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Abstract. In this paper, we propose a novel two-stage video caption-
ing framework composed of 1) a multi-channel video encoder and 2) a
sentence-generating language decoder. Both of the encoder and decoder
are based on recurrent neural networks with long-short-term-memory
cells. Our system can take videos of arbitrary lengths as input. Com-
pared with the previous sequence-to-sequence video captioning frame-
works, the proposed model is able to handle multiple channels of video
representations and jointly learn how to combine them. The proposed
model is evaluated on two large-scale movie datasets (MPII Corpus and
Montreal Video Description) and one YouTube dataset (Microsoft Video
Description Corpus) and achieves the state-of-the-art performances. Fur-
thermore, we extend the proposed model towards automatic American
Sign Language recognition. To evaluate the performance of our model
on this novel application, a new dataset for ASL video description is col-
lected based on YouTube videos. Results on this dataset indicate that
the proposed framework on ASL recognition is promising and will signif-
icantly benefit the independent communication between ASL users and
others.

Keywords: Video Captioning, Long-short-term-memory, Sequential En-
coding, American Sign Language

1 Introduction

Automatic visual content understanding and describing have become a fast-
growing research area in computer vision for the recent decade. Effective under-
standing visual medias can significantly improve the performance of computer
programs to automatically analyze and organize the online media. With the
recent ground-breaking progress in large-scale visual recognition and deep neu-
ral networks, an explosive amount of techniques have been proposed in object
recognition [1, 2], scene understanding [3, 4] and action recognition [5, 6]. These
findings successfully broaden the horizon of visual recognition research. Com-
bining with the rapid progress of natural language processing, visual content
describing has drawn more and more attention in the field of computer vision



2 Chenyang Zhang and Yingli Tian

3D
 C

N
N

3D
 C

N
N

3D
 C

N
N

3D
 C

N
N

3D
 C

N
N

3D
 C

N
N

3D
 C

N
N

3D
 C

N
N

3D
 C

N
N

3D
 C

N
N

LSTM

LSTM

LSTM

LSTM

LSTM LSTM

LSTM

LSTM

LSTM

LSTM

Motion History Images RGB Video FramesParallel Multi-channel
LSTM Encoders

Fusion Layer

LSTM LSTM

“A” “panda”“A”“A”

LSTM

“is”

LSTM

“sliding”

LSTM

“down”

LSTM

“the”

LSTM

“slide”

LSTM

“<EOS>”

Language Decoder

Fig. 1. Illustration of our proposed video captioning framework. Two channels of input
frames are utilized: motion history images (MHIs) and RGB video frames. Firstly,
raw features are extracted from each input channel frames using 3D convolutional
neural networks. The feature extraction phase generates sequential features of arbitrary
lengths. Secondly, the sequence of features is encoded using RNNs with LSTM cells for
each channel. Then a fusion layer is employed to combine the encoded features from
both LSTM encoders. Finally the fused features are fed into a LSTM-based language
decoder to be decoded into a sequence of words. “<EOS>” represents the “end of
sentence” token.

