
Book chapter for Machine Learning for Human Motion Analysis: Theory and Practice 

�����������������������������	�
��

��
��
�
���
��	����	�
��

��
��
�
���
��	����	�
��

��
��
�
���
��	����	�
��

��
��
�
���
��	���

�
��
����	�������
�����

��
��
����	�������
�����

��
��
����	�������
�����

��
��
����	�������
�����

�

����
���	��
����
���	��
����
���	��
����
���	��
����
 
YingLi Tian 1, Rogerio Feris 2, Lisa Brown2, Daniel Vaquero 3, Yun Zhai 2, Arun 
Hampapur 2 
 
1Department of Electrical Engineering 
City College, City University of New York, New York, NY  
ytian@ccny.cuny.edu 
 
2 IBM T. J. Watson Research Center, Hawthorne, NY  
{rsferis,lisabr,yunzhai,arunh}@us.ibm.com 
 
3 Department of Computer Science 
University of California, Santa Barbara 
daniel@cs.ucsb.edu 
 
Visual processing of people, including detection, tracking, recognition, and behavior 
interpretation, is a key component of intelligent video surveillance systems. Computer vision 
algorithms with the capability of “looking at people” at multiple scales can be applied in different 
surveillance scenarios, such as far-field people detection for wide-area perimeter protection, mid-
field people detection for retail/banking applications or parking lot monitoring, and near-field 
people/face detection for facility security and access. In this chapter, we address the people 
detection problem in different scales as well as human tracking and motion analysis for real video 
surveillance applications including people search, retail loss prevention, people counting, and 
display effectiveness.  
 
Keywords: Video surveillance, object detection, face tracking, human tracking, motion analysis, 
color classification, people search, multiple scales. 
 
 
1. INTRODUCTION 
 
As the number of cameras deployed for surveillance increases, the challenge of effectively 
extracting useful information from the torrent of camera data becomes formidable. The inability 
of human vigilance to effectively monitor surveillance cameras is well recognized in the scientific 
community [Green 1999]. Additionally, the cost of employing security staff to monitor hundreds 
of cameras by manually watching videos is prohibitive. 
 
Intelligent (smart) surveillance systems, which are now “watching the video” and providing alerts 
and content-based search capabilities, make the video monitoring and investigation process 
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scalable and effective.  The software algorithms that analyze the video and provide alerts are 
commonly referred to as video analytics. These are responsible for turning video cameras from a 
mere data gathering tool into smart surveillance systems for proactive security. Advances in 
computer vision, video analysis, pattern recognition, and multimedia indexing technologies have 
enabled smart surveillance systems over the past decade. 
 
People detection, tracking, recognition, and behavior interpretation play very important roles in 
video surveillance. For different surveillance scenarios, different algorithms are employed to 
detect people in distinct scales, such as far-field people detection for wide-area perimeter 
protection, mid-field people detection for retail/banking applications or parking lot monitoring, 
and near-field people/face detection for facility security and access. People detection and tracking 
has been an active area of research. The approaches for people detection can be classified as 
either model-based or learning-based. The latter can use different kinds of features such as edge 
templates [Gavrila 2000],  Haar features [Viola et al. 2001, 2003], histogram-of-oriented-
gradients descriptors [Dalal & Triggs 2005, Han et al. 2006], shapelet features [Sabzmeydani 
2007], etc.  To deal with occlusions, some approaches use part-based detectors [Wu & Nevatia 
2005, Leibe 2005].  
 
In our system, learning-based methods are employed to detect humans at different scales. For 
each person entering and leaving the field of view of a surveillance camera, our goal is to detect 
the person and to store in a database a key frame containing the image of the person, associated 
with a corresponding video. This allows the user to perform queries such as “Show me all people 
who entered the facility yesterday from 1pm to 5pm.” The retrieved key frames can then be used 
for recognition, either manually or by an automatic face recognition system (if the face image is 
available). To achieve this goal, we developed a novel face detector algorithm that uses local 
feature adaptation prior to Adaboost learning. Local features have been widely used in learning-
based object detection systems. As noted by Munder and Gavrila [Munder & Gavrila 2006], they 
offer advantages over global features such as Principal Component Analysis [Zhang et al. 2004] 
or Fisher Discriminant Analysis [Wang & Ji 2005], which tend to smooth out important details. 
 
In order to detect trajectory anomalies, our system tracks faces and people, analyzes the paths of 
tracked people, learns a set of repeated patterns that occur frequently, and detects when a person 
moves in a way inconsistent with these normal patterns. We implement two types of tracking 
methods: person-detection-based and moving-object-based. The person-detection-based tracking 
method is used to track faces and people in near-field scenarios. In far-field scenarios, the 
moving-object-based tracking method is employed because faces are too small to be accurately 
detected. The moving objects are first detected by an adaptive background subtraction method, 
and are then tracked by using a tracking method based on appearance. An object classifier further 
labels each tracked object as a car, person, group of people, animal, etc. To build the model of 
motion patterns, the trajectories of all tracks with a given start/end location labeling are 
resampled and clustered together. This gives an average or “prototypical” track along with 
standard deviations. Most tracks from a given entry location to a given exit will lie close to the 
prototypical track, with typical normal variation indicated by the length of the crossbars. Tracks 
that wander outside this normal area can be labeled as anomalous and may warrant further 
investigation. The principal components of the cluster indicate typical modes of variation or 
“eigentracks”, providing a more accurate model of normal vs. abnormal. 
 
The algorithms for people detection and motion analysis can then be used in several higher-level 
surveillance applications. Starting from a detected person, we perform clothing color 
classification based on two body parts (torso and legs), which are segmented from the human 
silhouette. This enables searching for people based on the color of their clothes. We also present 
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applications of our system in retail loss prevention, people counting and display effectiveness. 
These have been successfully deployed in commercial establishments. 
 
The rest of this chapter is organized as follows: Section 2 reviews the IBM Smart Surveillance 
System (SSS). Section 3 presents our learning framework for selecting and combining multiple 
types of visual features for object detection. The application of this framework to human 
detection in multiple scales is discussed in Section 4. Section 5 covers human tracking and 
motion analysis. Several case studies in video surveillance including people search by clothes 
color, retail loss prevention, people counting, and display effectiveness are demonstrated in 
Section 6. We conclude our work in Section 7. 

