texture in the 
background. 
    The gradient value is less sensitive to lighting changes 
and is able to derive an accurate local texture difference 
measure [6].  Here we define a texture similarity measure 
at pixel X between the current frame and the background 
image as 
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where xW denotes the M x N neighborhood centered at 

pixel X, g and bg is the gradient vector of the current 

frame and the background image respectively, and θ is 
the angle between the vectors. The gradient vector 

))(),(()( XgXgXg yx=  and the partial derivatives 

)(Xg x  and )(Xg y  are obtained by the Sobel operator. In 
the false positive foreground areas caused by quick 
lighting changes, there are no texture changes between 
the current frame and the background. Hence, 1)( ≈XS . 
The foreground mask will be removed for the areas 
with

sTXS ≥)( . In our system, we set a similarity threshold 

sT as 0.7. 



3.2 Intensity integration for shadow 
removal  
Color information is used for shadow removal by several 
investigators. To keep our system works for grayscale 
images, the intensity information is employed instead of 
color information. The normalized cross-correlation of 
the intensities is calculated at each pixel of the 
foreground region between the current frame and the 
background image. For pixel X, in the M by N 
neighborhood, the normalized cross-correlation is 
calculated as  
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where xW denotes the M x N neighborhood centered at 

pixel X, )(uIt and )(uIb is the intensity at pixel u of the 

current frame and the background respectively.  

    The pixel X is shadow if 
sTXNCC ≥)(  and 

It TXI ≥)( . 

Here we add the constrain of 
It TXI ≥)(  to avoid detect 

shadows in very dark areas. Otherwise, the pixel X is real 
foreground. 

3.3 Static Object Detection and Foreground 
Fragment Reduction     
Static Region Detection. Here, we discuss how to detect 
the static region (top left in Fig. 1a) by using the mixture 
of Gaussians of the background model. Fig. 1a shows an 
example of a detected static object and three Gaussian 
mixtures of the background model.  Generally, the 1st 
mixture of Gaussians (top right in Fig. 1a) shows the 
persistence pixels and represents the background image. 
The repetitive variations and the relative static regions 
are updated to the 2nd mixture of Gaussians. The static 
chair can be seen in the bottom left of Fig. 1a. The 3rd 
mixture of Gaussians (bottom right in Fig. 1a) represents 
the pixels with quick changes. The (B+1)th mixture of 
Gaussians of the background model (see equation (4)) is 
used to detect if a foreground pixel belongs the static 
region: 

., 1 Tifregionstaticpixel B >∈ +ω  (7) 

Foreground Fragment Reduction. Foreground 
fragments are usual for many background subtraction 
methods. In the mixture of Gaussians BGS method, the 
different parts of a static region are often updated to the 
background model at different speeds based on the 
similarity of the pixel values between the static region 
and the background model. Hence many foreground 
fragments are caused by static regions (examples are 
shown in Fig. 5.)   

     By pushing back the static region to the background 
model when the static region is biggest, we can avoid the 
fragment of the foreground. To push the static region 
back to the background model, we reset the weight of the 
static region as the maximum weight which was defined 
in the program. The mean and variance of the (B+1)th 
Gaussian distribution is exchanged with the 1st Gaussian 
distribution for each pixel in the static region mask. Fig. 
1b shows the static region detected in Fig. 1a has been 
pushed back to the background image (top right in Fig. 
1b). Notice that the region corresponding to the static 
region in the 2nd mixture (bottom left in Fig. 1b) has been 
changed with the region in the background image (top 
right in Fig. 1b).  

 
(a) 

 
(b) 

Fig. 1. Static region detection.  (a) The static region 
mask is visualized on the original image (top left). 
The 1st mixture of Gaussians (top right), the 2nd 
mixture of Gaussians (bottom left), and the 3rd 
mixture of Gaussians (bottom right) of the 
background model are shown respectively. (b) Push 
the static region (the chair) to the background image 
(top right) from the 2nd mixture (bottom left) when 
the size of the static region is biggest. 