and machine learning. How to bridge the gap between visual content and nat-
ural human language has become the motivation of many research topics, such
as image and video captioning.
Automatic image captioning deals with both images and textual data and gener-
ates natural sentences to summarize input image content. Generating descriptive
sentences for images requires knowledge from multiple domains such as computer
vision, natural language processing, and machine learning. Inspired by the recent
renewed interests in deep learning techniques, there are many image captioning
frameworks proposed [7–12]. The paradigm for generating captions for images
takes two steps: 1) Encoding stage: the visual input (an image) is processed
by a feature extraction layer (encoder). 2) Decoding stage: a language model
is applied to decode the input feature encoding to a pre-defined vocabulary. The
output sentence is generated based on the probabilistic distribution over the vo-
cabulary using the language model. Recurrent neural network (RNN) has been
proven to be an effective choice for the decoder because RNN is capable to ad-
dress the temporal dynamics in output sentences.
Video captioning is a similar problem with image captioning and the encoder-
decoder framework is also applicable for this problem. However, different from
static images, videos contain much more semantic information related to tempo-
ral dynamics. Therefore, the video captioning framework should be able to model
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not only the static visual content inside each video frame, but also the temporal
order of the frames. To address this problem, researchers have proposed several
methods to adapt the encoder-decoder system to handle sequential inputs, such
as mean-pooling over frames [13], temporal attention model [14], and directly
employing sequence-to-sequence RNNs [15].
In this paper, we propose a novel framework for video captioning task. The main
idea is illustrated in Fig. 1. To include more temporal motion-related information
from the input video sequences, two channels (motion history images and raw
video frames) are employed as video inputs. Our proposed framework integrates
three different types of neural networks to perform automatic video caption-
ing: 1) 3D-CNN: instead of using object-detection-oriented feature extraction
networks (such as VGG and AlexNet), we employ 3D convolutional neural net-
works (3D CNNs) to extract spatial-temporal features from video clips. 2) RNN
Encoder: since the length of each video is arbitrary, the generated 3D CNN
features are also of arbitrary lengths. A recurrent neural network (RNN) with
long-short-term-memory (LSTM) cells is employed to map the sequential inputs
to a fixed-dimensional encoding space. To jointly learn the encoding from two
input channels, one LSTM encoder is assigned to each channel and the two en-
coders forms a parallel system. The fusion layer is a fully-connected layer which
maps the LSTM internal states to the encoding space and the encoded vectors
are concatenated. 3) RNN language model: the RNN language model defines
a probability distribution of the next word in a sequence based on both the
context and the current word. In our model, the context encoded in the form of
LSTM internal state and initialized by the learned encoding vector.
In addition, we also explore the potential utilization of the proposed video cap-
tioning framework in automatic video-based American Sign Language (ASL)
translation. ASL is a visual gestural language which is used by many people
who are deaf or hard-of-hearing. Automatically generating textual descriptions
from ASL videos can significantly benefit the ASL-using population to commu-
nicate with non-ASL users. To the best of our knowledge, there has been no such
effort to link ASL translation with video captioning before. We have collected
a large-scale dataset from YouTube uploaded by ASL signers and gained anno-
tations by aligning the video clips with subtitles. The proposed network is able
to gain ASL-oriented knowledge from the dataset and to generate meaningful
sentences from ASL videos.
The contributions of this work have three aspects:

– A sequential LSTM encoder framework is proposed to learn to embed video
sequences addressing both spatial and temporal information.

– Our framework can handle multiple streams of input sequences and auto-
matically learn how to combine.

– We are the first to explore video captioning in the area of ASL translation
and provide a novel dataset in this area.

The rest of this paper is organized as the following. Section 2 reviews the related
research work. Section 3 elaborates the architecture of the proposed framework.
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Then the datasets used and proposed by this paper are described in Section 4.
Section 5 discusses the experiments. Finally the paper is concluded in Section 6.

2 Related Work

In this section, we briefly review the related research work in two aspects as
below.
Video Captioning. Similar to image captioning, video captioning is also based
on building connections between visual signals and textual data. Automatic
video captioning is a recent branch of automatic video annotation, which starts
with automatic video tagging. In [16], the authors explored to automatically
assign conceptual tags to YouTube videos by learning from both visual and au-
dio features. The authors of [17] treated the problem as an activity-recognition
problem. They built hierarchical semantic trees to organize detected entities such
as actors, actions, and objects. Zero-shot-learning-based language models were
applied on the learned hierarchies to assign a short sentence to summary the
detected potentials. Similarly, semantic triplets (subject-verb-object) were also
used in [18] to organize detections of objects and activities for sentence infer-
encing. Quadruples were utilized in [19] to include more information from the
context and scene for more accurate descriptions. Other efforts made to improve
the performance of automatic tagging include video tag augmentation [20], video
clustering [21], and video re-ranking [22]. Inspired by the successful utilization
of LSTM-based RNNs in image captioning, there has been a lot of work using
RNNs for video captioning. In [13], Venugopalan et al. proposed to apply av-
erage pooling over image features extracted from each video frame to obtain a
video feature. Then the video feature was encoded to feed into a LSTM-based
RNN language model for sentence decoding. To capture more temporal dynam-
ics, attention models were applied in [23] to learn a weighting function over
sampled key-frames. In [15], the authors explicitly modeled the sequential input
(video) and sequential output (sentence) by exploiting a sequence-to-sequence
LSTM architecture. Our work is most related to [15] because we also model the
input encoding part with sequential input LSTMs. However, we separate the
video encoding and sentence decoding parts to avoid feature entanglement. Ad-
ditionally, applying such a separate model can enable us to conveniently combine
multiple channels of input instead of raw-feature concatenation [23] or late score
fusion [15].
American Sign Language Recognition. ASL is used by deaf people across
U.S. and Canada. Some researchers have estimated that the population using
ASL as a primary language was about 500, 000 [24]. In automatic ASL recogni-
tion, early attempts have been made to explore the use of Hidden Markov Models
(HMMs) in sequence modeling [25, 26]. In [27] and [28], the authors proposed
to track varies facial landmarks for ASL recognition. In recent years, since the
progress in commercial multi-modality sensors, researchers have been focusing
on exploring the utilizations of multiple sensors. For example, in [29] and [30],
the authors proposed to employ Kinect and Leap Motion sensors, respectively,