 
2. THE IBM SMART SURVEILLANCE SYSTEM 
 

The IBM Smart Surveillance System (SSS) employs a number of distinct and highly 
specialized techniques and algorithms [Hampapur et al. 2005], which can be summarized as 
follows: 

• Plug and Play Analytics Frameworks:  Video cameras capture a wide range of 
information about people, vehicles and events.  The type of information captured is 
dependent on a number of parameters like camera type, angle, field of view, resolution, 
etc.  Automatically detecting each type of information requires specialized sets of 
algorithms.  For example, automatically reading license plates requires specialized OCR 
algorithms; capturing face images requires face detection algorithms and recognizing 
behaviors; finding abandoned packages requires detection and tracking algorithms.  A 
smart surveillance system needs to support all of these algorithms, typically through a 
plug and play framework; 

 
• Object Detection and Tracking:  One of the core capabilities of smart surveillance 

systems is the ability to detect and track moving objects.   Object detection algorithms are 
typically statistical learning algorithms that dynamically learn the scene background 
model and use the reference model to determine which parts of the scene correspond to 
moving objects [Tian et al. 2005].  Tracking algorithms associate the movement of 
objects over time generating a trajectory [Senior et al. 2001].  These two algorithms 
together take a video stream and decompose it into objects and events, effectively 
creating a parse tree for the surveillance video; 

 
• Object and Color Classification: Object classification algorithms classify objects into 

different classes (such as people, vehicles, animals, etc.), using training data and 
calibration schemes.  Color classification algorithms classify the dominant color of the 
object into one of the standard colors (red, green, blue, yellow, black and white). These 
attributes become part of the searchable index, allowing users to query for “red vehicles” 
or “people wearing blue clothes” [Brown 2008, Chen et al. 2008].  

 
• Alert Definition and Detection:  Typical smart surveillance systems support a variety of 

user-defined behavior detection capabilities such as detecting motion within a defined 
zone, detecting objects that cross a user-defined virtual boundary, detecting abandoned 
objects, etc.  The user uses graphical user interface tools to specify zones of interest, 
object sizes and other parameters that define the behavior. When the behavior of interest 
occurs within a camera’s field of view, the system automatically generates an alert 
message that can be transmitted to a workstation, PDA or email reader, depending on the 
users’ preference [Tian et al. 2008, Zhai et al. 2008]. 
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• Database Event Indexing: The events detected by the video analysis algorithms are 

indexed by content and stored in a database.  This allows events to be cross-referenced 
across multiple spatially distributed cameras and creates a historical archive of events.  
The event index information typically includes time of occurrence, camera identifier, 
event type, object type, object appearance attributes and an index into the video 
repository, which allows the user to “play back the relevant video at the touch of a 
button”. 

 
• Search and Retrieval:  Users can use a variety of GUI tools to define complex search 

criteria to retrieve specific events.  Events are typically presented as shown in the middle 
section of Figure 1.  Search criteria include object size, color, location in the scene, 
velocity, time of occurrence, and several other parameters.  The results of a search can 
also be rendered in a variety of summary views, one of which (called track summary) is 
shown in the right section of Figure 1. 

 
 

 
(a)    (b)    (c) 

Figure 1: (a) The home page, with 1) cameras (bottom right) running a variety of video analysis 
capabilities, such as license plate recognition, face capture and behavior analysis; 2) Real-time 
alert panel (top right); 3) Map of the area (top left); 4) Video player (bottom left). (b) The results 
of searching for a red car. (c) A summary view of all activity in a camera over a selected period, 
represented as object tracks. 
 
3. FEATURE ADAPTATION PRIOR TO LEARNING FOR OBJECT 

DETECTION  
 
In this section, we describe a novel learning framework for selecting and combining multiple 
types of visual features for object detection [Feris et al. 2008]. The application of this framework 
to human detection in multiple scales is covered in Section 4. 
 
3.1 Motivation 
 
Current machine learning methods for object detection based on local image features suffer from 
a scalability problem in the feature selection process. For a specific feature type (e.g., Gabor 
filters), most methods include many feature configurations in a feature pool (e.g., Gabor filters 
uniformly sampled at different positions, orientations and scales), and then use a learning 
algorithm, such as Adaboost or SVM, to select the features that best discriminate object images 
from images that do not contain the object. Therefore, as new feature types are considered, the 
feature pool size increases dramatically, leading to computational problems. This scalability issue 
has several implications. First, the training time can be excessively long due to the large feature 



Book chapter for Machine Learning for Human Motion Analysis: Theory and Practice 

pool and the brute-force strategy for feature selection. Most methods consider a pool with 
hundreds of thousands of local features, and training can take weeks on conventional machines. 
Second, the detection/recognition accuracy can be significantly affected, as important feature 
configurations may not be included in the feature pool due to the sampling process, whereas 
many features that are less meaningful for discrimination may be present in the pool. 
 
In order to overcome the limitations discussed above, we propose a novel framework to combine 
and select multiple types of visual features in the learning process. Our approach relies on the 
observation that the local features selected for discrimination tend to match the local structure of 
the object. Figure 2 shows the first features selected by Adaboost in the context of face detection 
[Viola & Jones 2001] and recognition [Yang et al. 2004]. In this example, the selected Haar 
filters capture the local image contrast. In the middle image of the top row, the dark part of the 
filter coincides with the dark image region (the eyes), while the bright part of the filter matches 
the bright image region under the eyes (the cheek and nose). Similarly, in the bottom row, Gabor 
wavelets capture local structures of the face. In fact, Liu and Shum [Liu & Shum 2003], in their 
Kullback-Leibler boosting framework, argued that features should resemble the face semantics, 
matching the face structure either locally or globally. 
 

[Viola & Jones, 2001]

[Yang et al., 2004]

 
 

Figure 2: Features selected by Adaboost in the context of face detection (top) and face 
recognition (bottom). Note that the features tend to adapt to the local face structure. 
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Figure 3: Our approach has two stages: first, we compute adaptive features for each training 
sample; then, we use a feature selection mechanism (such as Adaboost) to obtain general 
features. 
Based on this observation, we present an approach that pre-selects local image filters based on 
how well they fit the local image structures of an object, and then use traditional learning 
techniques such as Adaboost or SVMs to select the final set of features. Our technique can be 
summarized in two stages. In the first stage, features that adapt to each particular sample in the 
training set are determined. This is carried out by a non-linear optimization method that 
determines local image filter parameters (such as position, orientation and scale) that match the 
geometric structure of each object sample. By combining adaptive features of different types from 
multiple training samples, a compact and diversified feature pool is generated. Thus, the 
computational cost of learning is reduced, since it is proportional to the feature pool size. The 
efficiency and the accuracy of the detector are also improved, as the use of adaptive features 
allows for the design of classifiers composed of fewer features, which better describe the 
structure of the objects to be detected. In the second stage, Adaboost feature selection is applied 
to the pool of adaptive features in order to select the final set of discriminative features. As the 
pool contains features adapted to individual object samples, this process selects features which 
encode common characteristics of all training samples, and thus are suitable for detection. Figure 
3 illustrates this process for the particular case when the objects to be detected are faces. 
Throughout the remainder of this chapter, we use the term adaptive features to describe features 
that match the geometric structure of an object in a particular training image and general features 
to describe the final set of discriminative features that encode common characteristics of all 
training images. 
 