3.4 Abandoned and Removed Objects 
Detection  
Detecting abandoned and removed objects is very 
important for video surveillance and security. In our 
system, a gradient-based method is applied to the static 
foreground regions to detect the type of the static regions 
as abandoned or removed objects (ghosts) [13]. It does 
this by analyzing the change in the amount of edge energy 

associated with the boundaries of the static foreground 
region between the current frame and the background 
image. The static region is an abandoned object if there 
are significantly more edges. Conversely, the static region 
is a removed object if there are less edges. If the edge 
measure is similar, it typically means that there has been a 
state change (e.g. a door closing). More details can be 
found at paper [13]. 

 
(a) BGS by using a mixture of Gaussians [11] 

 
(b) BGS by using the proposed method   

Fig. 2. Examples of the background subtraction results on frame 251, 2365, and 3499 for the PETS01 sequence 
with quick lighting changes.  

 
Fig. 3. Examples of the background subtraction results of the sequence with shadows. Upper row shows results of the 
mixture of Gaussians [11] and lower row shows results of our method. 



     

 
Fig. 4. Examples of static object detection, foreground fragment reduction, and abandoned and removed object 
discrimination.  Static objects were detected at frame 343, 569, and 664 respectively and were pushed back to BG 
model to avoid fragment problem. The static object is abandoned object in (a) and (c), and removed object in (b). 

 
                                   (a) Frame 343--404                    (b) Frame 569-- 695                          (c) Frame 664--724 

Fig. 5. Examples of the fragment problem without pushing the static region back to the background model. 

4. Experimental Results 
The proposed algorithm is being used in our real-time 
smart video surveillance system [14]. In this section, 
some examples demonstrate the effectiveness of our 
algorithm for background subtraction and foreground 
analysis in a variety of environments. Notice that same 

parameters were used for all sequences. The algorithm 
runs about 130 fps for color images and 150 fps for 
grayscale images at size 160x120 on a 2GB Pentium IV 
machine with MMX optimization. More quantitative 
results for the performance evaluation of our system can 
be found at paper [15]. 



4.1 BGS Results for Sequences with Quick 
Lighting Changes and Shadows 
Fig. 2 shows an example result on one PETS 2001 
sequence with quick lighting changes. PETS refers to the 
IEEE Performance Evaluation of Tracking and 
Surveillance Workshops. In Fig. 2a, large areas of false 
positive foreground were detected by the mixture of 
Gaussians method [11]. Fig. 2b shows that our method 
successfully handles the quick lighting changes by 
integrating texture information. 

    An example for shadow removal is shown in Fig. 3. 
The results from our method are compared to that from 
the mixture of Gaussian method [11]. By integrating 
intensity information, most of the shadows are removed, 
but it cannot remove strong shadows. 

4.2 Foreground Analysis Results 
Static Object Detection and Foreground Fragment 
Reduction. In the test sequence, a chair has been left at 
about frame 230. Then it was moved to another position 
at about frame 540 and was abandoned at the new 
position at about frame 560. Fig. 4 shows three moments 
(at frame 343, 569, and 664) that static objects were 
detected. The static regions were pushed back to the 
background model in the next frame (frame 344, 570, and 
665) to avoid fragments. Fig. 5 shows that many 
foreground fragments caused by the static region detected 
at frame 343, 569, and 665 without pushing them back to 
the background model. The fragments had been adapted 
to the background model until frame 410, 633, and 731. 
The fragments lasted about 65 frames and made the 
tracking more difficult. 
Abandoned and Removed Object Discrimination. In 
Fig. 4, the static object was discriminated as an 
abandoned object in frame 343, and 664, a removed 
object in frame 569 respectively.  

5. Discussion and Conclusion 
    We presented a new method to robustly and efficiently 
analyze foreground and improved the mixture of 
Gaussians BGS method working for quick lighting 
changes and shadow removal by integrating texture and 
intensity information. Without using any tracking or 
motion information, static objects were detected by using 
the same Gaussian mixture model and were discriminated 
to abandoned or removed objects by analyzing the 
change in the amount of edge energy associated with the 
boundaries of the static foreground regions. The whole 
static regions are pushed back to the background model 
to avoid a fragment problem in background subtraction. 

     The algorithm works well in most situations with the 
following limitations: 1) the learning rateα affects how 
long is an object keeping static would be considered as a 

static object. 2) holes appeared on the foreground mask 
for large homogeneous objects because there is less 
texture.  
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