Automatic Video Captioning via Multi-channel Sequential Encoding 5

for real-time hand-gesture-based ASL recognition. In this work, we propose to
study ASL recognition from the perspective of data-driven video captioning. To
the best of our knowledge, this is the first time ASL recognition is combined
with video captioning.

3 Method

The framework of our proposed method is illustrated in Fig. 1. The whole frame-
work is composed of four core modules: 1) 3D CNN-based feature extractor. 2)
Sequential feature encoder. 3) Parallel fusion layer. 4) Sentence-generation lan-
guage module. Both the feature encoder and the language module are based on
RNNs with LSTM cells.

3.1 LSTM-based RNNs

Recurrent neural network (RNN) is a category of neural network containing an
internal state. RNN is able to encode a dynamic temporal behavior due to its
connections between units form directed cycles. The internal state of RNN can be
treated as a state of memory, which contains information of both current input
and the previous memory. Therefore, RNN has the capability to “remember” the
history of both previous inputs and outputs. RNN is widely applied in prediction
frameworks which is dependent on context, such as machine-translation [31]. A
RNN cell can be formatted as:

ht = σ(Whht−1 +Wxxt), (1)

where ht and xt denote the hidden state and input encoding at time step t,
respectively; Wh and Wx denote the parameters assigned to each state vector.
σ(·) denotes the sigmoid function.
However, RNN often suffers from modeling long-term temporal dependencies
[32]. A modification called long-term-short-memory (LSTM) is proposed for bet-
ter long-term temporal dependency modeling with more sophisticated internal
states and connections. A typical LSTM cell can be formatted as:

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

ft = σ(Wfxt + Ufht−1 + bf )

Ĉt = tanh(Wcxt + Ucht−1 + bc)

Ct = ft � Ct−1 + it � Ĉt

ht = ot � tanh(Ct),

(2)

where � is element-wise product; σ(·) denotes the sigmoid nonlinearity-introduce
function; xt is the input encoding at each time step t to the LSTM cell; Wi, Wf ,
Wc, Wo, Ui, Uf , Uc, and Uo are weight matrices assigned to parameters of input
gate, forget gate, cell state and output gate, respectively; bi, bf , bc and bo are
bias vectors for corresponding gates and states; it, ot, ft, Ct and ht denote the
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state values of input gate, output gate, forget gate, cell state and hidden state,
respectively. Ĉt represents the candidate cell state before combining with the
previous cell state (Ct−1) and the forget gate.
In our work, the LSTM cells are the building blocks of two types of RNNs: 1)
feature encoding RNN and 2) sentence decoding RNN (language model). The
illustrations of both RNNs are shown in Fig. 2. The two types of RNN cells
are connected as illustrated in Fig. 1. The feature encoding RNN is responsible
to encode the sequential inputs from video features; and the sentence decoding
RNN is responsible to decode the output from encoding RNN to a sequence of
words.

LSTM
C t

ht

C t−1

ht−1

MLP

x t

v t

LSTM
C t

ht

MLP

x t

w t−1

soft-max

w t

(a) Recurrent cell 
for feature encoding

(b) Recurrent cell 
for sentence decoding

C t−1

ht−1

p(wt∣ht)

... ...

... ... ......

... ...

Fig. 2. Illustration of two types of recurrent cells for feature encoding and sentence
decoding, respectively. Both cells contain an internal LSTM cell. At each time step,
feature encoding recurrent cell takes an input video feature (vt) and sentence decoding
cell takes an input as the word-prediction (wt) from the previous time step. Note that
the MLPs in both cells act as look-up tables which map the input vector to the internal
input vector (xt).