3.2 Learning Using Locally Adapted Features 
 
We now describe our framework to incorporate local feature adaptation in the training process. 
We begin by presenting the feature adaptation algorithm, which should be applied to each 
individual training image containing the target object. We then show how to use this adaptation 
method to create a meaningful feature pool containing multiple types of wavelet features. Lastly, 
the adapted feature pool is used in Adaboost learning to design a classifier to detect the object 
present in the training images. Although we have used wavelet filters in our work, the technique 
is general in the sense that other local image filters could also have been applied in the same 
settings. 
 
3.2.1 Feature Adaptation 
 
In this section, we address the problem of generating a set of local adaptive features for a given 
image of the object that we would like to detect. In other words, our goal is to learn the 
parameters of wavelet features, including position, scale, and orientation, such that the wavelet 
features match the local structures of the object. This is motivated by the wavelet networks 
proposed by Zhang [Zhang 1997] and introduced in computer vision by Krueger [Krueger 2001]. 
 
Consider a family },,{

1 Nnn ψψ �=Ψ  of N two-dimensional wavelet functions, where 

),( yx
inψ  is a particular mother wavelet (e.g., Haar or Gabor) with parameters 

T
yxyxi ssccn ),,,( ,θ= . Here, xc  and yc  denote the translation of the wavelet, xs  and ys  
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denote the dilation, and θ  denotes the orientation. The choice of N depends on the desired degree 
of precision for the representation. 
 
Let I be an input training image, which contains an instance of the object for which a detector is 
to be designed. First, we initialize the set of wavelets Ψ along the image in a grid, with the 
wavelets having random orientations, and scales initialized to a unified value that is related to the 
density with which the wavelets are distributed. Figure 4(a) illustrates this process, for the 
specific case when the objects to be detected are faces. Then, assuming I is dc-free, without loss 
of generality, we minimize the energy function 
 

�−=
∀

i
niiwn i

ii

wIE 2

,
||||min ψ  

with respect to the wavelet parameter vectors in  and their corresponding weights iw . Figures 
4(b-e) show the wavelet features being optimized one by one to match the local image structure 
of the object. In this example, a Gabor wavelet was adopted as the mother wavelet, and we used 
the Levenberg-Marquardt method to solve the optimization problem. 
 

 
Figure 4: Learning adaptive features for a particular training image. (a) Input training image 
with wavelets initialized as a grid along the object region, with random orientations and scales. 
(b-e) Wavelet features being selected one by one, with parameters (position, scale, and 
orientation) optimized to match the local structure of the input image. 
 
Differently from most existing discrete approaches, the parameters in  are optimized in the 
continuous domain and the wavelets are positioned with sub-pixel accuracy. This assures that a 
maximum of the image information can be encoded with a small number of wavelets. 
 
Using the optimal wavelets 

inψ  and weights iw , the image I can be closely reconstructed by a 

linear combination of the weighted wavelets: 
 

�
=

=
N

i
ni i

wI
1

ˆ ψ . 

 
There is an alternative procedure to directly compute the wavelet weights iw  once the wavelet 

parameters in  have been optimized. This solution is faster and more accurate than using 
Levenberg-Marquardt optimization. If the wavelet functions are orthogonal, the weights can be 
calculated by computing the inner products of the image I with each wavelet filter, i.e., 

><=
ini Iw ψ, . In the more general cases where the wavelet functions may not be orthogonal, a 
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family of dual wavelets }~,,~{
~

1 Nnn ψψ �=Ψ  has to be considered.  Recall that the wavelet 
jnψ~  is 

the dual wavelet of 
inψ  if it satisfies the bi-orthogonality condition: jinn ji ,  ~, δψψ =>< , where 

ji ,δ  is the Kronecker delta function. Given an image I and a set of wavelets },,{
1 Nnn ψψ �=Ψ , 

the optimal weights are given by ><=
ini Iw ψ~, . It can be shown that �

−=
j

njin ji
A ψψ )(~ 1

, , 

where ><=
ji nnjiA ψψ , , . 

 
3.2.2 Integrating Multiple Features 
 
We have described how to obtain adaptive features for a single object training image. Now we 
proceed to generate a pool of adaptive features obtained from multiple training images. 
 
Let },,{ 1 MII �=χ  be a set of object training images. For each image iI , we generate a set of 

adaptive features iΨ , using the optimization method described in the previous section. 
 
It is possible to integrate multiple feature types by using different wavelet settings for each 
training image. More specifically, each set iΨ  is learned with different parameters, including: 
 

• Number of wavelets. The number of wavelets indicates how many wavelet functions will 
be optimized for a particular object image. From this set, we can further select a subset of 
functions that have the largest weights, as wavelet filters with larger associated weights in 
general tend to coincide with more significant local image variations; 

• Wavelet type. In our system, we used only Haar and Gabor wavelets for the wavelet type 
parameter, but other feature types could also be considered; 

• Wavelet frequency. The frequency parameter controls the number of oscillations for the 
wavelet filters; 

• Group of features treated as a single feature. We also allow a group of wavelet functions 
to be treated as a single feature, which is important to encode global object information. 

 
Those parameters can be randomly initialized for each training image in order to allow a variety 
of different features to be in the pool. This initialization process is fully automatic and allows the 
creation of a compact and diversified feature pool. 
 
All generated adaptive features for all object images are then put together in a single pool of 
features Ω , defined as 
 

�
M

i
i

1=

Ψ=Ω . 