3.2 Feature encoder

Suppose the input video sequence V = {c1, c2, ..., cT } is composed of T short
video clips. Without loss of generality, the length of each video clip ‖ci‖ could
equal to 1 to represent individual frames. The video sequence can be encoded
with a feature extractor φ (such as C3D [6] and VGG-net [33]), thus the video
can be represented as: φ(V ) = {v1, v2, ..., vT }, where vt = φ(ct) denotes a video
feature vector for a video clip.
Therefore, the input video can be encoded into a sequence of feature vectors
{vt}. For the feature encoding RNN as illustrated in Fig. 2 (a), one video fea-
ture vt is fed into the RNN cell with a multiple-layer-perceptron (MLP). The
MLP can represent any multi-layer neural network, and in our case the MLP
indicates a fully-connected layer followed by a ReLU layer. Note that the MLP
acts like a look-up table, mapping the input feature vector into a continuous
RNN embedding space. At each time step t, the RNN cell takes input from both
the previous cell and the video sequence; it encodes the input vectors using an
internal LSTM cell and output hidden state ht and cell state Ct to the next
cell. The behavior of the internal feature encoding LSTM cell (LSTMFE) can
be formatted as:

[ht, Ct] = LSTMFE(ht−1, Ct−1,MLP (vt)). (3)
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Parallel fusion layer. Our framework is designed to handle video encodings
from multiple channels of the input video, such as RGB frames and motion
history images (MHI) as shown in Fig. 1. Because different channel of video
encoding contains different information, each channel should have its own feature
encoding so that the intrinsic characteristics can be encoded. In our framework,
to connect the output encoding vectors from feature encoding RNNs and the
input of sentence decoding RNN, a parallel paradigm to conduct the mapping
is employed:

ENC(V ) = MLP (hT )⊕MLP (h
′
T ), (4)

where ENC(V ) denotes the final video encoding of the input video V and ⊕
denotes vector concatenation; hT and h

′

T denote the final state vector of two
streams of RNN encoders. Note that the dimension of ENC(V ) matches with
the dimension of RNN encoding space in the language model decoder.

3.3 Language model

A general language model is usually designed to compute the probability of a
sequence of words:

p(w1, w2, ..., wK) = p(wK |wK−1, , , w1) · ... · p(w2|w1) · p(w1), (5)

where wi is the ith word in the output sentence.
In video captioning scenario, the language model is designed to compute the
modified probability:

p(w1, w2, ..., wK , Y ) = p(wK |wK−1, , , w1, Y ) · ... · p(w2|w1, Y ) · p(w1, Y ), (6)

where Y = ENC(V ) represents the encoded video.
In our framework, the language model is implemented with a RNN-based sen-
tence decoder, as shown in Fig. 2 (b). More specifically, the RNN decoding cell
at each time step computes the probability by providing the previous output
words and the video encoding as following:

p(wt|wt−1, , , w1, Y ) = p(wt|ht) = SM(ht)

[ht, Ct] = LSTMLM (xt, ht−1, Ct−1)

xt =

{
Y, if t = 1

MLP (1(wt−1)), otherwise,

(7)

where SM(·) represents a soft-max layer and 1(·) denotes the 1-hot-vector rep-
resentation of the word index. Note that the MLP learns the mapping from
word-index to the RNN internal space. The output word wt is sampled accord-
ing to the probability distribution computed by the soft-max layer.

3.4 Video representation

In this section, the procedure of obtaining video representations, i.e. φ(V ), is
discussed.
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Spatial-temporal feature extraction. In [13], the video representation is ob-
tained from mean-pooling of static image feature vectors of each frame. However,
videos are more than combinations of individual frame. Only including static im-
age features can capture the visual appearance such as objects and scenes, but
discard the information of temporal motions. For instance, in the example of
Fig. 1, information about “panda” could be included in visual appearance fea-
tures, but information about “sliding” will more likely be included in motion
features. To capture sufficient spatial-temporal features, our framework employs
two strategies: 1) two channels of raw video representations are included: mo-
tion history images and RGB video frames. MHI focus on temporal motions and
RGB frames focus on spatial appearances. 2) For each short clips in each chan-
nel (16 frames), temporal-spatial features are computed via a 3D convolutional
neural network (C3D [6]). The C3D networks are pre-trained on action recogni-
tion dataset so that they are capable to capture discriminative spatial-temporal
features.
Context embedded video representation. Before feeding the extracted C3D
features into video encoding RNNs, an additional pooling layer is added to pro-
vide more context information to the video representation:

φ(V ) = {v0, v1, ..., vT }

vt =

{
max pool(v1, ..., vT ), if t = 0

C3D(ct), otherwise,

(8)

where vt represents the input for video encoding RNN at each time step t and
ct represents the corresponding video clip.
Therefore, at time step t = 0, the encoding RNN will be fed with the “context”
vector, which is the max pooling vector over all C3D feature vectors. In this way,
the video encoding RNN starts with the holistic knowledge about the whole video
before taking the sequential inputs representing each video clip.

4 Datasets

4.1 Microsoft video description corpus

The Microsoft video description (MSVD) corpus is a video snippet-based dataset,
which focuses on describing simple interactive events, such as driving, cooking,
etc. Each video snippet is collected from YouTube. There are about 1, 658 video
clips in this corpus which are available by the time of our experiments. Each
video snippet lasts from multiple seconds to several minutes. Human annotators
were asked to describe the video snippet using one sentence from any language.
Since each video snippet was assigned to multiple annotators, there are multiple
sentences for one video snippet. Here, our paper only focuses on English descrip-
tions. Among the 1, 658 video snippets, 300 are used as testing and the rest are
for training.
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4.2 Movie Description Datasets

In this paper, two movie description datasets are employed: Max Planck Insti-
tute for Informatics Movie Description Dataset (MPII) [34] and Montreal video
annotation dataset (MVAD) [35]. Both of the datasets are collected from Holly-
wood movies. MPII dataset contains over 68, 000 video snippets from 94 High-
definition movies and MVAD dataset contains 49, 000 video snippets from 92
movies. The text annotation from the MVAD dataset is from Descriptive Video
Service (DVS), a linguistic description that allows visually impaired people to
follow the movie. Besides DVS, the MPII dataset also employs movie scripts to
enrich the text annotations. Both datasets are very challenging compared to the
MSVD dataset in several aspects: 1) movie videos have more complex scenes
and varied backgrounds. 2) The text annotations are sourced from a combined
corpus, therefore the linguistic complexity is much higher than well-structured
sentences as in the MSVD dataset. The MVAD and the MPII datasets belong
to the recent Large Scale Movie Description Challenge (LSMDC). We report
evaluation on the public testing set, where the MPII dataset has 3, 535 testing
video/sentence pairs and the MVAD has 6, 518.

4.3 American Sign Language video description corpus

To the best of our knowledge, previous automatic ASL recognition frameworks
only focus on hand gesture or facial expression recognition. We further explore
the utilization of video captioning framework for ASL recognition. Since there is
no proper public dataset for this task, we propose a new dataset, ASL-TEXT,
collected from YouTube. This proposed dataset is focused on describing videos
of ASL signing, and it contains about 20, 000 video-sentence pairs. The ASL-
TEXT dataset is very challenging in two aspects: 1) the scenes are complex but
irrelevant, and the only relevant information is from human facial expressions
and body gestures. 2) The sentences are extracted from YouTube subtitles, some
of which are generated by automatic voice recognition. Therefore the language
complexity and variation are even higher than the previous mentioned movie
description datasets.
The resource of ASL on YouTube comes in several categories, such as ASL
lessons, ASL songs, and ASL instructions provided by public institutes. We man-
ually search on YouTube with multiple textual queries such as “ASL”, “American
Sign Language”, and “ASL Lessons”, etc. The search results are further man-
ually filtered using several criteria: 1) the search results should be correct ASL
signing. 2) The subtitles associated with the video snippets should be available.
3) There should be only one frontal-view signer in the video. To further rule out
unnecessary background noises, face detection is applied on each video frame and
the video frames are then centered and cropped according to the face detection
results. Some examples of the dataset are shown in Fig. 3 (d).
Following the convention in MPII and MVAD datasets, each video is segmented
into several short snippets. Since each video in our dataset has caption (or sub-
title) available, we segment the videos so that each video clip corresponds to
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Table 1. Comparative statistics of the propose ASL-TEXT dataset with the MSVD
and MPII datasets.