 
As an example, Figure 5 shows some adaptive features (Haar and Gabor wavelets with different 
frequencies, orientations and aspect ratios) learned from a dataset of frontal face images. In the 
resulting feature pool, different types of local wavelet filters and global features, which are 
obtained by grouping individual wavelet functions, are present. 
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Figure 5: Some examples of features present in the pool of learned adaptive features for a frontal 
face dataset. A large variety of different wavelet filters are considered. The top row shows local 
wavelet functions, whereas the bottom row shows global features generated by combining a set of 
local filters. 
 
3.2.3 Learning General Features for Detection 
 
In Sections 3.2.1 and 3.2.2, we have described a method to generate a pool of adaptive features 
from a set of training images. Those features are selected according to how well they match each 
individual training example. Now, in order to design an object detector, the goal is to select 
general features, i.e., features from the pool that encode common characteristics to all object 
samples. 
 
We use Adaboost learning for both selecting general features and designing a classifier [Viola & 
Jones 2001]. A large set of negative examples (i.e., images that do not contain the object to be 
detected) is used in addition to the previously mentioned training images (which contain instances 
of the object of interest). The general features are those that best separate the whole set of object 
samples from non-object (negative) samples during classification. We refer the reader to [Viola & 
Jones 2001] for more details about the Adaboost classifier and the feature selection mechanism. It 
is important to notice that other boosting techniques might be used in this step, such as 
GentleBoost [Friedman et al. 2000], Real Adaboost [Schapire & Singer 1999], and Vector 
Boosting [Huang et al. 2005]. In a more interesting way, our method could be integrated into the 
learning method recently proposed by Pham and Cham [Pham & Cham 2007], which achieves 
extremely fast learning time in comparison to previous methods. We believe that this method 
would have an even larger reduction in computational learning time if locally adapted features are 
used. 

 
 

Figure 6: We use a Haar filter in the first levels of the cascade detector in order to achieve real-
time performance. 
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3.2.4 Applying the Classifier and Efficiency Considerations 
 
Once the cascade classifier is designed, we would like to apply it to images in order to find the 
object of interest. A sliding window is moved pixel by pixel at different image scales. Starting 
with the original scale, the image is rescaled by a given factor (typically 1.1 or 1.2) in each 
iteration, and the detector is applied to every window. Overlapping detection results can be 
merged to produce a single result for each location and scale. However, even using a cascade 
classifier, real-time performance (25/30Hz) can not be achieved due to the time required to 
compute our features. We addressed this problem by using traditional Haar-like/rectangle features 
in the first levels of the cascade. This allows for efficient rejection of background patches during 
classification. The image patches that are not rejected by the Haar cascade are then fed into a 
cascade of classifiers using our features. The choice of which cascade level should be used to 
switch from Haar features to our features is application dependent. Switching in lower levels 
allows for more accuracy, but switching in higher levels allows for more efficiency. Figure 6 
depicts this architecture. 
 
4. MULTI-SCALE HUMAN DETECTION IN SURVEILLANCE VIDEOS 
 
In the previous section, we presented a learning framework to design object detectors based on 
adaptive local features. This framework can be applied to design people detectors in near-field, 
mid-field, and far-field surveillance scenarios, which deal with images with different levels of 
detail. In order to account for these differences, for each scenario we designed a person detector 
in a scale specifically tailored to the available resolution. We now describe in detail our 
implementation of the framework for near-field person detection and discuss its advantages. The 
same concepts could be similarly applied to improve our detectors in the other scenarios (mid-
field and far-field), as these detectors are based on local image features as well. 
 
4.1   Near-field Person Detection  
 
In near-field surveillance videos, resolution is sufficient to make facial features of people clearly 
visible. We developed a face detector and a tracking system using the learning method described 
above to detect people in near-field scenes. To design the face detector, we used a frontal face 
dataset containing 4000 face images for training purposes. Each training image was cropped and 
rescaled to a 24x24 patch size. A pool of adaptive features was generated by running the 
optimization process described in Section 3.2.1, with different wavelet settings (wavelet type, 
frequency, etc.) for each sample. As a result, a pool of 80000 adaptive features was generated, 
containing a large variety of wavelet filters. It takes less than a second to create hundreds of 
adaptive features for a particular 24x24 sample in a conventional 3GHz desktop computer. 
 
For the second step of the algorithm (learning general features), we used an additional database of 
about 1000 background (non-face) images from which 24x24 patches are sampled. A cascade 
classifier was trained by considering 4000 faces and 4000 non-faces at each level, where the non-
face samples were obtained through bootstrap [Rowley et al. 1998]. Each level in the cascade was 
trained to reject about half of the negative patterns, while correctly accepting 99.9% of the face 
patterns. A fully trained cascade consisted of 24 levels. A Haar filter corresponding to the first 18 
levels of the cascade was used in our experiments, in order to achieve real-time performance. 
 
Figure 7 shows the first three general features selected by Adaboost. The first selected feature 
gives more importance to the eyes region. The second selected feature is a local coarse-scale 
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Gabor wavelet with three oscillations, which align with the eyes, nose, and mouth regions. The 
third feature is a global feature that encodes the rounded face shape. 
 

 
 

Figure 7: The first three general features selected while designing the face detector. 
 
 
The CMU+MIT frontal face test set, containing 130 gray-scale images with 511 faces, was used 
for evaluation. A face is considered to be correctly detected if the Euclidean distance between the 
center of the detected box and the ground-truth is less than 50% of the width of the ground-truth 
box, and the width (i.e., size) of the detected face box is within ±70% of the width of the ground-
truth box. Figure 8 shows the detected faces in one of the images from the CMU+MIT dataset, 
and four video frames taken from our surveillance system. 
 

 

 

 

 
Figure 8: Face detection results in one of the CMU+MIT dataset images, and four video frames 
taken from our surveillance system. 
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In order to show the effectiveness of feature adaptation prior to learning, we compared our face 
detector to a classifier learned from a similar feature pool, containing the same number and type 
of features (Haar, Gabor, etc.) sampled uniformly from the parameter space (at discrete positions, 
orientations, and scales), rather than adapted to the local structure of the training samples. Figure 
9(a) shows a plot of the Receiver Operating Characteristic (ROC) curves for this comparison, 
demonstrating the superior performance of our method. In addition to achieving improved 
detection accuracy, the number of weak classifiers needed for each strong classifier is 
significantly smaller in our method (see Figure 9(b)). This has a direct impact in both training and 
testing computational costs. We observed a reduction of about 50%.  
 