#-sentences #-words vocab. size avg. length

MPII 68,375 679,157 21,700 3.9s
MVAD 56,634 568,408 18,092 6.2s
ASL-TEXT 22,527 178,637 11,193 5.4s

one sentence in the caption text. As a result, the ASL-TEXT dataset contains
22, 527 video/sentence pairs and the average length of video clips is 5.4s. The
sizes of vocabularies in the three datasets are comparable but the ASL-TEXT
dataset has less words. The ASL-TEXT dataset is more challenging because the
averaged word frequency is much lower than in the other two datasets. This
dataset will be released to public.

5 Experimental Results

5.1 Experimental setup

Metric. In this paper, we mainly evaluate the proposed framework using the
METEOR evaluation metric [36]. Compared to other n-gram-based metrics such
as BLEU [37], METEOR is more appropriate to evaluate sequential predictions.
METEOR scores the predictions by aligning them to more than one reference
sentences, which are based on exact, stem, synonym, and paraphrase matches
between words and phrases. Therefore METEOR takes more linguistic and se-
mantic information into consideration.
Loss function. In each iteration during the training process, a batch of images
is fed into the neural networks, and the language decoder generates a sequence
of probability distributions. A log-likelihood function is applied for each prob-
ability vector and corresponding ground-truth vector (1-hot-vector). The losses
and gradients are then computed by maximizing the likelihood function. The
losses and gradients are averaged and back-propagated to the preceding network
modules for parameter updates.
Training and optimization. For computational efficiency, we assign the weights
for the C3D networks with a pre-trained network and do not apply fine-tuning.
The rest of the modules (LSTM feature encoder, fusion layer, and LSTM lan-
guage decoder) are trained end-to-end using stochastic gradient descent. The
learning rates for all modules are set to 0.0001. Each iteration contains a batch
of 16 samples. All RNN sizes are set to 1024. The drop-out rates for both en-
coder and decoder are set to 0.5. We implement the networks using Torch7 [38]
and CuDNN. It takes about 1 to 3 days to converge on the training set using a
GeForce TitanX core, depending on the sizes of datasets.

5.2 Video Description Results

MSVD dataset. The comparative METEOR scores of the proposed and other
methods are shown in Table 2. The proposed method significantly outperforms
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the baseline factor graph model (FGM [19]) by 6.3%. Comparing with mean-
pooling methods [13], the improvements are 1.1%∼3.3%, which demonstrate
that including more temporal dynamic information is beneficial. Comparing
with the current sequential modeling state-of-the-arts, temporal attention (TA)
[14] and S2VT [15], our proposed method performs slightly better (30.2% vs.
29.0∼29.8%). Some qualitative results are shown in Fig. 3 (a).
MSVD dataset is more focused on describing static human-object interactions
and scenes, such as “someone is doing something in somewhere”. Comparing
temporal-based methods (the proposed, TA [14] and S2VT [15]) and static-based
methods (mean-pooling [13]), there are improvements but limited.

Table 2. METEOR scores on the MSVD dataset.

Method METEOR (%)

FGM [19] 23.9
AlexNet [13] 26.9
VGG [13] 27.7
AlexNet-COCO [13] 29.1
GoogleNet [14] 28.7
GoogleNet + TA [14] 29.0
GoogleNet + 3D-CNN + TA [14] 29.6
AlexNet(Flow) + S2VT [15] 24.3
AlexNet + S2VT [15] 27.9
VGG + S2VT [15] 29.2
VGG + AlexNet(Flow) + S2VT [15] 29.8

Proposed 30.2

MPII and MVAD datasets. To further comparative evaluate our proposed
method with the state-of-the-arts on more temporal-focused datasets, two movie-
based datasets (MVAD and MPII) are employed for comparison. The proposed
framework and other state-of-the-arts are compared in Table 3. Despite the
scores on each of the MPII and MVAD datasets, we also report the overall scores
(weighed by the sizes of testing set). Our result (7.06) outperforms Visual-Labels
(6.55) and VGG (6.31) by 0.51 and 0.75, respectively. It is beneficial to explicitly
model the temporal dynamics of the input videos.
Compared to the previous state-of-the-art sequence-to-sequence model (S2VT
[15]), our framework outperforms by 0.25. The experimental results demonstrate
that our framework can avoid feature entanglement so that it can better model
the temporal structures of videos.