 
 
Figure 9: (a) ROC Curve comparing classifiers learned from adaptive (optimized) and non-
adaptive (non-optimized) features in the CMU+MIT dataset. (b) Number of classifiers for each 
level of the cascade in both methods. Our approach offers advantages in terms of detection 
accuracy and reduced computational costs over traditional methods that use local features 
uniformly sampled from the parameter space.  
 

 
 
Figure 10: ROC Curves for our approach and traditional Haar features in the CMU+MIT 
dataset. We used only half of the number of features in the feature pool compared to Haar 
features and still get superior performance. 
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Figure 10 shows the comparison between our approach and traditional Haar-like/rectangle 
features. The cascade detector based on Haar features also consisted of 24 levels, and was learned 
using the same training set. The feature pool, however, was twice as large as the one used by our 
approach, containing about 160000 features. With half of the features in the pool, we achieve 
superior accuracy and a faster learning time. Table 1 confirms this. Although our optimized 
features can cause overfitting when a small number of training samples are considered, this issue 
does not arise when thousands of faces are used for learning. 
 
Table 1. By learning adaptive and general features, we can use a smaller feature pool, which results 
in a reduction in training time, while still maintaining superior performance in detection rate, when 
compared to a traditional pool of Haar features. 
 

Feature Pool Number of Features Learning Time 
Haar Features 160000 About 5 days 
Our Approach 80000 About 3 days 

 
4.2   Mid-field Person Detection  
 
In mid-field scenes, facial features may not be visible due to poor resolution. However, the lines 
that delimit the head and shoulders of an individual are still informative cues to find people in 
images. For these scenes, we developed a system for tracking and detection which locates people 
by scanning a window through the image and applying a head and shoulders detector at every 
position and scale. This detector is designed according to the same learning framework from 
[Viola & Jones 2001] (as we implemented this classifier prior to our research on feature 
optimization), i.e., it is a cascade classifier based on Adaboost learning and Haar features. 
Similarly to the face detector, a training set of 4000 images containing the head and shoulders 
region was used for training. As this classifier is based on feature selection from a pool of local 
features, it is part of our current work to apply the learning framework from Section 3 to first 
create a pool of adaptive local features and then select the most discriminative features using 
Adaboost. Figure 11 illustrates the detection results from the head and shoulders detector in our 
system for mid-field scenes. 
 

 
Figure 11: Sample detections in mid-field scenes, using a head and shoulders detector based on 
Haar features. 
  



Book chapter for Machine Learning for Human Motion Analysis: Theory and Practice 

4.3   Far-field Person Detection  
 
In far-field imagery, pedestrians may appear as small as 30-pixels tall. In our scenario, the camera 
is known to be in a fixed position, making it feasible to use background modeling techniques to 
segment moving objects. In [Chen et al. 2008], we described how our far-field surveillance 
system classifies blobs obtained from background subtraction into one of three classes: cars, 
people and groups of people.  In [Viola et al. 2003], a system for pedestrian detection in videos 
which extends the technique from [Viola & Jones 2001] was proposed. It augments the feature 
space by including Haar features computed from differences between pairs of subsequent frames. 
Our locally adaptive feature learning framework could also be applied in this case, in order to 
pre-select the features that best adapt to pedestrians in individual frames or to differences in 
subsequent frames due to movement. Then, the resulting detector could be combined with our 
classifier based on foreground measurements in order to confirm that the blobs classified as 
people in fact do correspond to people. 

 
5. HUMAN TRACKING AND MOTION ANALYSIS 

 
Human tracking and motion analysis are key components of video surveillance systems, and very 
active research areas. Recently, researchers focused on combining detection and tracking into 
unified frameworks. Andriluka et al. [Andriluka et al. 2008] proposed a unified framework that 
combines both pedestrian detection and tracking techniques.  Detection results of human 
articulations using a hierarchical Gaussian process latent variable model are further applied in a 
Hidden Markov Model to perform pedestrian tracking. Okuma et al. [Okuma et al. 2004] 
proposed a target detection and tracking framework by combining two very popular techniques: 
mixture particle filters for multi-target tracking and Adaboost for object detection. Another 
Adaboost-based method is presented in [Avidan 2005] by Avidan. In his work, weak classifiers 
are combined to distinguish foreground objects from the background. The mean-shift algorithm is 
applied to track the objects using the confidence map generated by the Adaboost method. Leibe et 
al. [Leibe et al. 2005, 2007] used a top-down segmentation approach to localize pedestrians in the 
image using both local and global cues.  An implicit human shape model is built to detect 
pedestrian candidates that are further refined by the segmentation process, using Chamfer 
matching on the silhouettes.  Ramanan et al. [Ramanan et al. 2007] proposed a “tracking by 
model-building and detection” framework for tracking people in videos.  Predefined human 
models are combined with candidates detected in the video to form actual human clusters 
(models).  These models are then used to detect the person in subsequent images and perform 
tracking.  Other co-training based approaches are [Javed et al. 2005, Grabner et al. 2006]. They 
proposed detecting objects and further using them for online updating of the object classifiers. 
Object appearance features derived from PCA are iteratively updated using the samples with high 
detection confidence. 
 
For motion analysis, Stauffer et al. [Stauffer et al. 2000] proposed a motion tracking framework. 
Each pixel in the image is modeled by a mixture of Gaussian distributions that represents its color 
statistics. Object tracks are formed by correlating motion segments across frames using a co-
occurrence matrix. Buzan et al. [Buzan et al. 2004] proposed a clustering technique to group 
three-dimensional trajectories of tracked objects in videos. A novel measure called the Longest 
Common Subsequence is employed to match trajectory projections on the coordinate axes. Junejo 
and Foroosh [Junejo & Foroosh 2008] proposed a trajectory grouping method based on 
normalized cuts. The matching criteria include spatial proximity, motion characteristics, 
curvature, and absolute world velocity, which are based on automated camera calibration. 
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The IBM SSS provides functions for tracking people and detecting trajectory anomalies. The 
system tracks faces and people, analyzes the paths of tracked people, learns a set of repeated 
patterns that occur frequently, and detects when a person moves in a way inconsistent with these 
normal patterns. 
 
5.1 Face Tracking 
 
Once a face is detected in a particular video frame, it is necessary to track it in order to analyze 
the trajectory of the person and identify a single key frame of the face, to be stored in a database. 
Our face tracking method is based on applying the face detector to every frame of the video 
sequence. In order to maintain the track of the face even when the face detector fails, we also use 
a simple correlation-based tracker. More specifically, when a face is detected, the correlation-
based tracker is triggered. For the subsequent frame, if the face detection fails, the track is 
updated with the window given by the correlation tracker. Otherwise, if the face detector reports a 
window result with a close position and size to the current tracking window, then this result is 
used to update the track. This mechanism is important to avoid drifting. 
 
In order to improve the efficiency of our detector and enable real-time face tracking (25/30Hz) on 
conventional desktop computers, we use the following techniques: 
 

• We only apply the detector at specific scales provided by the user and at motion regions 
detected by background subtraction; 
 
• An interleaving technique (explained below) combines view-based detectors and tracking. 

 
Figure 12: Our surveillance system interleaves view-based detectors to save frame rate for 
tracking. 
 
In most surveillance scenarios, human faces appear in images in a certain range of scales. In our 
system, the user can specify the minimum and maximum possible face sizes for a particular 
camera, so that face detection is applied only for sub-windows within this range of scales. We 
also apply background subtraction, using statistical mixture modeling [Tian et al. 2005], to prune 
sub-windows that do not lie in motion regions. A skin color detector could also be used to speed 
up the processing. 
 
A problem faced by most existing systems is the computational time required to run a set of view-
based detectors in each frame. This causes large inter-frame image variation, posing a problem 
for tracking. We handled this issue by using an interleaving technique that alternates view based 
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detectors in each frame. This idea is illustrated for frontal and profile face detection in Figure 12.  
In each frame, rather than running both frontal and profile detectors, we run just one detector for 
a specific view (e.g., frontal view). The detector for the other view (profile view) is applied in the 
subsequent frame and so forth. This allows us to improve the frame rate by 50%, while 
facilitating tracking due to less inter-frame variation. 
 
Tracking is terminated when there are no foreground regions (obtained from the background 
subtraction module) near the current tracking window or when the face detector fails 
consecutively for a given time or number of frames specified by the user. 
 
5.2 Human Tracking and Motion Analysis 
 
5.2.1 Human Tracking 
 
Tracking can be seen as a problem of assigning consistent identities to visible objects. We obtain 
a number of observations of objects (detections by the background subtraction algorithm) over 
time, and we need to label these so that all observations of a given person are given the same 
label. When one object passes in front of another, partial or total occlusion takes place, and the 
background subtraction algorithm detects a single moving region. By handling occlusions, we 
hope to be able to segment this region, appropriately labeling each part and still maintaining the 
correct labels when the objects separate. In more complex scenes, occlusions between many 
objects must be handled [Senior et al. 2001].  
 
When objects are widely separated, a simple bounding box tracker is sufficient to associate a 
track identity with each foreground region. Bounding box tracking works by measuring the 
distance between each foreground region in the current frame and each object that was tracked in 
the previous frame. If  the object overlaps with the region or lies very close to it, then a match is 
declared.  
 
If the foreground regions and tracks form a one-to-one mapping, then tracking is complete and 
the tracks are extended to include the regions in the new frame using this association. If a 
foreground region is not matched by any track, then a new track is created. If a track does not 
match any foreground regions, then it continues at a constant velocity, but it is considered to have 
left the scene once it fails to match any regions for a few frames. 
 
Occasionally, a single track may be associated with two regions. For a few frames, this is 
assumed to be a failure of background subtraction and both regions are associated with the track. 
If there are consistently two or more foreground regions, then the track is split into two, to model 
cases as when a group of people separate, a person leaves a vehicle, or an object is deposited by a 
person. Figure 13 shows some people tracking results. 
 
5.2.2 Motion Analysis 
 
In order to perform motion analysis, as shown in Figure 14, the system begins by detecting the 
locations where objects enter and exit the scene. The start and end points of tracks are clustered to 



Book chapter for Machine Learning for Human Motion Analysis: Theory and Practice 

find regions where tracks often begin or end. These points tend to be where paths or roads reach 
the edge of the camera’s field of view. Having clustered these locations, we classify the 
trajectories by labeling a track with its start and end location (or as an anomaly when it starts or 
ends in an unusual location, such as a person walking through the bushes). For example, when we 
cluster trajectories for the camera placed at the entrance to our building, trajectories are classified 
into one of 5 classes – entering/exiting to the left side (from the road on the left or from the 
center), entering/exiting to the right side (from the road on the right or from the center), or 
moving horizontally across the road. We then apply a secondary clustering scheme to further 
detect anomalous behavior.  This scheme operates as follows: the trajectories of all tracks with a 
given start/end location labeling are resampled and clustered together. This gives an average or 
“prototypical” track together with standard deviations. Most tracks going from a given entry 
location to a given exit will lie close to the prototypical track, with typical normal variation 
indicated by the length of the crossbars. Tracks that wander outside this normal area can be 
labeled as anomalous and may warrant further investigation. The principal components of the 
cluster indicate typical modes of variation or “eigentracks” , providing a more accurate model of 
normal vs. abnormal. Figure 15 shows some examples of abnormal activities (people loitering) in 
front of the IBM Hawthorne building. 

 
(a)         (b) 

 
Figure 13: Examples of people tracking results. (a) People tracking in a shopping mall; (b) 
tracking of hockey players. 
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                   (a)                                             (b)                                                (c) 
 
Figure 14: (a) Summary view showing the retrieval of the trajectories of all events that occurred 
in the parking lot over a 24 hour period. The trajectory colors are coded: starting points are 
shown in white and ending points are displayed in red.  (b) Activity distribution over an extended 
time period, where the time is shown on the x-axis and the number of people in the area is shown 
on the y-axis. Each line represents a different day of the week. (c) Unsupervised behavior 
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analysis. Object entrance/departure zones (green ellipses) and prototypical tracks (brown curves) 
with typical variation (crossbars) are displayed. 
 

 
 
Figure 15: Abnormal activity analysis (people loitering in front of the IBM Hawthorne building). 
 
6. CASE STUDY FOR REAL VIDEO SURVEILLANCE 

APPLICATIONS 
 
There are many applications for people detection, tracking, and motion analysis in video 
surveillance. In this section, we present several case studies including people search, retail loss 
prevention, people counting, and display effectiveness. 
 
6.1   People Search by Clothing Color 
 
An important aspect of human identification for finding and/or matching a person to another 
person or description, in the short term (e.g., the same day), is based on clothing. Color is one of 
the most prominent cues for describing clothing. Here, we present our methodology for 
categorizing the color of people’s clothes for the purposes of people search. 
 