5.3 ASL-TEXT

Since there is no other result available on our ASL-TEXT dataset, we eval-
uate the proposed framework on this new dataset comparing among different
network configurations. There are two aspects to be investigated in this compar-
ative evaluation. Firstly, since our fusion layer can assign different dimensions
to each feature channel, the impact of assigning different portions to RGB and
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Table 3. METEOR scores (%) on the Movie Description datasets, higher is better.

Method MPII [34] MVAD [35] Overall

SMT [34] 5.6 – –
Visual-Labels [39] 7.0 6.3 6.55
VGG [13] 6.7 6.1 6.31
Temporal Attention [14] – 4.3 –
S2VT [15] 7.1 6.7 6.81

Proposed 7.0 7.1 7.06

MHI will be discussed. Secondly, the impact of RNN sizes for both feature en-
coders and language decoders will be discussed. 20, 527 training samples and
2, 000 testing samples from ASL-TEXT are used and the METEOR scores of
different configurations are shown in Table 4. In Table 4, (RGB)% denotes the
parameter of how much percent of the encoding feature dimensions is assigned
to RGB channel; (RNNENC , RNNDEC) denotes the RNN sizes for encoder and
decoder. There are two observations can be made from Table 4: 1) for each row,
the METEOR score increases as the RNN sizes increases but after an optimal
size setting, the performance starts to decrease. 2) Assigning different dimensions
to different feature channels has little impact on the performance. Observation 1
shows that the ASL-TEXT dataset is more complex than other datasets because
even moderate RNN sizes such as (512, 512) is sufficient to over-fitting. Obser-
vation 2 demonstrates that our framework can automatically learn an optimal
combination of multiple feature channels. Therefore there is no need to manually
tune the weight of different feature channels.

Table 4. METEOR scores on the ASL-TEXT dataset of different configurations.

(RNNENC , RNNDEC)
(128,128) (256,128) (256,256) (512,256) (512,512)

(R
G

B
)% 10% 3.9 4.7 4.3 4.2 3.6

30% 4.1 3.8 4.7 3.5 3.9
50% 3.7 4.7 3.5 3.9 3.9
90% 3.7 3.7 3.5 4.5 4.0

Some qualitative results of the proposed framework have been shown in Fig.
3. For simple scenes and interactive actions in Fig. 3 (a), our system can accu-
rately generate descriptive sentences. For more complex scenarios as in movies
(Fig. 3 (b) and (c)), our system can predict well on the main actions (such as
“sit”, “eat” and “enter”) but make errors in objects. For ASL recognition, it is
promising to observe that the system has the potential to build relationships be-
tween key words (such as “love”, “medicare”, “WH-sign” and “single/married”)
and videos. The results demonstrate that exploring temporal structures and com-
bining multiple feature channels are potentially beneficial for video captioning
even in complex visual content and sentence structures.
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(a)  MSVD Dataset

(b) MPII Dataset

(c) MVAD Dataset

(d) ASL-TEXT dataset (proposed)

Fig. 3. Qualitative results of the proposed video captioning framework on four datasets:
(a) MSVD, (b) MPII, (c) MVAD and (d) ASL-TEXT. The bold sentence under each
pair of images is the predicted caption and for ASL-TEXT the ground-truth text is
also attached.

6 Conclusion

In this paper, we have proposed a novel video captioning framework based on
a two-stage encoder-decoder system. The encoding part is composed of a multi-
channel LSTM-based RNNs which can capture the temporal dynamics in video
clips by allowing arbitrary-length input sequences. The decoding part is a LSTM-
based language model which can decode the input video feature vector to a
sequence of English words. A fusion layer is inserted between the encoder and
decoder to automatically learn the optimized combination of multiple channels.
To capture spatial-temporal information in the videos, we apply 3D convolutional
neural networks pre-trained for action recognition (C3D) to extract features from
both MHIs and raw RGB video frames. The whole network can be trained end-
to-end using back-propagation. The proposed model is extensively evaluated
on three public video description datasets comparing with the state-of-the-art
methods and outperforms their performances. Furthermore, we collect an ASL
recognition dataset and propose to apply video description framework in the
area of automatic ASL recognition.
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