We perform clothing color classification based on two body parts segmented from the human 
silhouette: the torso and the legs. These are determined using the normative spatial relationship to 
the face location, as detected in Section 4.1. The torso or upper body region represents what is 
primarily the shirt or jacket, while the legs or lower body region represents the pants or skirt of 
the tracked human extracted from the camera. 
 
Three issues are critical for successful color classification. The first is the issue of color 
constancy. People perceive an object to be of the same color across a wide range of illumination 
conditions. However, the actual pixels of an object, which are perceived by a human to be of the 
same color, may have values (when sensed by a camera) which range across the color spectrum 
depending on the lighting conditions. Secondly, moving objects extracted from video are not 
perfectly segmented from the background. Shadows are often part of the object and errors exist in 
the segmentation due to the similarity of the object and the background model. Lastly, complex 
objects (torsos and legs, in this case) may have more than one color.  

 
The method described here is based on acquiring a normalized cumulative color histogram for 
each tracked object in the bi-conic HSL (hue, saturation, luminance) space.  The method is 
designed with mechanisms to divide this space via parameters that can be set by a user or by 
active color measurements of the scene. The key idea is to intelligently quantize the color space 
based on the relationships between hue, saturation and luminance. As color information is limited 
by both lack of saturation and intensity, it is necessary to separate the chromatic from the 
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achromatic space along surfaces defined by a function of saturation and intensity in the bi-conic 
space.  

 
In particular, for each tracked body part (torso or legs), the color classifier will create a histogram 
of a small number of colors. We usually use six colors: black, white, red, blue, green and yellow. 
However, for clothing from people detected by the cameras used in this study (our facility), we 
use the following colors based on the empirical distribution and our ability to discern: red, green, 
blue, yellow, orange, purple, black, grey, brown, and beige. The histogram is created as follows. 
Each frame of the tracked object that is used for histogram accumulation (every frame the body 
parts detector finds) is first converted from RGB to HSL color space. Next, the HSL space is 
quantized into a small number of colors.  
 
In order to quantize this space into a small number of colors, we determine the angular cutoffs 
between colors. When we use six colors (black, white, yellow, green, blue, red), we need only 
four cutoffs between the hues: yellow/green, green/blue, blue/red and red/yellow. However, 
variations due to lighting conditions, object textures and object-to-camera viewpoint lead to 
differences in brightness and color saturation. Therefore, we also need to specify lightness and 
saturation cutoffs. Here, it is interesting to note that saturation and intensity are related. Both 
properties can make the hue of a pixel indiscernible. For intensity, this occurs when the light is 
too bright or too dark. For saturation, it happens when there is insufficient saturation. However, 
as the brightness gets too low or too high, the necessary saturation increases. In general, as 
intensity increases from 0 up to halfway (the central horizontal cross-section of the bi-conic) or 
decreases from the maximum (white) down to halfway, the range of pixels with visible or 
discernable hue increases.  
 
In summary, we first quantize the HSL space based on hue. We subsequently re-label pixels as 
either white or black depending on whether they lie outside the lightness/saturation curve above 
or below the horizontal mid-plane. This is related to earlier work in color segmentation performed 
by Tseng  and Chang [Tseng & Chang 1994]. 
 

 
 

Figure 16: Results of search for people with red torso (shirts). 
 
Using this color classification scheme, the system records the colors of torso and legs for each 
person for whom the detection of the face and the body parts is successful. This information is 
sent to the database for retrieval. Users may search for people with specific colors of torso and 
legs. Figure 16 shows the results of a search for people with red torsos (shirts). Figure 17 shows 
the results of a search for people with white torso and red legs. The final figure (Figure 18) in this 
section shows the results of a search for people with yellow torso and black legs. In each picture, 
the key frames for each event (person) are shown on the right. The user may select any key frame 
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to watch the associated video clip of the person as they walk through the scene. A single frame of 
this video is shown at the left of each figure. 
 

 
 
Figure 17: Results of search for people with white torso (shirt) and red legs (pants/skirt). 
 

 
 
Figure 18: Results of search for people with yellow torso (shirts) and black legs (pants/skirt). 
 
6.2   Retail Loss Prevention 
 
There are many practical applications for the people search capabilities described in this chapter.  
Many of these applications involve matching people across cameras, with identification 
information, or with queries. Matching people across cameras is useful to “track” a person across 
cameras, thereby linking a person in one camera to their movements and actions in another. In 
this way, a person can be tracked across non-overlapping cameras. Many important security tasks 
involve this capability. For example, a person who breaks through a security checkpoint in an 
airport could be tracked to a different part of the building.  
  
A person can also be “matched” against identification information. This information may be 
associated with a badge or other type of ID, and may be used to corroborate the legitimacy of 
their access to a building or a cash register. Lastly, a person can be matched against a query to 
locate them across several cameras and time periods. We have built an application to match 
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people to improve the detection of returns fraud. In this application, a user is looking to match a 
person at the returns counter in a department store with people entering the store. 
 
Returns fraud can take one of a number of forms. Our retail customer was particularly interested 
in the case of returning items that were just picked up in the store, but were never bought. The 
return could be done either without a receipt (in stores that have liberal return policies), or using a 
receipt from a previously purchased (and kept) item. 
 
Our approach, described in more detail in a previous paper [Senior, 2007], allows loss prevention 
staff to quickly determine whether a person returning an item entered the store carrying that item. 
The system works by detecting and tracking customers at entrances and customer service desks 
and associating the two events. This solution only requires cameras at the store entrances and the 
return counters, being simpler than approaches that rely on tracking customers throughout the 
store (requiring many cameras and very reliable camera hand-off algorithms) and must be 
continuously monitored to determine whether items are picked up.  
 
Two cameras at the customer service desk record activity there, including the appearance of 
customers returning items. A separate set of cameras points at the doors and captures all activity 
of people entering and leaving the store. Figure 19 shows the fields of view of two such cameras. 
Our approach automatically segments events in each of these cameras, filters them and then 
provides a user interface which allows the association of each returns event with the door 
entrance event that corresponds to when the person came into the store. At the customer service 
desk, the face tracking algorithm tracks customers’ faces, generating a single event per customer. 
Customers at the doors are tracked with our appearance-based tracker [Senior 2001]. 
 
The returns fraud interface provides intuitive selection and browsing of the events, summarized 
by presentation of key frames (at both scales), timestamps and original video clips (from DVR or 
media server). Search typically begins by selecting a return event from the TLOG (see Figure 20). 
In response to this, the interface displays the people found at the customer service counter near 
that time. Selecting one of these then displays people entering the store shortly before the selected 
event. The user can then browse through the entrance events, using full-frame and zoomed-in key 
frames as well as original video, and, when a match is found, determine whether a fraud has taken 
place.  
 
The fundamental indexing attribute of the database is time. All devices are synchronized and 
events are time-stamped. Temporal constraints from real world conditions are exploited to limit 
the events displayed. In our implementation, a user may also use color information (Section 6.1) 
to assist in finding likely matches between the people entering and the person at the returns 
counter.  

  
Figure 19: Views from the customer service desk (left) and a door (right). The “region of 
uninterest” in which detections are ignored to reduce false positives is outlined in blue. Alert 
tripwires (enter and leave) are drawn on the door view. 
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Figure 20: Interface for browsing and searching the TLOG (transaction log), showing a table of 
return transactions. 
 
6.3   People Counting 
 
As a direct application of person detection and search, people counting has significant importance 
in various scenarios.  In the retail sector, accurate people counts provide a reliable base for high-
level store operation analysis and improvements, such as traffic load monitoring, staffing 
assignment, conversion rate estimation, etc.  

 
In our solution, we incorporate a people counting framework which effectively detects and tracks 
moving people in bi-directional traffic flows, denoted as “entries” and “exits.” Counting results 
are indexed into the logical relational database for generating future statistical reports. An 
example of a report is shown in Figure 21.  We demonstrate the people counting application in 
the cafeteria traffic scenario at our institution. In addition to the statistical reports, individual 
counting events are also available for investigation by exhibiting corresponding key frames.  
Disjoint search intervals enable the system’s capability of performing cross-time traffic 
comparison.  For instance, in Figure 22, the average traffic counts between three time intervals on 
five days of a week are compared. For morning times (8:00AM-11:00AM), Monday has the 
fewest count. This is due to the fact that employees tend to have a busier morning after the 
weekend, and thus do not visit the cafeteria as often as on other weekdays. For lunch time 
(11:00AM-2:00PM) and afternoon tea time (2:00PM-5:00PM), Friday has the least traffic 
volume. This is due to the fact that some employees leave work earlier, and thus do not have 
lunch or afternoon tea/coffee at the company.   
 

 
Figure 21: People counting statistical report. 
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Figure 22: Weekly comparison of the average people counts for three time intervals at the IBM 
Hawthorne cafeteria. 

 
People counting can also be associated with non-visual sensor data.  One application is badge use 
enforcement, where security wants to ensure that employees always carry identification badges.  
In certain working environments, employees need to swipe their badges to access critical areas. In 
order to detect people entering the critical areas without using their badges (e.g., by tailgating 
other people who properly swiped their badges), the number of entering people is estimated by 
applying a person detector (Section 4.1). The people count is then matched with the input signals 
obtained from the badge reader.  If the number obtained from the people counting algorithm is 
greater than the one indicated by the badge read signals, then an alert is generated.  

 
6.4   Display Effectiveness 

 
In retail stores, a critical problem is to effectively display merchandise at certain places to achieve 
maximum customer attention and optimal revenue.  For instance, the store management is very 
interested in the average number of people who have stopped in front of a particular item each 
hour.  If the number of people looking at this item is consistently far less than the number of 
people who have stopped by its neighboring items, then the store management could conclude 
that this particular item does not attract enough customers. Thus, it brings less value to the store 
revenue, and may be removed from the display or relocated to a less valued region.  This analysis 
can be accomplished by constructing a “heat map” of the store plan, which represents the traffic 
density in the store. One such “heat map” is demonstrated in Figure 23, where warmer values 
represent higher number of people passing through and stopping by the corresponding location, 
and colder values represent lower traffic. Based on this analysis, the duration of the stay can also 
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be derived. The management can obtain a better understanding on whether the customers are 
actually looking at a certain item, or are just passing by.  

 

 
 

Figure 23: A  heat map of the store’s traffic density, where warmer values represent a larger 
number of people passing through and stopping by the corresponding location, and colder values 
represent lower traffic. 
 
7. DISCUSSION AND CONCLUSION  
 
Effective, efficient, and robust people detection and tracking are core components of video 
surveillance. In this chapter, we have presented reliable techniques for people detection, tracking, 
and motion analysis in the IBM Smart Surveillance System (SSS), a commercial video 
surveillance system. The people detection component is based on local feature adaptation prior to 
Adaboost learning. This technique offers better detection rates and faster training than traditional 
methods based on Haar features. It also allows the integration of a large dictionary of features in a 
principled way. We have described techniques for people detection at different scales. In order to 
meet the different requirements of video surveillance, we have also implemented two types 
(detector-based and appearance-based) of human tracking methods. Finally, the applicability and 
effectiveness of the proposed people detection and motion analysis techniques have been 
demonstrated in a variety of real surveillance applications, including people search based on 
clothing color, retail loss prevention, people counting, and display effectiveness.  
 
While technologies like networked video surveillance, smart surveillance, IP cameras, and high 
density storage continue to improve the tools for surveillance, there are a number of processes, 
privacy and policy issues that are required for the success of operational security systems.  
Currently, most of our security agencies are largely geared toward responding to events and using 
video surveillance in a “reactive monitoring process.”   Technologies such as smart surveillance 
begin to enable a proactive monitoring process. We expect to develop more robust people 
detection algorithms that require a smaller number of examples and work across different 
environments without need for re-training.  This is extremely important for scenarios where it is 
difficult to collect training examples. Tracking and recognizing people in more complex 
environments across multiple cameras will be continually investigated.  
 
The adoption of a smart surveillance system introduces a new stream of video based alarms into 
the command center.  To ensure successful deployment, customers and technology providers 
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should jointly address key issues such as the training of operators to use sophisticated 
technologies, evaluate alarm conditions, and determine appropriate responses to these events.  
The system must be designed, configured and tuned to minimize the impact of false alarms. 
 
As the technology to monitor areas for purposes of law enforcement and homeland security 
evolves, such technologies typically raise the issues of citizen privacy in public spaces.  These 
challenges can be addressed both at the technology and policy levels. Citizen privacy can be 
protected by enabling privacy preserving technologies in the surveillance systems [Senior et al. 
2005].  The technical enablers of privacy then have to be put into practice by formulating, 
implementing and enforcing appropriate policies that govern the use of such systems. 
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